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• This is a talk about DEFENDING not attacking
– NO systems were harmed on the development of 

this talk.
– This is NOT about some vanity hack that will be 

patched tomorrow
– We are actually trying to BUILD something here.

• This talk includes more MATH thank the daily 
recommended intake by the FDA.

• You have been warned...

WARNING!



• 12 years in Information Security, done a little bit of 
everything.

• Past 7 or so years leading security consultancy and 
monitoring teams in Brazil, London and the US.
– If there is any way a SIEM can hurt you, it did to me.

• Researching machine learning and data science in 
general for the past year or so. Participates in Kaggle 
machine learning competitions (for fun, not for profit).

• First presentation at BlackHat! Thanks for attending!

Who’s this guy?



• Security Monitoring: We are doing it wrong
• Machine Learning and the Robot Uprising
• Data gathering for InfoSec
• Case study: Model to detect malicious 

activity from log data
• MLSec Project
• Attacks and Adversaries
• Future Direction

Agenda



• Logs, logs everywhere

The Monitoring Problem
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• SANS Eighth Annual 2012 Log and Event Management Survey Results (http://
www.sans.org/reading_room/analysts_program/SortingThruNoise.pdf)

Are these the right tools for the job?
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• Rules in a SIEM solution invariably are:
– “Something” has happened “x” times;
– “Something” has happened and other “something2” 

has happened, with some relationship (time, same 
fields, etc) between them.

• Configuring SIEM = iterate on combinations until:
– Customer or management is fooled satisfied; or
– Consulting money runs out

• Behavioral rules (anomaly detection) helps a bit 
with the “x”s, but still, very laborious and time 
consuming.

Correlation Rules: a Primer



• However, there are 
individuals who will 
do a good job

• How many do you 
know?

• DAM hard (ouch!) to 
find these capable 
professionals

Not exclusively a tool problem



• How many of these 
very qualified 
professionals will we 
need?

• How many know/ 
will learn statistics, 
data analysis, data 
science?

Next up: Big Data Technologies



We need an Army! Of ROBOTS!



• “Machine learning systems automatically learn 
programs from data” (*)

• You don’t really code the program, but it is inferred 
from data.

• Intuition of trying to mimic the way the brain learns:  
that’s where terms like artificial intelligence come 
from.

Enter Machine Learning

(*) CACM 55(10) - A Few Useful Things to Know about Machine Learning 



• Sales

Applications of Machine Learning

• Trading

• Image and 
Voice 
Recognition



Security Applications of ML

• Fraud detection systems:
– Is what he just did consistent with 

past behavior?
• Network anomaly detection (?):

– NOPE!
– More like statistical analysis, bad 

one at that
• SPAM filters

- Remember the “Bayesian filters”? 
There you go.

- How many talks have you been 
hearing about SPAM filtering 
lately? ;)



• Supervised Learning:
– Classification (NN, SVM, 

Naïve Bayes)
– Regression (linear, 

logistic)

Kinds of Machine Learning

Source – scikit-learn.github.io/scikit-learn-tutorial/

• Unsupervised Learning :
– Clustering (k-means)
– Decomposition (PCA, SVD)



Considerations on Data Gathering

• Models will (generally) get better with more data
– But we always have to consider bias and variance as we select 

our data points
– Also adversaries – we may be force-fed “bad data”, find signal in 

weird noise or design bad (or exploitable) features
• “I’ve got 99 problems, but data ain’t one”

Domingos, 2012 Abu-Mostafa, Caltech, 2012



Considerations on Data Gathering

• Adversaries - Exploiting the learning process
• Understand the model, understand the 

machine, and you can circumvent it
• Something InfoSec community knows very well
• Any predictive model on Infosec will be pushed 

to the limit 
• Again, think back on the 
way SPAM engines evolved.



Designing a model to detect external 
agents with malicious behavior

• We’ve got all that log data anyway, let’s dig into it
• Most important (and time consuming) thing is the “feature 

engineering”
• We are going to go through one of the algorithms I have put 

together as part of my research



Model: Data Collection

• Firewall block data from SANS DShield (per day)
• Firewalls, really? Yes, but could be anything.
• We get summarized “malicious” data per port



• Number of aggregated events (orange)
• Number of log entries before aggregation (purple)



Model Intuition: Proximity

• Assumptions to aggregate the data 
• Correlation / proximity / similarity BY BEHAVIOR
• “Bad Neighborhoods” concept: 
– Spamhaus x CyberBunker
– Google Report (June 2013)
– Moura 2013

• Group by Netblock (/16, /24)
• Group by ASN 
– (thanks, Team Cymru)



Map of the 
Internet

• (Hilbert Curve)
• Block port 22 
• 2013-07-20

• Not random at 
all...
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Be careful with 
confirmation bias

Country codes 
are not enough 
for any prediction 
power of 
consequence 
today



Model Intuition: Temporal Decay

• Even bad neighborhoods renovate:
– Agents may change ISP, Botnets may be shut down
– A little paranoia is Ok, but not EVERYONE is out to get 

you (at least not all at once)
• As days pass, let’s forget, bit by bit, who attacked
• A Half-Life decay function will do just fine



Model Intuition: Temporal Decay



Model: Calculate Features

• Cluster your data: what 
behavior are you trying to 
predict?

