Lacroe

LISA ==

Silvio Cesare
<silvio.cesare@gmail.com>

ot

LSA 2013

* Ph.D. Student at Deakin University

e Book Author

* This talk covers some of my Ph.D. research.

Silvio Cesare - Yang Xiang

Software Similarity
and Classification

LSA 2013

* Detecting bugs in binary is useful

— Black-box penetration testing

— External audits and compliance

— Verification of compilation and linkage
— Quality assurance of 3™ party software

* Performing static analysis on binaries by:

— Using decompilation

— And using data flow analysis on the high level
results

* The novelty is in combining decompilation and
traditional static analysis techniques

 Theorem Proving =2 REr1) =

3 = r1,P) = Plpc = pc + LR[r3 = nll]’
{P}S{Q} {Q}{R}
{P}S;T{R}

ASSIGN

* Abstract Interpretation =2

* Model Checking = ?

Decompilation

Data Flow Analysis
IL Optimisation
Bug Detection
Bugwise

Future Work and Conclusion

Control Flow Graphs represents control flow within a
procedure

Intraprocedural analysis works on a single procedure.

— Flow sensitive analyses take control flow into account

— Pointer analyses can be flow insensitive

e Call Graphs represents control flow between procedures

* Interprocedural analysis looks at all procedures in a module at
once

— Context sensitive analyses take into account call stacks

* Recovers source-level information from a binary

* Approach
— Representing x86 with an intermediate language (IL)
— Inferring stack pointers

— Decompiling locals and procedure arguments

Xx86 is complex and big

Wire is a low level RISC assembly style language

Translated from x86

Formally defined operational semantics

R(r1) — nil
M(nl) - n2
(r3:==(r1),P) = P[pc =pc+ 1, R[r3 » n2]]

LOAD

Th%lg%unstmction implements a memory read.

LSA 2013

Reg name(“eax”) =10
Reg name(“ebx”) =1
Reg name(“zf”) =100

In the first part of the dead code equivalence
proof we execute the instructions without the
dead code.

nl=20
("ASSIGNC 0,—,0",5) = s’

s' = P[pc = pc+ 1,R[0 - ni]]

s'=P[pc = pc+ 1L,R[0 - 0]]

In the second part of the proof we execute the instructions
with the dead code.

R(0) - n1
n3=nl+ 50
("BOPC4pp 0,350,0",t) = t'

t' = P[pc = pc+ 1,R[0 — n3]]
t' = P[pc = pc+ 1,R[0 — n1+ 50]]

R(0) - nl
n3=nl-— 50
("BOPC 4,50,$50,0",5s") = s"

t" = P[pc = pc+ 1,R[0 » n3]]

t" = P[pc = pc+ 1,R[0 » (n1 + 50) — 50]]

R(0) - nl
n3=20
("ASSIGNC 0,—,0",t") = t""

t"" = P[pc = pc+ 2,R[0 - n1]]

t"' = P[pc = pc+ 2,R[0 » 0]]

Now we can see that t*”’-pc = s’-pc which means they are
semantically equivalent when ignoring the effect the code has
on the program counter. We also note that s’ and s are
semantically equivalent. We have thus proven the obfuscated
and deobfuscate code samples are equivalent.

* Proposed in HexRays decompiler - http://www.hexblog.com/?p=42

e Estimate Stack Pointer (SP) in and out of basic block

— By tracking and estimating SP modifications using linear equalities

5P at the entry point is zero

urn instructions 1s Zero

- uutu =10
-out, =0
-out, =0
-out, =0
-out,=0
f Equations denved from block contents:
in, = 0./ block does not change ESP
-in, <=8/ because of 2 pushes
in2 = 0/ block does not change ESP
-iny =0/ block does not change ES|
=

- in, = 0./ block does not change ESF

Picture from HexRays blog.

http://www.hexblog.com/?p=42

* Based on stack pointer inference

* Access to memory offset to the stack

* Replace with native Wire register

Imark ($0x80483f5, ,)

AddImm32 (%esp(4), $O0xlc, %temp memreg(l2c))
LoadMem32 (%temp memreg (l2c), , Stemp opld(66))
Imark ($0x80483f9, ,)
StoreMem32 ($temp opld(66), , %esp(4)) $0x80483f5, ,)
Imark (50x80483fc, ,) S0x80483f9, ,)
SubImm32 (%esp(4), $0x4, %esp(4)) $0x80483fc, ,)
LoadImm32 ($0x80483fc, , %temp opld(66)) Slocal_ 28 (186bc
StoreMem32 (temp opld(66), , %esp(4))
Lcall (, , $SO0x80482f0)

