

ChainBuilder ESB
Visual Enterprise Integration™

Version 1.0

Component Flow Editor Guide

©Copyright 2007
Bostech Corporation

2800 Corporate Exchange Drive
Suite 260

Columbus, OH 43231

Acknowledgements

This document contains proprietary information that is the property of Bostech Corporation.
Any reproduction, disclosure, or transfer of this document or the information contained herein
without the express written consent of Bostech Corporation is strictly prohibited.

The use of the information contained in this document and the implementation of any of its
techniques are the sole responsibility of the client and depend on the client’s ability to evaluate
the information and implement it into the client’s operational environment.

Except for any express written warranties made by it, Bostech Corporation makes no
warranties or representations with respect to any information contained herein, whether
express, implied, statutory, or otherwise, in fact or in law, including without limitation, any
implied warranties of merchantability or fitness for a particular purpose; and in no event shall
Bostech Corporation be liable for any special, consequential, indirect, punitive, or exemplary
damages in connection with the use of the information contained herein. The information
contained in this document is subject to change at any time without notice.

Trademarks
The following trademarks and acknowledgments apply to the information presented in this manual:

 ChainBuilder is a registered trademark of Bostech Corporation.

 Adobe and Acrobat Reader are registered trademarks of Adobe, Inc.

 Java is a registered trademark of Sun Microsystems, Inc.

 Windows (NT, 2000, XP, and Server 2003), .NET Framework, Internet Information Services
(IIS) are registered trademarks of Microsoft Corporation.

Credits
The following third-party products are used within the ChainBuilder product, and acknowledgments
apply to the information presented in this manual:

 Acrobat Reader is created and licensed by Adobe, Inc.

 This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)

 This product includes software developed by Eclipse (http://www.eclipse.org/)

Table of Contents

1. Introduction..1

1.1. JBI Terminology Overview ..1
1.2. Component Flow Editor Overview ..2

1.2.1. Component Palette...2
1.2.2. Canvas ..3
1.2.3. Properties Panel ..3

2. Starting the Component Flow Editor...4
3. Adding Components to the Canvas..5

3.1. Binding Components...5
3.1.1. HTTP Component...5
3.1.2. File Component ..5
3.1.3. FTP Component...5
3.1.4. JMS Component ...5

3.2. Service Engines...5
3.2.1. Transformer Service Engine ...6
3.2.2. Parser Service Engine ..6
3.2.3. XSLT Service Engine...6
3.2.4. Sequencer Service Engine ...6
3.2.5. Context-Based Router (CBR) Service Engine..6
3.2.6. Script Service Engine ...7
3.2.7. JDBC Service Engine...7

3.3. External Systems ..7
3.4. Connections ..7

4. Adding Custom Code..9
4.1. Creating Custom Code Files...9
4.2. Using Custom Code...14

4.2.1. User Points of Control (UPOC) ..14
4.2.2. Transaction ID (TrxId)..16
4.2.3. Script Component ..18

5. Detailed Component Descriptions ...18
5.1. HTTP Binding Component..19
5.2. File Binding Component...19
5.3. FTP Binding Component ...22
5.4. JMS Binding Component..25
5.5. Transformer Service Engine...27
5.6. Parser Service Engine ..27
5.7. XSLT Service Engine ..28
5.8. Sequencer Service Engine ...28
5.9. Content-Based Router (CBR) Service Engine ...28
5.10. Script Service Engine...29
5.11. JDBC Service Engine ..30

6. Generating the Service Assembly Archive...31
7. ChainBuilder ESB Community..34

ChainBuilder ESB Component Flow Editor Guide

 1

1. Introduction

1.1. JBI Terminology Overview
The ChainBuilder ESB Component Flow Editor provides an easy to use graphical method
for creating JBI Service Assemblies. Since the Component Flow Editor allows the creation
of JBI Service Assemblies, it is necessary to have a basic understanding of the JBI standard
and some of the objects it defines.

Binding Component - There are two types of components in the JBI specification, the first
is a Binding Component. A binding component provides an "endpoint" to the outside
world. The job of a Binding Component is to convert between the protocol-specific data of
an external system and the normalized message format used internally by all JBI
components.

Service Engine - The other type of component is the Service Engine. Service Engines
provide the business logic of a JBI solution. This includes functionality like data
transformation, business process orchestration, message routing and many other processes.
Service Engines use JBI Normalized Messages as their input and output, so to communicate
with a Service Engine from the outside world, a Binding Component must first receive the
data and convert it to a Normalized Message, then it can be sent to the Service Engine.

Service Unit - A Service Unit is a package containing all of configuration settings for a
single component instance. This package includes the component specific settings as well as
any "artifacts" that are used by that component. An example of a Service Unit artifact is an
XSL style sheet used by an XSLT processor Service Engine.

Service Assembly - A Service Assembly is a package containing one or more Service Unit
packages and usually information about the interconnections between those Service Units.

