
Bugalyze.com - Detecting Bugs Using
Decompilation and Data Flow Analysis

Silvio Cesare
<silvio.cesare@gmail.com>

Who am I and where did this talk
come from?

• Ph.D. Student at Deakin University

• Book Author

• This talk covers some of my Ph.D. research.

Introduction

• Detecting bugs in binary is useful

– Black-box penetration testing

– External audits and compliance

– Verification of compilation and linkage

– Quality assurance of 3rd party software

Innovation in this work

• Performing static analysis on binaries by:

– Using decompilation

– And using data flow analysis on the high level
results

• The novelty is in combining decompilation and
traditional static analysis techniques

Formal Methods of Program Analysis

• Theorem Proving 

• Abstract Interpretation 

• Model Checking 

}{;}{

}{}{},{}{

RTSP

RTQQSP

Outline

• Decompilation

• Data Flow Analysis

• IL Optimisation

• Bug Detection

• Bugwise

• Future Work and Conclusion

Terminology (1)

• Control Flow Graphs represents control flow within a
procedure

• Intraprocedural analysis works on a single procedure.
– Flow sensitive analyses take control flow into account

– Pointer analyses can be flow insensitive

Terminology (2)

• Call Graphs represents control flow between procedures

• Interprocedural analysis looks at all procedures in a module at
once
– Context sensitive analyses take into account call stacks

Proc_0
Proc_1
Proc_4
Proc_2

Proc_0
Proc_2

Proc_0
Proc_3

Decompilation overview

• Recovers source-level information from a binary

• Approach

– Representing x86 with an intermediate language (IL)

– Inferring stack pointers

– Decompiling locals and procedure arguments

Wire – An Formal Language for Binary
Analysis

• x86 is complex and big

• Wire is a low level RISC assembly style language

• Translated from x86

• Formally defined operational semantics

The LOAD instruction implements a memory read.

Wire – Equivalence of Dead Code
Insertion Obfuscation

Stack Pointer Inference

• Proposed in HexRays decompiler - http://www.hexblog.com/?p=42

• Estimate Stack Pointer (SP) in and out of basic block
– By tracking and estimating SP modifications using linear equalities

• Solve.

Picture from HexRays blog.

http://www.hexblog.com/?p=42

Local Variable Recovery

• Based on stack pointer inference

• Access to memory offset to the stack

• Replace with native Wire register

Imark ($0x80483f5, ,)

AddImm32 (%esp(4), $0x1c, %temp_memreg(12c))

LoadMem32 (%temp_memreg(12c), , %temp_op1d(66))

Imark ($0x80483f9, ,)

StoreMem32(%temp_op1d(66), , %esp(4))

Imark ($0x80483fc, ,)

SubImm32 (%esp(4), $0x4, %esp(4))

LoadImm32 ($0x80483fc, , %temp_op1d(66))

StoreMem32(%temp_op1d(66), , %esp(4))

Lcall (, , $0x80482f0)

Imark ($0x80483f5, ,)

Imark ($0x80483f9, ,)

Imark ($0x80483fc, ,)

Free (%local_28(186bc), ,)



Procedure Parameter and Argument
Recovery

• Based on stack pointer inference

• Offset relative to ESP/EBP indicates local or
argument

• Arguments also live registers on procedure
entry

Free (%local_28(186bc), ,)

Imark ($0x8048401, ,)

Imark ($0x8048405, ,)

Imark ($0x8048408, ,)

PushArg32 ($0x0, %local_28(186bc),)

Args (, ,)

Call (, , *0x30)

Data Flow Analysis overview

• Data Flow Analysis (DFA) reasons about data

• DFA is conservative
– It over-approximates
– But should not under-approximate

• DFA is what an optimising compiler uses

• Analyses
– Reaching Definitions
– Upwards Exposed Uses
– Live Variables
– Reaching Copies
– etc

Monotone Frameworks

• Models many data flow problems

• Sets of data entering (in) and leaving (out) of basic blocks

• Set up equations (forwards analysis)
– Data entering or leaving basic block is initialised

– Transfer function performs action on data in a basic block

– Join operator combines predecessors in control flow graph

})|({ bb rpredecessoppjoinin 

)(_ bb infunctiontransferout 

Reaching Definitions Example

• A reaching definition is a definition of a
variable that reaches a program point without
being redefined.

X=1

Y=3

X=2

Print(X)
Print(X)

X > 2 X <=2

Print(X)
Y=3, X=1, and X=2 are

reaching definitions

A Framework for Data Flow Analysis

• Forwards and backwards analysis

• Initialise in, out, gen, kill sets for each BB.

• Transfer function (forward analysis) is defined
as:

• Join operator is Union or Intersection.

])[][(][][BkillBinBgenBout 

Reaching Definitions

• Gen and Kill sets
– gen[B] = { definitions that appear in B and reach the end of B}

– kill[B] = { all definitions that never reach the end of B}

• Initialisation
– out[B] = gen[B]

• Confluence Operator
– Join = Union

– in[B] = U out[P] for predecessors P of B

Upward Exposed Uses

• The uses of a definition

• Gen and Kill sets
– gen[B] = { (s,x) | s is a use of x in B and there is no definition of x between the

beginning of B and s}
– kill[B] = { (s,x) | s is a use of x not in B and B contains a definition of x}

• Initialisation
– in[B] = {0}

• Confluence Operator
– Join = Union
– out[B] = U in[S] for successors S of B

More Data Flow Problems

• Live Variables
– A variable is live if it will be subsequently read without

being redefined.

• Reaching Copies
– The reach of a copy statement

• More DFA analyses used in optimising compilers
– Available expressions
– Very busy expressions
– etc

An Iterative Solution

• Initialise

• Apply transfer function and join.