* Based on stack pointer inference

» Offset relative to ESP/EBP indicates local or
argument

* Arguments also live registers on procedure
entry Free

Imark

(31local 28 (186bc), ,)
($0x8048401, ,)
Imark (50x8048405, ,)
Imark ($0x8048408, ,)
PushArg32 ($0x0, %local 28(186bc),)
Args (
Call (

II)
;o *0x30)

Data Flow Analysis (DFA) reasons about data

DFA is conservative
— It over-approximates
— But should not under-approximate

DFA is what an optimising compiler uses

Analyses
Reaching Definitions
Upwards Exposed Uses
Live Variables
Reaching Copies
etc

* Models many data flow problems
e Sets of data entering (in) and leaving (out) of basic blocks

e Set up equations (forwards analysis)
— Data entering or leaving basic block is initialised
— Transfer function performs action on data in a basic block

out, = transfer _ function (in,)
— Join operator combines predecessors in control flow graph

in, = join({p| p € predecessor,})

* A reaching definition is a definition of a
variable that reaches a program point without
being redefined.

1
3

X=2
Print(X)

L

Y=8, X=1, and X=2 are
reaching definitions

Print(X)

Print(X)

Forwards and backwards analysis

Initialise in, out, gen, kill sets for each BB.

Transfer function (forward analysis) is defined

= out[B] = gen[B] L (in[B] - kill[B])

Join operator is Union or Intersection.

e Gen and Kill sets

— gen[B] = { definitions that appear in B and reach the end of B}
— kill[B] = { all definitions that never reach the end of B}

e |nitialisation
— out[B] = gen[B]

* Confluence Operator

— Join = Union

— in[B] = U out[P] for predecessors P of B

The uses of a definition

Gen and Kill sets

— gen[B] ={(s,x) | sis ause of xin B and there is no definition of x between the
beginning of B and s}

— kill[B] ={(s,x) | sis a use of x not in B and B contains a definition of x}

Initialisation
— in[B] = {0}

Confluence Operator
— Join = Union
— out[B] = U in[S] for successors S of B

e Live Variables

— Avariable is live if it will be subsequently read without
being redefined.

* Reaching Copies
— The reach of a copy statement

 More DFA analyses used in optimising compilers
— Available expressions
— Very busy expressions
— etc

Initialise
Apply transfer function and join.

Iterate over all nodes in the control flow graph

Stop when the nodes’ data stabilise

A “Fixed Point”

* Data flow can be analysed using logic

* Datalog is a syntactic subset of prolog

* Represent analyses and solve

Reach(d, x, J) : - Reach (d, x,1),
StatementAt (i, s),
'Assigns (s, x),
Follows (1i,7) .

Reach (s, x,]) : - StatementAt (i, s),
Assigns (s, x),
Follows (i,7) .

Dataflow analysis works on the intraprocedural CFG

So.. Make an interprocedural CFG (ICFG)
Replace Calls with branches

Replace Returns with branches back to callsite

Apply monotone analysis

* Required to perform other analyses
— Decompilation
— Bug Detection

e Reduces the size of IL code

* Optimisations based on data flow analysis
— Constant Folding and Propagation
Copy Propagation
Backwards Copy Propagation
Dead Code Elimination

etc

* Motivation - replace x=5 + 5 with x=10

* For each arithmetic operator

— If the reaching definition of each operand is a
single constant assighment

— Fold constants in instruction

* Motivation —reduce number of assignments

x=34 r=34+y
r=x+y Print(r)
Print(r)

 |f all the reaching definitions of a variable
have the same assighment and it is constant:

— The constant can be propagated to the variable

* Motivation — reduce number of copies

Yy=X z=2
z=2 r=x+z
r=y+z Print(r)
Print(r)
* For a statement u where x is being used:

— Statement s is the only definition of x reaching u

— On every path from s to u there are no assignments toy.

e Or.. At each use of x where x=y is a reaching copy, replace x
with .