ChainBuilder ESB Component Flow Editor Guide

 2

1.2. Component Flow Editor Overview
The Component Flow Editor contains three main parts, the Component Palette, the Canvas
and the Properties Panel. Components that are to be added to a Service Assembly are
selected from the Palette and placed on the Canvas. Then each component on the Canvas is
configured using the Properties Panel.

1.2.1. Component Palette
The Palette is divided into different categories. The first two items are the selection tools,
"Select" and "Marquee". The Select tool is the default cursor which allows the manipulation
of individual items. The Marquee tool allows multiple items to be selected on the canvas.
This can be a convenient way to move or delete a group of components.

The Binding Component and Service Engines categories contain all of the available JBI
components that may be used to build a Service Assembly.

ChainBuilder ESB Component Flow Editor Guide

 3

The External category contains a single item "External System". This is to represent an
external entity that connects to a Binding Component. This is purely for documentation
purposes to help give a clear picture of what is communicating with the Service Assembly.

The last category is Message Flows. This provides the tool to connect the different Service
Units on the Canvas to direct the flow of data.

1.2.2. Canvas
The Canvas area is where the Service Assembly is built. Components and connections are
drawn on the canvas to create the Service Assembly. When the Service Assembly is
complete, the Service Assembly archive package that is used by the JBI Container must be
created. This can also be done using the Canvas area by right clicking on it to open the
context menu and selecting the "Deploy" option.

1.2.3. Properties Panel
The properties panel displays the settings for each item in the Service Assembly. The
settings available in the properties panel depend on which type of object is selected in the
Canvas. For example, the settings for a File Binding Component will be different from the
settings available for a Transformer Service Engine.

ChainBuilder ESB Component Flow Editor Guide

 4

2. Starting the Component Flow Editor
To start the Component Flow Editor, create a new JBI Service Assembly project or open an
existing JBI Service Assembly project. In the src/sa folder of the project are two files.
Double click on the {ProjName}.componentflow_diagram file, this will start the
Component Flow Editor.

ChainBuilder ESB Component Flow Editor Guide

 5

3. Adding Components to the Canvas
To build a Service Assembly, components are added to the Canvas from the Component
Palette.

3.1. Binding Components

To add a Binding Component to the Canvas, click the desired Binding
Component on the palette to select it as the current item. Then click
again on the Canvas at the location where the component should be
added. When a Binding Component is added to the Canvas, it
represents a Service Unit. The name of the Service Unit may be edited
once it is added.

3.1.1. HTTP Component
The HTTP Component is used to provide an HTTP server for external HTTP clients to
connect to or provide an HTTP client that can retrieve information from external HTTP
Servers. It can be used to provide or invoke web services over HTTP.

3.1.2. File Component
The File Component is used to read or write data on the local file system. It is able to
process XML as well as non-XML data. It also provides automatic archiving functionality
and also the ability to determine if a file is still being written to by an external system, so it is
not processed before all of the data is present.

3.1.3. FTP Component
The FTP Component is used to send or receive files using the FTP protocol. It is able to
process XML as well as non-XML data. It also provides automatic archiving functionality
and also the ability to determine if a file is still being written to by an external system, so it is
not processed before all of the data is present.

The FTP component can also be used in the scripting mode which allow the FTP
component to receive the XML based scripting language to perform advanced FTP
operations.

3.1.4. JMS Component
The JMS Component is used to read or write data using a JMS compliant Queue based
messaging system such as ActiveMQ or WebSphere MQ Series.

3.2. Service Engines

A Service Engine is added to the Canvas exactly the same as a Binding
Component. Click the desired Service Engine on the palette to select
it as the current item. Then click again on the Canvas at the location

ChainBuilder ESB Component Flow Editor Guide

 6

where the component should be added. When a Service Engine is added to the Canvas, it
represents a Service Unit. The name of the Service Unit may be edited once it is added.

3.2.1. Transformer Service Engine
The Transformer Service Engine uses mappings created using the ChainBuilder ESB Map
Editor to convert between messages between different formats. This allows conversions
between XML messages, custom formats based on fixed length and variable length records,
as well as standards based messages like X12 EDI formats.

3.2.2. Parser Service Engine
The Parser Service Engine provides the ability to convert non-XML messages to an XML
representation which can then be processed by XML specific components such as the XSLT
Service Engine. The non-XML messages can be standards based like X12 or defined using
the ChainBuilder ESB Message Format Editor.

3.2.3. XSLT Service Engine
The XSLT Service Engine transforms XML data contained in a Normalized Message using
standard XSL style sheets. This can be used to generate different XML, HTML and many
other types of documents from XML data.

3.2.4. Sequencer Service Engine
The Sequencer Service Engine is used to chain together multiple service engines or binding
components. The normal operations of JBI components are to act as a consumer and
provider. This means that a request is sent from one component to another component and
then a response may optionally be returned. To be able to forward the results of the service
provider to another component besides the original consumer, the Sequencer component
must be used. It uses a list of services to take the results from one service to be used as the
input for the next service in the list. The results of the last service in the list can then be sent
back to the original consumer component.

