A, B, C |
are matrices |
u, v, w |
are vectors |
i, j, k |
are integer values |
t, t1, t2 |
are scalar values |
r, r1, r2 |
are ranges, e.g. range(0, 3) |
s, s1, s2 |
are slices, e.g. slice(0, 1, 3) |
C = A + B; C = A - B; C = -A;
w = u + v; w = u - v; w = -u;
C = t * A; C = A * t; C = A / t;
w = t * u; w = u * t; w = u / t;
C += A; C -= A;
w += u; w -= u;
C *= t; C /= t;
w *= t; w /= t;
t = inner_prod(u, v);
C = outer_prod(u, v);
w = prod(A, u); w = prod(u, A); w = prec_prod(A, u); w = prec_prod(u, A);
C = prod(A, B); C = prec_prod(A, B);
w = element_prod(u, v); w = element_div(u, v);
C = element_prod(A, B); C = element_div(A, B);
w = conj(u); w = real(u); w = imag(u);
C = trans(A); C = conj(A); C = herm(A); C = real(A); C = imag(A);
t = norm_inf(v); i = index_norm_inf(v);
t = norm_1(v); t = norm_2(v);
t = norm_inf(A); i = index_norm_inf(A);
t = norm_1(A); t = norm_frobenius(A);
axpy_prod(A, u, w, true); // w = A * u
axpy_prod(A, u, w, false); // w += A * u
axpy_prod(u, A, w, true); // w = trans(A) * u
axpy_prod(u, A, w, false); // w += trans(A) * u
axpy_prod(A, B, C, true); // C = A * B
axpy_prod(A, B, C, false); // C += A * B
Note: The last argument (bool init
) of
axpy_prod
is optional. Currently it defaults to
true
, but this may change in the future. Set the
init
to true
is equivalent to call
w.clear()
before axpy_prod
. Up to now
there are some specialisation for compressed matrices that give a
large speed up compared to prod
.
w = block_prod<matrix_type, 64> (A, u); // w = A * u
w = block_prod<matrix_type, 64> (u, A); // w = trans(A) * u
C = block_prod<matrix_type, 64> (A, B); // w = A * B
Note: The blocksize can be any integer. However, the
total speed depends very strong on the combination of blocksize,
CPU and compiler. The function block_prod
is designed
for large dense matrices.
opb_prod(A, B, C, true); // C = A * B
opb_prod(A, B, C, false); // C += A * B
Note: The last argument (bool init
) of
opb_prod
is optional. Currently it defaults to
true
, but this may change in the future. This function
may give a speedup if A
has less columns than rows,
because the product is computed as a sum of outer products.
Accessing submatrices and subvectors via proxies using project
functions:
w = project(u, r); // the subvector of u specifed by the index range r
w = project(u, s); // the subvector of u specifed by the index slice s
C = project(A, r1, r2); // the submatrix of A specified by the two index ranges r1 and r2
C = project(A, s1, s2); // the submatrix of A specified by the two index slices s1 and s2
w = row(A, i); w = column(A, j); // a row or column of matrix as a vector
Assigning to submatrices and subvectors via proxies using project
functions:
project(u, r) = w; // assign the subvector of u specifed by the index range r
project(u, s) = w; // assign the subvector of u specifed by the index slice s
project(A, r1, r2) = C; // assign the submatrix of A specified by the two index ranges r1 and r2
project(A, s1, s2) = C; // assign the submatrix of A specified by the two index slices s1 and s2
row(A, i) = w; column(A, j) = w; // a row or column of matrix as a vector
Note: A range r = range(start, stop)
contains all indices i
with start <= i <
stop
. A slice is something more general. The slice
s = slice(start, stride, size)
contains the indices
start, start+stride, ..., start+(size-1)*stride
. The
stride can be 0 or negative! If start >= stop
for a range
or size == 0
for a slice then it contains no elements.
Sub-ranges and sub-slices of vectors and matrices can be created directly with the subrange
and sublice
functions:
w = subrange(u, 0, 2); // the 2 element subvector of u
w = subslice(u, 0, 1, 2); // the 2 element subvector of u
C = subrange(A, 0,2, 0,3); // the 2x3 element submatrix of A
C = subslice(A, 0,1,2, 0,1,3); // the 2x3 element submatrix of A
subrange(u, 0, 2) = w; // assign the 2 element subvector of u
subslice(u, 0, 1, 2) = w; // assign the 2 element subvector of u
subrange(A, 0,2, 0,3) = C; // assign the 2x3 element submatrix of A
subrange(A, 0,1,2, 0,1,3) = C; // assigne the 2x3 element submatrix of A
There are to more ways to access some matrix elements as a vector:
matrix_vector_range<matrix_type> (A, r1, r2);
matrix_vector_slice<matrix_type> (A, s1, s2);
Note: These matrix proxies take a sequence of elements
of a matrix and allow you to access these as a vector. In
particular matrix_vector_slice
can do this in a very
general way. matrix_vector_range
is less useful as the
elements must lie along a diagonal.
Example: To access the first two elements of a sub
column of a matrix we access the row with a slice with stride 1 and
the column with a slice with stride 0 thus:
matrix_vector_slice<matrix_type> (A, slice(0,1,2),
slice(0,0,2));
If you know for sure that the left hand expression and the right hand expression have no common storage, then assignment has no aliasing. A more efficient assignment can be specified in this case:
noalias(C) = prod(A, B);
This avoids the creation of a temporary matrix that is required in a normal assignment. 'noalias' assignment requires that the left and right hand side be size conformant.
The matrix element access function A(i1,i2)
or the equivalent vector
element access functions (v(i) or v[i]
) usually create 'sparse element proxies'
when applied to a sparse matrix or vector. These proxies allow access to elements
without having to worry about nasty C++ issues where references are invalidated.
These 'sparse element proxies' can be implemented more efficiently when applied to const
objects.
Sadly in C++ there is no way to distinguish between an element access on the left and right hand side of
an assignment. Most often elements on the right hand side will not be changed and therefore it would
be better to use the const
proxies. We can do this by making the matrix or vector
const
before accessing it's elements. For example:
value = const_cast<const VEC>(v)[i]; // VEC is the type of V
If more then one element needs to be accessed const_iterator
's should be used
in preference to iterator
's for the same reason. For the more daring 'sparse element proxies'
can be completely turned off in uBLAS by defining the configuration macro BOOST_UBLAS_NO_ELEMENT_PROXIES
.
Copyright (©) 2000-2004 Joerg Walter, Mathias Koch, Gunter
Winkler, Michael Stevens
Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies.
This document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any
purpose.