• Iterate over all nodes in the control flow graph

• Stop when the nodes’ data stabilise

• A “Fixed Point”

A Logic-based Solution

• Data flow can be analysed using logic

• Datalog is a syntactic subset of prolog

• Represent analyses and solve
Reach(d,x,j):- Reach(d,x,i),

 StatementAt(i,s),

 !Assigns(s,x),

 Follows(i,j).

Reach(s,x,j):- StatementAt(i,s),

 Assigns(s,x),

 Follows(i,j).

Interprocedural Analysis

• Dataflow analysis works on the intraprocedural CFG

• So.. Make an interprocedural CFG (ICFG)

• Replace Calls with branches

• Replace Returns with branches back to callsite

• Apply monotone analysis

IL Optimisation overview

• Required to perform other analyses
– Decompilation
– Bug Detection

• Reduces the size of IL code

• Optimisations based on data flow analysis
– Constant Folding and Propagation
– Copy Propagation
– Backwards Copy Propagation
– Dead Code Elimination
– etc

Constant Folding

• Motivation - replace x=5 + 5 with x=10

• For each arithmetic operator

– If the reaching definition of each operand is a
single constant assignment

– Fold constants in instruction

Constant Propagation

• Motivation – reduce number of assignments

• If all the reaching definitions of a variable
have the same assignment and it is constant:

– The constant can be propagated to the variable

x=34
r=x+y
Print(r)

r=34+y
Print(r)



Copy Propagation

• Motivation – reduce number of copies

• For a statement u where x is being used:
– Statement s is the only definition of x reaching u
– On every path from s to u there are no assignments to y.

• Or.. At each use of x where x=y is a reaching copy, replace x
with y.

y=x
z=2
r=y+z
Print(r)

z=2
r=x+z
Print(r)



Backwards Copy Propagation

• Motivation – reduce number of copies

• In Bugwise, both forwards and backwards
copy propagation are required.

x=34
y=4
r1=x+y
r2=r1

x=34
y=4
r2=x+y



Dead Code Elimination

• Motivation – reduce number of instructions

• For any definition of a variable:

– If the variable is not live, then eliminate the
instruction.

x=34 (x is not live)
x=10
Print(x)


x=10
Print(x)

Bug detection overview

• Decompilation
– Transforms locals to native IL variables

• Data Flow Analysis
– Reasons about IL variables

– When variables are used and defined

• Bug Detection
– getenv()

– Use-after-free

– Double free

getenv()

• Detect unsafe applications of getenv()

• Example: strcpy(buf,getenv(“HOME”))

• For each getenv()
– If return value is live

– And it’s the reaching definition to the 2nd argument to
strcpy()/strcat()

– Then warn

• P.S. 2001 wants its bugs back.

Use-after-free

• For each free(ptr)

– If ptr is live

– Then warn
void f(int x)

{

 int *p = malloc(10);

 dowork(p);

 free(p);

 if (x)

 p[0] = 1;

}

Double free

• For each free(ptr)

– If an upward exposed use of ptr’s definition is
free(ptr)

– Then warn

• 2001 calls again

void f(int x)

{

 int *p = malloc(10);

 dowork(p);

 free(p);

 if (x)

 free(p);

}

Implementation

• Built on my previous Malwise system

• Malwise is over 100,000 LOC C++

• Bugwise is a set of loadable modules

• Everything in this talk and more is
implemented

getenv() bugs results

• Scanned entire Debian 7 unstable repository

• ~123,000 ELF binaries

• 30,450 not scanned.

• 85 bug reports

• 47 packages reported

4digits ptop

acedb-other-belvu recordmydesktop

acedb-other-dotter rlplot

bvi sapphire

comgt sc

csmash scm

elvis-tiny sgrep

fvwm slurm-llnl-slurmdbd

garmin-ant-downloader statserial

gcin stopmotion

gexec supertransball2

gmorgan theorur

gopher twpsk

gsoko udo

gstm vnc4server

hime wily

le-dico-de-rene-cougnenc wmpinboard

libreoffice-dev wmppp.app

libxgks-dev xboing

lie xemacs21-bin

lpe xjdic

mp3rename xmotd

mpich-mpd-bin

open-cobol

procmail

ELF Binary Sizes

• Linear growth with logarithmic scaling plus
outliers

Cumulative getenv() bugs over time -
sorted by binary size

• Linear or power growth?

getenv() bug statistics

• Probability (P) of a binary being vulnerable: 0.00067

• P. of a package being vulnerable: 0.00255

• P. of a package having a 2nd vulnerability given that one binary
in the package is vulnerable: 0.52380

)(

)(
)|(

BP

BAP
BAP




Conditional probability of A given that B has occurred:

Double free SGID games “xonix” in
Debian 6

 memset(score_rec[i].login, 0, 11);

 strncpy(score_rec[i].login, pw->pw_name, 10);

 memset(score_rec[i].full, 0, 65);

 strncpy(score_rec[i].full, fullname, 64);

 score_rec[i].tstamp = time(NULL);

 free(fullname);

 if((high = freopen(PATH_HIGHSCORE, "w",high)) == NULL) {

 fprintf(stderr, "xonix: cannot reopen high score file\n");

 free(fullname);

 gameover_pending = 0;

 return;

 }

Bugalyze.com

EC2 Infrastructure

Future Work

• Core
– Summary-based interprocedural analysis
– Context sensitive interprocedural analysis
– Pointer analysis
– Improved decompilation

• Bug Detection
– Uninitialised variables
– Unchecked return values
– More evaluation and results

Conclusion

• Traditional static analysis can find bugs.

• Decompilation bridges the binary gap.

• Bugwise works on real Linux binaries.

• It is available to use.

• http://www.Bugalyze.com