3.2.5. Context-Based Router (CBR) Service Engine
The CBR Service Engine is used to dynamically route message into different destination
endpoints based on message content. You can specify the Transaction Identification (TrxId)
in the CBR component. When a request is sent from a source component to a CBR, the
CBR will perform TrxId operation on the incoming request and return a string value to
identify the request. The CBR will then route the request to different destination based on
the routing rules defined in CBR component. The supported TrxID types are Fixed, CSV,
X12, Script and XPath. The routing rules can be based on XPath, exact matching and regular
expression based matching.

ChainBuilder ESB Component Flow Editor Guide

 7

3.2.6. Script Service Engine
The Script Service Engine provides the ability to write your own custom logic not provided
out-of-the-box by ChainBuilder ESB. You can use the Groovy or POJO (Plain Old Java
Object) as scripting choice. The Script component can act as a consumer or provider. The
ideal use of Script component in a provider role is to implement your own business logic to
incoming request. The ideal use of Script component in a consumer role ranges from writing
special file processing to creating your own socket server to perform HL7 minimum lower
layer protocol (MLP).

3.2.7. JDBC Service Engine
The JDBC Service Engine accepts the XML-based request messages which contain JDBC
compliant SQL statements. It will execute the SQL statement and return the response
message which contains information about the state of the request as well as possible row
results.

3.3. External Systems
The External System component simply document external
connections to the JBI Service Assembly. The External System does
not perform any function at runtime and is not actually packaged as

part of the Service Assembly. Its purpose is to give a clear picture of what external system is
connecting to a particular Binding Component Service Assembly.

An External System object is added to the Canvas in the same manner as Binding
Components and Service Engines. To add an External System to the Canvas, select it as the
current object in the Palette, and then click on the Canvas at the location where the External
System should be added. The name of the external system can then be edited.

3.4. Connections
The Message Exchange tool is used to connect different Service Units
and External Systems on the Canvas. To add a connection, select the
Message Exchange object in the Palette. Then click on the Service

Unit on the Canvas that acts as the Consumer in the connection. Then click on the Service
Unit that acts as the Service Provider in the connection. An arrow will be drawn between
the two Service Units.

The Editor will select the correct style of arrow to use based on the components that are
being connected. The different types of connections are:

External System Connections - This type of connection is used to show a connection
between an External System and a Binding Component. The color of the arrow will be blue,
which is the same color as the External System component.

ChainBuilder ESB Component Flow Editor Guide

 8

Standard Message Exchange - This type of connection is used to show a connection
between a two components. The components may be Binding Components or Service
Engines. The color of the arrow will be black for this type of connection.

Sequencing Message Exchange - This type of connection is used to show the Service
Units that a Sequencing Component will invoke. The color of the arrows for this type of
connection is yellow. Each arrow also will have a number on it to indicate the order that the
Service Units will be called.

Context-Based Router (CBR) Message Exchange - This type of connection is used to
show the connection from a CBR component to target components. The color of the arrows
for this type of connection is yellow. You can define the matching type and expression in
each connection. Each arrow may optionally display an expression if the matching type is
“Exact” type.

The arrow also displays the MEP (Message Exchange Pattern) that will be used by using
different style arrowheads. For “In Only” defaultMEP, the arrow will have a normal
arrowhead pointing from the consumer to the provider. For “In Out” defaultMEP, the
arrow will have a diamond arrowhead at the provider end of the connection.

ChainBuilder ESB Component Flow Editor Guide

 9

4. Adding Custom Code
User defined classes or scripts can be used in a variety of places.

• UPOC (User Points of Control). These are scripts that can operate on a message
exchange as it flows between components. These can be Java classes or Groovy
script.

• User Defined Mapping Operation. These can be user operations of filter methods
that help transform data in a map. Currently, these can only be Java classes. Groovy
script will be added later.

• TrxId (Transaction ID). This is an identifier used by the Content Based Router. It
can use a Java class or Groovy Script.

• Script component. This can be either a Java class or Groovy Script. This allos you to
create an entirely new component with your own code.

User defined code usually implements a specific interface and follows a basic pattern. The
IDE has the ability to create skeleton files that make it easy for you to create custom code.

4.1. Creating Custom Code Files
If you will be using Java for your custom code then you must first create a package for your
classes to reside in. You can name the packages any way you like and nest them. To create a
package, right-click on src/java in the package explorer. Then select
“New Other Java Package”. Enter a package name.

To create custom code skeletons, right-click anywhere inside of the project in the package
explorer, then select “New Custom Code”. This starts the Custom Code Wizard.

ChainBuilder ESB Component Flow Editor Guide

 10

ChainBuilder ESB Component Flow Editor Guide

 11

Select the Language first and then the Type. Language is at the bottom but you must select it
first. When you click “Next”, you are given options appropriate to the type of code and
Language selected. This shows the screen for a Java UPOC.

ChainBuilder ESB Component Flow Editor Guide

 12

When you click “Finish”, a skeleton file is created for you. You can open this file and add
your custom logic to it.