* Motivation —reduce number of copies

* |n Bugwise, both forwards and backwards
copy propagation are required.

e Motivation — reduce number of instructions

* For any definition of a variable:

— If the variable is not live, then eliminate the
Instruction.

x=34 (xis not live) x=10
x=10 Print(x)
Print(x)

 Decompilation
— Transforms locals to native IL variables

 Data Flow Analysis
— Reasons about IL variables
— When variables are used and defined

* Bug Detection

— getenv()
— Use-after-free
— Double free

Detect unsafe applications of getenv()
Example: strcpy(buf,getenv(“HOME"))

For each getenv()
— If return value is live

— And it’s the reaching definition to the 2" argument to
strcpy()/strcat()

— Then warn

P.S. 2001 wants its bugs back.

* For each free(ptr)

— If ptris live
— Then warn

volid f (int Xx)
{
int *p = malloc (10);
dowork (p) ;
free(p) ;
if (x)
pl[0] = 1;

* For each free(ptr)

— If an upward exposed use of ptr’s definition is
free(ptr)

— Then warn void f(int x)

{
int *p = malloc (10);
dowork (p) ;
free(p) ;
1f (x)
free(p) ;

e 2001 calls again

Built on my previous Malwise system

Malwise is over 100,000 LOC C++
Bugwise is a set of loadable modules

Everything in this talk and more is
implemented

Scanned entire Debian 7 unstable repository

~123,000 ELF binaries

30,450 not scanned.

85 bug reports 'ﬁ"

47 packages reported

Adigits
acedb-other-belvu
acedb-other-dotter
bvi

comgt

csmash

elvis-tiny

fvwm
garmin-ant-downloader
gcin

gexec

gmorgan

gopher

gsoko

gstm

hime
le-dico-de-rene-cougnenc
libreoffice-dev
libxgks-dev

lie

Ipe

mp3rename
mpich-mpd-bin
open-cobol
procmail

ptop
recordmydesktop
riplot

sapphire

sc

scm

sgrep
slurm-lInl-slurmdbd
statserial
stopmotion
supertransball2
theorur

twpsk

udo

vncdserver

wily
wmpinboard
wmppp.app
xboing
xemacs21-bin
xjdic

xmotd

* Linear growth with logarithmic scaling plus
outliers

10000000000 ELF Binary Sizes

1000000000
100000000
10000000
1000000
100000
10000

1000

100

10

1
20001 40001 60001 80001 100001 120001

* Linear or power growth?

M Bugs

Bugs Over Time

fha) = 1730981311 27491 E-008 x*1.91596363135
R2 = 0.9738139736

N
o
!.5“!‘
A

20000 40000 60000 80000 100000 120000

M Binaries

140000

69
black a2

LSA 2013

Probability (P) of a binary being vulnerable: 0.00067

* P. of a package being vulnerable: 0.00255

P(ANB)

P(AIB) =~ s

* P. of a package having a 2" vulnerability given that one binary
in the package is vulnerable: 0.52380

memset (score rec[i].login, 0, 11);

strncpy (score rec[i].login, pw->pw_name,

memset (score rec[i].full, 0, 65);

strncpy (score recl[i].full, fullname, 64);

score recl[i].tstamp = time (NULL);

free (fullname) ;

if((high = freopen (PATH HIGHSCORE, "w",high)) == NULL) {

fprintf (stderr, "xonix: cannot reopen high score file\n");

free (fullname) ;
gameover pending = 0;

return;

C D www.bugalyze.com " Bug gwise-p = www.bugalyze.com/webservices/Bugwise/Bugwise-print-report?h=f6dcd3c6cdda0820910256afb78c2449

BUgWiSE FooCodeChu

Submission Details

Hash fdcd3cheddad820910256aib7Ec2449

Results Summary Permanent link to this report

1 Double frees detected

Results

Double free Double free at 0x804¢910 and 0x804cc8e

C' [www.bugalyze.com/w

Bugwise FooCodeChu

Submission Details

Hash 9e8a7c678b3495¢cf0eeefD2ce691dd7a

Results Summary Permanent link to this report

1 Buffer overflows detected

Results

Buffer overflow Results of getenv() overflow strcpy function

Log Server

Web Server SCM Server Reporting Server
Build Server Mail-1

Mail-2

Primary DNS
Secondary DNS
Bugzilla

File Server
Health Monitor
Malware Feeds

HTTP Load
Balancer

Scan Server Scan Server

* Core
— Summary-based interprocedural analysis
— Context sensitive interprocedural analysis
— Pointer analysis
— Improved decompilation

* Bug Detection
— Uninitialised variables
— Unchecked return values
— More evaluation and results

Traditional static analysis can find bugs.

Decompilation bridges the binary gap.
Bugwise works on real Linux binaries.
It is available to use.

http://www.Bugalyze.com