• Create “Badness” Rank = 
lwRank (just because)

• Calculate normalized ranks 
by IP, Netblock (16, 24) and 
ASN 

• Missing ASNs and Bogons 
(we still have those) handled 
separately, get higher ranks.



Model: Calculate Features

• We will have a rank calculation per day:
– Each “day-rank” will accumulate all the knowledge 

we gathered on that IP, Netblock and ASN to that day
– Decay previous “day-rank” and add today’s results

• Training data usually spans multiple days
• Each entry will have its date:
– Use that “day-rank”
– NO cheating     --------->
– Survivorship bias issues!



Model: Example Feature (1)

• Block on Port 3389 (IP address only)
– Horizontal axis: lwRank from 0 (good/neutral) to 1 (very bad)
– Vertical axis: log10(number of IPs in model)



Model: Example Feature (2)

• Block on Port 22 (IP address only)
– Horizontal axis: lwRank from 0 (good/neutral) to 1 (very bad)
– Vertical axis: log10(number of IPs in model)



How are we doing so far?



Training the Model

• YAY! We have a bunch of numbers per IP 
address!

• We get the latest blocked log files (SANS or not):
– We have “badness” data on IP Addresses -  features
– If they were blocked, they are “malicious” - label

• Now, for each behavior to predict:
– Create a dataset with “enough” observations:
– Rule of Thumb: 70k - 120k is good because of 

empirical dimensionality.



Negative and Positive 
Observations

• We also require “non-malicious” 
IPs!

• If we just feed the algorithms 
with one label, they will get 
lazy.

• CHEAP TRICK: Everything is 
“malicious” - trivial solution

• Gather “non-malicious” IP 
addresses from Alexa and 
Chromium Top 1m Sites.



SVM FTW!

• Use your favorite algorithm! YMMV.
• I chose Support Vector Machines (SVM):

– Good for classification problems with numeric features
– Not a lot of features, so it helps control overfitting, built 

in regularization in the model, usually robust
– Also awesome: hyperplane separation on an unknown 

infinite dimension.

Jesse Johnson – shapeofdata.wordpress.com
No idea… Everyone copies this one



Results: Training/Test Data

• Model is trained on each behavior for each day

• Training accuracy* (cross-validation): 83 to 95%

• New data - test accuracy*:
– Training model on day D, predicting behavior in day D+1
– 79 to 95%, roughly increasing over time

(*)Accuracy = (things we got right) / (everything we tried)



Results: Training/Test Data
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Results: New Data

• How does that help?
• With new data we can verify the labels, we find:

– 70 – 92% true positive rate (sensitivity/precision)
– 95 – 99% true negative rate (specificity/recall)

• This means that (odds likelihood calculation):
– If the model says something is “bad”, it is 13.6 to 18.5 

times MORE LIKELY to be bad.
• Think about this. 
• Wouldn’t you rather have your analysts look at these 

first?



Remember the Hilbert Curve?

• Behavior: block 
on port 22

• Trial inference 
on 100k IP 
addresses per 
Class A subnet

• Logarithm  
scale: 
brightest tiles 
are 10 to 1000 
times more 
likely to 
attack.
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Attacks and Adversaries

• IP addresses are not as reliable as they could be:
– Forget about UDP
– Lowest possible value for DFIR

• This is not attribution, this is defense

• Challenges:
– Anonymous proxies (not really, same rules apply)
– Tor (less clustering behavior on exit nodes)
– Fast-flux Tor - 15~30 mins

• Process was designed with different actors in mind as well, given 
they can be clustered in some way.



Future Direction

• As is, the results from the predictions can help Security Analysts 
on tiers 1 and 2 of SOCs:
– You can’t “eyeball” all of the data.
– Makes the deluge of logs produce something actionable

• The real kicker is when we compose algorithms (ensemble):
– Web server -> go through firewall, then IPS, then WAF
– increased precision by composing different behaviors

• Given enough predictive power (increased likelihood):
– Implement an SDN system that sends detected attackers through a 

“longer path” or to a Honeynet
– Connection could be blocked immediately



Final Remarks
• Sign up, send logs, receive reports generated by models!

– FREE! I need the data! Please help! ;)

• Looking for contributors, ideas, skeptics to support 
project as well.

• Please visit https://www.mlsecproject.org , message 
@MLSecProject or just e-mail me.

https://www.mlsecproject.org
https://www.mlsecproject.org


• Machine learning can assist monitoring teams in data-
intensive activities (like SIEM and security tool 
monitoring)

• The odds likelihood ratio (12x to 18x) is proportional do 
the gain in efficiency on the monitoring teams.

• This is just the beginning! Lots of potential!

• MLSec Project is cool, check it out and sign up!

Take Aways



Thanks!
• Q&A?
• Don’t forget to submit 

feedback!

Alexandre Pinto 
alexcp@mlsecproject.org

@alexcpsec
@MLSecProject

"Prediction is very difficult, especially if it's about the future." 

 
 
 
 
 
 
      - Niels Bohr