ChainBuilder ESB Component Flow Editor Guide

 13

ChainBuilder ESB Component Flow Editor Guide

 14

4.2. Using Custom Code
Before you can use a custom Java class, you must compile it. Right-click on the project name
and select “ChainBuilder ESB Build”

4.2.1. User Points of Control (UPOC)
User Points of Control are places where user code can be placed into the message flow
between components. See the reference guide for a detailed description of UPOCs. Every
component’s wizard has a UPOC selection screen as shown here. Set “Use Upoc” to true.
Then enable the appropriate contexts and select the language, class and method.

ChainBuilder ESB Component Flow Editor Guide

 15

ChainBuilder ESB Component Flow Editor Guide

 16

4.2.2. Transaction ID (TrxId)
The transaction ID is a string identifier used by the content based router to direct message
exchanges. You can use custom code for the TrxId determination be select “script” as the
type.

ChainBuilder ESB Component Flow Editor Guide

 17

The you select the language and class. The TrxId determination class implements
ITrxIdInterface which defines the methods that it must implement. The custom code wizard
described in section 4.1 will generate a skeleton java or groovy file.

ChainBuilder ESB Component Flow Editor Guide

 18

4.2.3. Script Component
For the script component, you simple select the language and class.

5. Detailed Component Descriptions
Each Binding Component and Service Engine has specific settings. After a Service Unit is
created by adding a component to the canvas, its settings are displayed in the Properties
Panel. All components have the following properties:

Name The name of the Service Unit. This must be unique within the Service

Assembly.
Description A brief description of the Service Unit.
Interface Name The name of the Interface that the Service Unit provides.
Service Name The name of the Service provided by the Service Unit.

There is also an setting called “Use CCSL” to control whether the CCSL is used to change
the standard behaviors a component. Please refer to the ReferenceGuide for additional
information about ChainBuilder ESB Common Service Layer (CCSL).

ChainBuilder ESB Component Flow Editor Guide

 19

The component-specific settings for each type of component are described below.

5.1. HTTP Binding Component
The settings for the HTTP Binding Component are as follows:

Mode Available settings are CLIENT, SERVER or BOTH. This setting determines if the

binding component will act as an HTTP Client (a JBI Provider end point), an HTTP
Server (a JBI Consumer end point), or both.

End Point Name The name of the Client end point
Default MEP The only setting is INOUT.
Location URL The HTTP URL of the target service.

Enabled Available values are TRUE or FALSE. If
set to TRUE, the component will parse the
soap requests and send the content into the
NMR.

Client

SOAP

Imported WSDL List of imported WSDL files. If Enabled is
true, then the Location URL is determined
using the selected WSDL.

End Point Name The name of the Server end point
Default MEP Available settings are INONLY, INOUT or RELIABLEIN.
Location URL The HTTP URL where this proxy endpoint will be exposed. The

URL is usually something like "http://0.0.0.0:8192/jbi/Service".
The 0.0.0.0 IP address binds the server socket to all networks that
the host is in. If you use localhost, you will only be able to access
the URL from the same computer.

Default
Operation

The default operation name to set on the JBI exchange. If not set,
it defaults to the QName of the root xml element.

Server

SOAP Enabled Available values are TRUE or FALSE. If
set to TRUE, the component will parse the
soap requests and send the content into the
NMR.

5.2. File Binding Component
The settings for the File Binding Component are as follows:

Mode Available settings are READ, WRITE or BOTH. This setting determines if the binding

component will act as a File Reader (a JBI Consumer end point), a File Writer (a JBI
Provider end point) or both.

End Point
Name

The name of the Reader end point.

Default MEP Available settings are INONLY, INOUT or RELIABLEIN.
Source Dir Specifies the local file system path that will be scanned for files to read.

Read

Stage Dir Specifies the local file system path that will be used to stage files

ChainBuilder ESB Component Flow Editor Guide

 20

during reading. When the file reader matches a file in the source
directory, it is moved to the stage directory where it is read.

File Pattern Specifies a pattern to match against file names in the source directory.
The pattern uses glob style wildcards. The default is * which matches
all files.
Examples:
LAB???.dat
*.xml

Scan Interval Value in milliseconds that determines how often the source directory is
scanned for new data files. Default value is 5000 (5 seconds).

Read Style Available settings are RAW or NEWLINE.
RAW - The entire file is one record.
NEWLINE - Each line in the file is one record.

Record Type Available settings are STRING, XML or BINARY.
STRING - Each record is character data.
XML - Each record is well formed XML.
BINARY - Each record is binary data.

Records Per
Message

Integer value that determines the number of records from a file will be
placed in an individual Normalized Message. 0 indicates that all
records in the file will be placed in a single message. Any value > 0
will be the maximum number of records placed in a single message.
The default value is 0.

Char Set The character set to use to read in character data.
Action Determines the action to take when all data

has been read from a file. Available
settings are DELETE or ARCHIVE.
DELETE - The file is deleted when finished
reading.
ARCHIVE - The file is moved to an archive
directory when finished reading.

