
IBM开源技术微讲堂
区块链和HyperLedger系列列

第五讲

Hyperledger中的共享账本	

1	

h,p://ibm.biz/opentech-ma	

“区块链和HyperLedger”系列列公开课

• 每周四晚8点档	
• 区块链商⽤用之道	
•  HyperLedger	review	
•  HyperLedger架构解读	
•  HyperLedger	中的共享账本	
•  HyperLedger中的共识管理理	
•  HyperLedger中的隐私与安全	
•  HyperLedger应⽤用案例例赏析	

2	

讲师介绍—贾锡学	

•  IBM中国系统实验室	
• Hyperledger开源社区爱好者	
• Bluemix	Blockchain	service技术⽀支持	
• 参与国内⾦金金融保险⾏行行业Blockchain技术⽀支持及PoC	

3	

• What is shared ledger

• Ledger for Fabric v1.0

• Ledger privacy with multiple channels

• Ledger and Chaincode

4	

议程	

5	

What is shared ledger	
Blockchain is A shared ledger technology allowing any participant in the business network to see THE system
of record (ledger)

Ledger provides a verifiable history of all successful state changes. It is THE system of record for a
business. Business will have multiple ledgers for multiple business networks in which they participate. The
ledger is SHARED, REPLICATED and PERMISSIONED.

 Transaction – an asset transfer onto or off the ledger

 John gives a car to Anthony (simple)

 Contract – conditions for transaction to occur
If Anthony pays John money, then car passes from John to Anthony (simple)
If car won't start, funds do not pass to John (as decided by third party arbitrator) (more complex)

6	

Ledger for Fabric v1.0	
Block ledger
 - File system based, only new Blocks appending
 - Blocks are stored on all committers and optional subset of ordering service nodes
State ledger
 - World/Ledger state holds current value of smart contract data
 e.g. vehicleOwner=Daisy
 - KVS hidden from developer by chaincode APIs
 e.g. GetState(), PutState(), GetStateByRange(), etc…
 - Stored on all committers
History ledger
 - Holding historic sequence of all chain code transactions
 e.g. updateOwner(from=John, to=Anthony); updateOwner (from=Anthony, to=Daisy);etc
 - Index stored in KVS and hidden from developer by chaincode APIs
 e.g. GetHistoryForKey()
 - Stored on all committers

7	

Ledger for Fabric v1.0	

{	
		"asset_name":"marble1",	
		"owner":”jerry",	
		"date":"9/6/2016",	
}	

Txn	
Reads[]	
Writes[]	

Txn	
Reads[]	
Writes[]	

Txn	
Reads[]	
Writes[]	

Txn	
Reads[]	
Writes[]	

State	Database	

Blockchain	
(File	system)	

Latest	wri*en	key/values	for	use	
in	transac5on	simula5on	

Immutable	source	of	truth	

Indexes	point	to	block	storage	loca`on	
blockNum														à	block	file	+	offset	
blockHash														à	block	file	+	offset	
txId																									à	block	file	+	offset	
blockNum:txNumà	block	file	+	offset	

Block	index	
LevelDB	

(embedded	KV	DB)	

‘Materialized	view’	of	the	blockchain	data,		
	organized	by	key	for	efficient	queries.	
	

Two	op5ons:	
•  LevelDB	(default	embedded	KV	DB)	supports	keyed	

queries,	composite	key	queries,	key	range	queries	

•  	CouchDB	(external	op`on)	supports	keyed	queries,	
composite	key	queries,	key	range	queries,	plus	full	
data	rich	queries	

Beta	in	v1	

History	index	
LevelDB	

(embedded	KV	DB)	

‘Index’	of	the	blockchain	
to	track	history	of	a	key	

key:marble1	
value:	

ns:key:blockNum:txNum				à	[]byte{}	

8	

Ledger for Fabric v1.0	

Endorsing	Peer	(subset	of	peers)	 Commijng	Peer	(all	peers)		
	

Ordering	
Service	

Transac9on	
Reads[]	
Writes[]	

2)	Execute	chaincode	to	simulate	proposal	in	peer	
•  Query	State	DB	for	reads	
•  Build	RWSet	

Applica`on	
(SDK)	

4)	Submit	transac`on	
(includes	RWSet)	 Transac9on	

Reads[]	
Writes[]	

Transac9on	
Reads[]	
Writes[]	

Transac9on	
Reads[]	
Writes[]	

7)	Validate	each	transac`on	and	commit	block	
•  Validate	endorsement	policy	(VSCC)	
•  Validate	ReadSet	versions	in	State	DB	(MVCC)		
•  Commit	block	to	blockchain	
•  Commit	valid	trans	to	State	DB	
•  Commit	history	index	of	valid	trans	to	goleveldb	

