
Black-Box Assessment of
Pseudorandom Algorithms

 Derek Soeder Christopher Abad Gabriel Acevedo
 dsoeder@cylance.com cabad@cylance.com gacevedo@cylance.com

Agenda

• About PRNGs

• PRNGs by Example

• Attack Methodology

• The Tool: Prangster

• Demonstration

Who we are

Christopher Abad, Gabriel Acevedo, Derek Soeder

Cylance Labs Division, Cylance, Inc.

“The Science of Security”

Advanced Threat Protection ∙ Incident Response ∙ Special Projects ∙ Research

About PRNGs

About PRNGs

• Pseudorandom number generator

• Deterministic, appears unpredictable

• Designed for simplicity and performance

• Not secure

• Cryptographically secure
random number generator (CSRNG)

• Accumulates entropy

• Designed for security

About PRNGs

Application

PRNG
State

Seed

Pseudorandom
numbers

Output
Entropy
source Entropy

About PRNGs

Seed

• Derived from “entropy” or
supplied by application

• Initial internal state is
derived from it

State

• Internal state of PRNG

• Transformed for each
pseudorandom number
generated

Some states might not map to a seed

About PRNGs

• Consuming pseudorandom numbers

• Modular (“take-from-bottom”)

• Multiplicative (“take-from-top”)

About PRNGs

• Modular (take-from-bottom)

% Limit

% Modulus

% Output modulus / Discard divisor

About PRNGs

• Multiplicative (take-from-top)

∙ Limit

% Modulus

/ Output divisor / Discard divisor

About PRNGs

Ordinal value

• Pseudorandom number
from PRNG, processed by
application

• Used to select a symbol for
pseudorandom output

Symbol

• One unit of pseudorandom
application output, usually a
byte or character

• Mapping from numbers to
symbols is the “alphabet”

• Size of alphabet = “limit”

About PRNGs

• Alphabet

• Decided by application

• Pseudorandom numbers to symbols via alphabet
is a generalized but common pattern

• Example:
• abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789!@#$%^&*&*()-+_=

• ‘a’ = 0, ‘Z’ = 51, ‘*’ = 69 or 71, ‘=’ = 77, etc.

PRNGs by Example

PRNGs by Example

• Linear congruential generator (LCG)

• Array-based

• Miscellaneous

PRNGs by Example

• Linear congruential generator (LCG)

• Next state: si = (A ∙ si-1 + C) % M

• Output: xi = (si / D) % R

• A = multiplier C = increment M = modulus
D = discard divisor
R = output modulus (RAND_MAX + 1)

PRNGs by Example

PRNG A C M D R

MSVCRT 214013 2531011 232 216 215

Java 0x5DEECE66D 11 248 216
217

232
231

BSD libc 16807 0 2147483647 1 2147483647

VBScript 0xFD43FD 0xC39EC3 224 1 224

MSSQL/PHP
40014
40692

0
0

2147483563
2147483399

1.000 000
012 324
788 164

2147483563

• LCG examples:

PRNGs by Example

• Array-based

• Array of N integers modulo M

• Two indices with a fixed separation

• ak = (ak ± ak+Sep) % M ak+Sep = (ak+Sep ± ak) % M

• At most MN possible states, > possible seeds

PRNGs by Example

• Array-based examples:

PRNG N Sep Index ± M D Operation

.NET 55 21 +1 2147483647 1 ak = (ak - ak+Sep) % M

glibc (3) 31 3 +1 232 2 ak+Sep = (ak + ak+Sep) % M

PureBasic
17
17

10 -1 232 1
x = rotr(ak, 13) + ak+Sep

ak = rotr(bk, 5) + bk+Sep

bk = x

PRNGs by Example

• Array-based exhibit recurrence relations

• .NET: xi+55 = xi - xi+21 + error

• glibc (3): xi+31 = xi + xi+28 + error

• Error

• Caused by interactions of “hidden” state

• Stymies prediction

• Can actually be useful

PRNGs by Example

• Miscellaneous

• Google V8: “multiply-with-carry”

• Next state: si = 18273 ∙ (si-1 % 216) + (si-1 / 216)
 ti = 36969 ∙ (ti-1 % 216) + (ti-1 / 216)

• Output: xi = (214 ∙ (si % 218) + (ti % 218)) / 232

• Perl: uses platform’s libc rand() / (RAND_MAX + 1)

Attack Methodology

Attack Methodology

• Identify pseudorandom output

• Collect samples
• Isolate truly pseudorandom portion

• Determine complete alphabet

• Detect biases if possible

Attack Methodology

• Recover seed from output

• Guess PRNG if not known

• Guess alphabet

• Usually the most obvious arrangement

• Use biases/error if available

• Exploit

• Forward/reverse prediction

• Recover entropy

The Tool: Prangster

The Tool: Prangster

• Why?

• Functions

• {Output, alphabet}  Seed(s)

• {Seed, alphabet}  Next/previous output

• {Seed, ±n}  Seed for nth next/previous state

The Tool: Prangster

• Benchmarks

PRNG Full naive brute-force
ABCDEFGH
from A..Z

ABCDEFGHIJKLMNOP
from A..Z

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNO

P from A..Z

BSD libc 26 seconds 1 second 1 second 1 second

Java 96 days 20 minutes 2 seconds < 1 second

MSVCRT 63 seconds < 1 second < 1 second 1 < second

V8
19,856 years

(Full state)
145 seconds
(Half state)

< 1 second < 1 second 1 < second

Demonstration

Questions?

 Derek Soeder Christopher Abad Gabriel Acevedo
dsoeder@cylance.com cabad@cylance.com gacevedo@cylance.com

Thank you!