Archive Directory The local file system path where files
should be archived.

File
Completion

Archive File Pattern Describes a file pattern to use to rename
the file when being archived. This can be
used to add a date/time stamp to the file. If
the value is null, then the file is not renamed
when it is moved to the archive Directory.
The pattern may contain literal characters
as well as the following macros that will be
replaced with values at runtime:
{DATE} - The system date formatted as
yyyymmdd
{TIME} - The system time formatted as
hhmmss
{BASENAME} - The original file's base
name (name without extension).
{EXT} - The original file's extension.
{COUNT} - An automatically incremented
value that starts from 1 when the
component is started.

Hold Enabled Available settings are TRUE or FALSE. If
set to TRUE, and an error occurs while
processing a file, the file will be moved to

ChainBuilder ESB Component Flow Editor Guide

 21

the Hold Directory
Hold Directory The local file system path where files

should be archived.
Enabled Available settings are TRUE or FALSE.

Two Pass Mode causes the component to
check the size of the files in the Source
directory, wait for a set interval and check
the sizes again. Only files that did not
change size during the interval will be
processed. This is to prevent processing a
file that is still being written to by an
external application.

Two Pass
Mode

Interval Value in milliseconds to wait between scans
during Two Pass Mode.

Reply Dir The local file system path where files will be
written if the specified MEP returns an OUT
message.

Reply Charset The character set to use to write character
data.

Reply Write Style Available settings are RAW or NEWLINE.
RAW - Each record from a Normalized
Message is written to an individual file.
NEWLINE - Each record from a Normalized
Message is written to the same file
separated by a newline.

Reply

Reply File Pattern Describes a file pattern to use to name the
file when being written. This can be used to
add a date/time stamp to the file. The
pattern may contain literal characters as
well as the following macros that will be
replaced with values at runtime:
{DATE} - The system date formatted as
yyyymmdd
{TIME} - The system time formatted as
hhmmss
{BASENAME} - The original file's base
name (name without extension).
{EXT} - The original file's extension.
{COUNT} - An automatically incremented
value that starts from 1 when the
component is started.

End Point
Name

The name of the writer end point.

Default MEP Available settings are INONLY, INOUT or RELIABLEIN.
Dest Dir The local file system path where completed files are placed.
Stage Dir The local file system path where files are created and written to.

Write

File Pattern Describes a file pattern to use to name the file when being written.
This can be used to add a date/time stamp to the file. The pattern may
contain literal characters as well as the following macros that will be
replaced with values at runtime:
{DATE} - The system date formatted as yyyymmdd
{TIME} - The system time formatted as hhmmss

ChainBuilder ESB Component Flow Editor Guide

 22

{BASENAME} - The original file's base name (name without extension).
{EXT} - The original file's extension.
{COUNT} - An automatically incremented value that starts from 1 when
the component is started.

Write Style Available settings are RAW or NEWLINE.
RAW - Each record from a Normalized Message is written to an
individual file.
NEWLINE - Each record from a Normalized Message is written to the
same file separated by a newline.

Char Set The character set to use to write character data.

5.3. FTP Binding Component
The settings for the FTP Binding Component in Base Mode are as follows:

Mode Available settings are READ, WRITE or BOTH. This setting determines if the binding

component will act as an FTP Reader (a JBI Consumer end point), an FTP Writer (a JBI
Provider end point) or both.
.
End Point
Name

The name of the reader end point.

Default MEP Available settings are INONLY, INOUT or RELIABLEIN.

Host Specifies the host name or IP address of FTP server

User Specifies the user name to login to FTP server

Password Specifies the password to login to FTP server

Command File Specifies the XML based command file described in the Script Mode.
See the Reference Guide for details.

Connection
Mode

Available settings are ACTIVE or PASSIVE

Transformer
Mode

Available settings are ASCII or BINARY

Source Dir Specifies the path on the FTP server that will be scanned for files to
read

Transfer Dir Specifies the local file system path where files are downloaded to

Stage Dir Specifies the local file system path that will be used to stage files
during reading. When the file reader matches a file in the source
directory, it is moved to the stage directory where it is read.

Read

File Pattern Specifies a pattern to match against file names in the source directory.
The pattern uses glob style wildcards. The default is * which matches
all files.
Examples:
LAB???.dat
*.xml

ChainBuilder ESB Component Flow Editor Guide

 23

Scan Interval Value in milliseconds that determines how often the source directory is
scanned for new data files. Default value is 5000 (5 seconds).

Read Style Available settings are RAW or NEWLINE.
RAW - The entire file is one record.
NEWLINE – Each line in the file is one record.

Record Type Available settings are STRING, XML or BINARY.
STRING - Each record is character data.
XML - Each record is well formed XML.
BINARY - Each record is binary data.

Records Per
Message

Integer value that determines the number of records from a file will be
placed in an individual Normalized Message. 0 indicates that all
records in the file will be placed in a single message. Any value > 0
will be the maximum number of records placed in a single message.
The default value is 0.