5)	Ordering	service	
creates	batch	
(block)	of	
transac`ons		

Transaction lifecycle and interaction with ledgers

9	

Ledger for Fabric v1.0	
Block{	
				Transac`ons	[
								{	
												"Id"	:	txUUID2	
												"Invoke"	:	“Method(arg1,	arg2,..,argN)"	
												“TxRWSet"	:	[

									{	”Chaincode”	:	“ccId”		
	 		“Reads”:[{"key"	:	“key1",	"version”	:	“v1”	}]		
	 		“Writes”:[{"key"	:	“key1",	”value"	:	bytes1}]	
								}	//	end	chaincode	RWSet	
]	//	end	TxRWSet	

								},		//	end	transac`on	with	"Id"	txUUID2	
		
							{	//	another	transac`on	}, 		
]	//	end	Transac`ons	
}//	end	Block	
	

Logical structure of a ReadWriteSet

Endorsing	Peer	(Simula`on):	
•  Simulates	transac`on	and	generates	ReadWriteSet	
Commijng	Peer	(Valida`on/Commit):	
•  Read	set	is	u`lized	by	MVCC	valida`on	check	to	ensure	values	read	during	simula`on	have	not	changed	(ensures	serializable	isola`on).	
•  Block	is	added	to	chain	and	each	valid	tran’s	Write	Set	is	applied	to	state	database;	history	index	of	valid	trans	commi,ed	

10	

Ledger privacy with multiple channels	
Chaincode1 installed on all 4 peers.
Chaincode1 instantiated on all 3 channels*
*Different chaincodes could be instantiated on different channels.
*Multiple chaincodes can be instantiated on each channel.
One distributed ledger per channel.

Bank A cannot see transactions between B and C.
Blocks from different channels can be processed in parallel.

è Privacy + increased throughput

Orderer(s)	

Bank	B	Peer(s)	 Bank	C	Peer(s)	

A-B	 A-B	

A-C	

B-C	

A-C	

B-C	

Clearinghouse/	
Auditor	Peer(s)	

A-B	

A-C	

B-C	

CC1	 CC1	 CC1	 CC1	 CC1	 CC1	 CC1	 CC1	 CC1	

Channel	A-B	 Channel	A-C	

Bank	A	Peer(s)	

CC1	installed	 CC1	installed	 CC1	installed	 CC1	installed	

Channel	B-C	

11	

Ledger and Chaincode	
type Chaincode interface {
 Init(stub ChaincodeStubInterface) pb.Response

 Invoke(stub ChaincodeStubInterface) pb.Response
}

type ChaincodeStubInterface interface {
 ……

 GetState(key string) ([]byte, error)

 PutState(key string, value []byte) error

 DelState(key string) error

 GetStateByRange(startKey, endKey string) (StateQueryIteratorInterface, error)

 GetStateByPartialCompositeKey(objectType string, keys []string) (StateQueryIteratorInterface, error)

 GetQueryResult(query string) (StateQueryIteratorInterface, error)

 GetHistoryForKey(key string) (StateQueryIteratorInterface, error)

 ……

}

12	

Ledger and Chaincode	
Single key operations

GetState()/PutState()/DelState() - Read, Write and Delete a single key/value.

Key range queries
Can be used in chaincode transaction logic (e.g. identify keys to update).
Fabric guarantees result set is stable between endorsement time and commit time, ensuring the integrity of the
transaction.

GetStateByRange()
•  Read keys between a startKey and endKey.
GetStateByPartialCompositeKey()
•  Read keys that start with a common prefix. For example, for a chaincode key that is composed of K1-K2-K3 (composite

key), ability to query on K1 or K1-K2 (performs range query under the covers). Replacement for v0.6 GetRows() table api.
Non-Key queries on data content beta in v1
Available when using a state database that supports content query (e.g. CouchDB)
Read-only queries against current state, not appropriate for use in chaincode transaction logic, unless application
can guarantee result set is stable between endorsement time and commit time.

GetQueryResult()
•  Pass a query string in the syntax of the state database

13	

Ledger and Chaincode	
Query System Chaincode(QSCC)

•  New system chaincode deployed by default in v1 to query blockchain
•  Client can invoke against any peer, using same endorser request/response model

that is used for application chaincode calls
•  QSCC includes the following APIs (chaincode functions):

•  GetChainInfo
•  GetBlockByNumber
•  GetBlockByHash
•  GetTransactionByID – returns the processed transaction as well as valid/invalid indicator

IBM开源技术微讲堂
区块链和HyperLedger系列列

第五讲完

14	

h,p://ibm.biz/opentech-ma	