Char Set The character set to use to read in character data.
Action Determines the action to take when all data

has been read from a file. Available
settings are DELETE or ARCHIVE.
DELETE - The file is deleted when finished
reading.
ARCHIVE - The file is moved to an archive
directory when finished reading.

Archive Directory The local file system path where files
should be archived.

File
Completion

Archive File Pattern Describes a file pattern to use to rename
the file when being archived. This can be
used to add a date/time stamp to the file. If
the value is null, then the file is not renamed
when it is moved to the archive Directory.
The pattern may contain literal characters
as well as the following macros that will be
replaced with values at runtime:
{DATE} - The system date formatted as
yyyymmdd
{TIME} - The system time formatted as
hhmmss
{BASENAME} - The original file's base
name (name without extension).
{EXT} - The original file's extension.
{COUNT} - An automatically incremented
value that starts from 1 when the
component is started.

Enabled Available settings are TRUE or FALSE. If
set to TRUE, if an error occurs while
processing a file, the file will be moved to
the Hold directory

Hold

Hold Directory The local file system path where files
should be archived.

Two Pass
Mode

Enabled Available settings are TRUE or FALSE.
Two Pass Mode causes the component to
check the size of the files in the Source
directory, wait for a set interval and check
the sizes again. Only files that did not

ChainBuilder ESB Component Flow Editor Guide

 24

change size during the interval will be
processed. This is to prevent processing a
file that is still being written to by an
external application.

Interval Value in milliseconds to wait between scans
during Two Pass Mode.

Reply Host Specifies the host name or IP address of
FTP server

Reply User Specifies the user name to login to FTP
server

Reply Password Specifies the password to login to FTP
server

Reply Connection
Mode

Available settings are ACTIVE or PASSIVE

Reply Transformer
Mode

Available settings are ASCII or BINARY

Reply Dir The path on the FTP server where files will
be written if the specified MEP returns an
OUT message.

Reply Charset The character set to use to write character
data.

Reply Write Style Available settings are RAW or NEWLINE.
RAW - Each record from a Normalized
Message is written to an individual file.
NEWLINE - Each record from a Normalized
Message is written to the same file
separated by a newline.

Reply

Reply File Pattern Describes a file pattern to use to name the
file when being written. This can be used to
add a date/time stamp to the file. The
pattern may contain literal characters as
well as the following macros that will be
replaced with values at runtime:
{DATE} - The system date formatted as
yyyymmdd
{TIME} - The system time formatted as
hhmmss
{BASENAME} - The original file's base
name (name without extension).
{EXT} - The original file's extension.
{COUNT} - An automatically incremented
value that starts from 1 when the
component is started.

End Point
Name

The name of the writer end point.

Default MEP Available settings are INONLY, INOUT or RELIABLEIN.

Write

Host Specifies the host name or IP address of FTP server

ChainBuilder ESB Component Flow Editor Guide

 25

User Specifies the user name to login to FTP server

Password Specifies the password to login to FTP server

Command File Specifies the XML based command file described in the Script Mode.
See the Reference Guide for details.

Connection
Mode

Available settings are ACTIVE or PASSIVE

Transformer
Mode

Available settings are ASCII or BINARY

Dest Dir The path on the FTP server where completed files are placed.

Transfer Dir Specifies the local file system path where files will be uploaded from

Stage Dir The local file system path where files are created and written to.
File Pattern Describes a file pattern to use to name the file when being written.

This can be used to add a date/time stamp to the file. The pattern may
contain literal characters as well as the following macros that will be
replaced with values at runtime:
{DATE} - The system date formatted as yyyymmdd
{TIME} - The system time formatted as hhmmss
{BASENAME} - The original file's base name (name without extension).
{EXT} - The original file's extension.
{COUNT} - An automatically incremented value that starts from 1 when
the component is started.

Write Style Available settings are RAW or NEWLINE.
RAW - Each record from a Normalized Message is written to an
individual file.
NEWLINE - Each record from a Normalized Message is written to the
same file separated by a newline.

Char Set The character set to use to write character data.

The settings for the File Binding Component in Script Mode are as follows:

Default
MEP

Available settings are INONLY, INOUT or RELIABLEIN.

5.4. JMS Binding Component
The settings for the JMS Binding Component are as follows:

Role Available settings are CONSUMER, PROVIDER or BOTH. This setting determines if the

binding component will act as a consumer, a provider or both.

When configured as a consumer endpoint, it will read messages from a destination and
create Normalized Messages and route to the NMR. When the Default MEP is set to
INOUT, a reply message with its Correlation ID equal to the request message ID is put
into the reply destination.

ChainBuilder ESB Component Flow Editor Guide

 26

When configured as a provider endpoint, it receives a Normalized Message from the
NMR and creates a JMS message and puts it into the destination. In this case, if the
Default MEP is set to INOUT, it will retrieve a reply message from the optional reply
destination with matching correlation ID equal to request message ID.

End Point Name The name of the consumer endpoint.
Default MEP Available settings are INONLY, INOUT or RELIABLEIN.
JNDI Initial
Context Factory

Default JNDI InitialContext factory. The default value is:
com.sun.jndi.fscontext.RefFSContextFactory

JNDI Provider
URL

Default JNDI provider url. The default value is: file:/C:/CBESB/jndiDir

Destination
Style

Available settings are QUEUE or TOPIC. TOPIC is used to support
pub/sub.

Target
Destination
Name

The destination to retrieve messages from.

Read Style Available settings are RAW or NEWLINE.
RAW - The entire JMS message contents is one record.
NEWLINE - Each line in the message is one record.

Record Type Available settings are XML, STRING or BINARY.
XML - Each record is well formed XML.
STRING - Each record is character data.
BINARY - Each record is binary data.

Records Per
Message

Integer value that determines the number of records from a JMS
message that will be placed in an individual Normalized Message. 0
indicates that all records in the JMS message will be placed in a
single normalized message. Any value > 0 will be the maximum
number of records placed in a single normalized message.

Char Set Value is the name of the char set to use to read and write character
data.

Reply
Destination
Name

Only used when the value of Default MEP is INOUT. It specifies the
destination to put reply messages with a correlation ID that matches
the original request message.

Write Style Available settings are RAW or NEWLINE.
RAW - Each record from a Normalized Message is put on the reply
destination as a separate message.
NEWLINE - Each record from a Normalized Message is put on the
reply destination in a single message separated by a newline.

JNDI
Connection
Factory Name

Default JNDI name to lookup the JMS Connection Factory

Reply Timeout Time in milliseconds to wait for a reply before failing. Any value less
than or equal to zero means infinite wait.

Consumer

Service Name The name of the consumer service.
End Point Name The name of the provider end point.
Default MEP Available settings are INONLY, INOUT or RELIABLEIN.
JNDI Initial
Context Factory

Default JNDI InitialContext factory. The default value is:
com.sun.jndi.fscontext.RefFSContextFactory

Provider

JNDI Provider Default JNDI provider url. The default value is: file:/C:/CBESB/jndiDir

ChainBuilder ESB Component Flow Editor Guide

 27

URL
Destination
Style

Available settings are QUEUE or TOPIC. TOPIC is used to support
pub/sub.

Target
Destination
Name

The destination to put messages.

Read Style Available settings are RAW or NEWLINE.
RAW - The entire JMS message contents is one record.
NEWLINE - Each line in the message is one record.

Record Type Available settings are XML, STRING or BINARY.
XML - Each record is well formed XML.
STRING - Each record is character data.
BINARY - Each record is binary data.

Records Per
Message

Integer value that determines the number of records from a JMS
message that will be placed in an individual Normalized Message. 0
indicates that all records in the JMS message will be placed in a
single normalized message. Any value > 0 will be the maximum
number of records placed in a single normalized message.

Char Set Value is the name of the char set to use to read and write character
data.

Reply
Destination
Name

Only used when the value of Default MEP is INOUT. It specifies the
destination to read reply messages with a correlation ID that matches
the original request message.

Write Style Available settings are RAW or NEWLINE.
RAW - Each record from a Normalized Message is put on the reply
destination as a separate message.
NEWLINE - Each record from a Normalized Message is put on the
reply destination in a single message separated by a newline.

JNDI
Connection
Factory Name

Default JNDI name to lookup the JMS Connection Factory

Reply Timeout Time in milliseconds to wait for a reply before failing. Any value less
than or equal to zero means infinite wait.

Service Name The name of the provider service.

5.5. Transformer Service Engine
The settings for the Transformer Service Engine are as follows:

TRN File Specifies the Map file to use for transformations. The TRN file is created by the

ChainBuilder ESB Map Editor and is located in the ESB or JBI Service Assembly
project's src/xlate directory.

Default
MEP

The only setting is INOUT.

5.6. Parser Service Engine
The settings for the Parser Service Engine are as follows:

ChainBuilder ESB Component Flow Editor Guide

 28

Parser
Type

Available settings are MDL or X12.
MDL - The message definition that will be used for parsing is a ChainBuilder ESB MDL
file. MDL files are created using the Message Format Editor.
X12 - The message definition that will be used for parsing is an X12 definition. The X12
message could be one of the included standard messages, or a variant definition created
using the X12 Variant Editor.

Message
Definition

The location of the message definition to use to parse messages.
For MDL parsing, the value should be the path to an MDL file. Currently, the first
Message definition in the MDL file is used as there is no way to specify an alternate
message definition.
For X12 parsing, the value should be the path to an X12 message definition.

Default
MEP

The available setting is INOUT.

5.7. XSLT Service Engine
The settings for the XSLT Service Engine are as follows:

XSLT
Style
Sheet

Specifies the path and name of the XSLT style sheet to apply to XML messages.

Default
Mep

The available setting is INOUT.

5.8. Sequencer Service Engine
There is no addition setting for Sequencer Service Engine.

5.9. Content-Based Router (CBR) Service Engine
The settings for the CBR Service Engine are as follows:

Offset The “Fixed” TrxId Type specifies to use the length and
offset to determine TrxId for message exchange.

The offset attribute specifies the starting index of
message content to be extracted for TrxId.

Fixed

Length Specifies length of the TrxID. For example, If the
message exchange’s attachment contain data
“ORD00123”, and you specify the length as 3 and
offset as 0, then the string “ORD” will be returned as
TrxId.

Delimiter The “CSV” TrxId Type specifies to use the delimiter
and index to determine TrxId for message exchange.

The delimiter attribute specifies the delimiter used in
comma separated format.

TrxID
Type

CSV

Index Specifies the index to determine TrxID. For example, if
the message exchange’s attachment contain data
“john,smith,male,25”, and you specify the delimiter as

ChainBuilder ESB Component Flow Editor Guide

 29

“,” and index as 3, then the string “male” will be
returned as TrxId.

X12 Specifies to extract X12 transaction type as the TrxId for the message
exchange. It is assumed that the message exchange’s content is in
X12 format. For example, if the message exchange has the X12 270
data, the “270” will be returned as TrxId type.

HL7 Specifies to extract HL7 transaction type as the TrxId for the message
exchange. It is assumed that the message exchange’s content is in
HL7 format. For example, if the message exchange has the ADT A01
data, the “ADT_A01” will be returned as TrxId type.

This feature will be supported in future release.

XPath Expression Specifies the optional XPath expression to extract the
TrxId.

If the expression is not specified, no TrxID will be
extracted; the routing rule must be defined to use XPath
as expression.

See the Reference Guide for an example.

Type Specifies to use the script as a way to extract the TrxID
of the message content in a message exchange. The
supported settings are GROOVY and POJO.

Class Specifies the name of script class.

Script

Method Specifies the method name in a script to be executed.
The method must return a String type.

5.10. Script Service Engine
The settings for the Script Service Engine are as follows:

Mode Available settings are Consumer or Provider.

End Point Name The name of the consumer end point
Default MEP Available settings are INONLY, INOUT or RELIABLEIN.
Type Specifies the script type. The supported settings are GROOVY

and POJO.
Class Specifies the name of script class. For Groovy, it is the Groovy

file name.

Consumer

TriggerTime The timer to trigger the calling of the scripting method. The value
of 1000 stands for 1000 miliseconds. The trigger time allows
setting up a simple time driven consumer by implementing a
time() method in the user’s script or class.

End Point Name The name of the Server endpoint
Default MEP The only available setting is INOUT.
Type Specifies the script type. The supported settings are GROOVY

and POJO.

Provider

Class Specifies the name of script class. For Groovy, it is the Groovy
file name.

ChainBuilder ESB Component Flow Editor Guide

 30

5.11. JDBC Service Engine
The settings for the Script Service Engine are as follows:

Driver The fully qualified class name of the JDBC driver. For example:

com.microsoft.jdbc.sqlserver.SQLServerDriver
URL The driver specific URL that specifies the connection. For example:

jdbc:Microsoft:sqlserver://SQLHost01:1433;databaseName=testdb
User The user name to use to log into the database.
Password The password to use to log into the database.

Request Handler The handler class to use when processing request messages. It is
responsible for parsing the request message to create an executable
request object. A single instance of this class is used by each endpoint to
process all requests. It defaults to
“com.bostechcorp.cbesb.runtime.component.jdbc.processors.JdbcDefaultR
equestHandler”

Exec Handler The handler class to use when executing a request. Each session will have
its own instance of this class so session specific data may be kept in the
member variables. so session specific data may be kept in the member
variables. It defaults to
“com.bostechcorp.cbesb.runtime.component.jdbc.processors.JdbcDefaultE
xecHandler”.

Auto Commit If set to true, each successful request is committed automatically. If set to
false, then the user is responsible for sending a Commit or Rollback to
handle processing of transactions.

Connection
Retries

When trying to establish a connection to the database, if there is a failure, it
will make this many attempts to connect before erroring out.

Connection
Interval

The number of milliseconds to sleep between reconnect attempts.

Transaction
Timeout

The timeout in milliseconds to keep a transaction open before freeing the
resources when there is no activity.

Default PageSize The default number of rows to return in a single response. This may be
overridden in the request message.

ChainBuilder ESB Component Flow Editor Guide

 31

6. Generating the Service Assembly Archive
Once all of the Service Units are configured, the Service Assembly can be packaged for
deployment. To generate the deployable archive, follow these steps:

Right click on the Canvas area and select the deploy option.

This will generate some new files and directories in the project. A new directory will be
created in the src directory to contain the Service Units called SUs. Each Service Unit
will have a directory containing the files it needs to be deployed at runtime.

ChainBuilder ESB Component Flow Editor Guide

 32

Execute the Service Assembly ANT script by right clicking on it and selecting "Run As" and
then selecting "Ant Build".

The Service Assembly ANT script will execute the individual Service Unit ANT scripts
which will create a Service Assembly archive file for each Service Assembly and then create
the Service Assembly archive file. These archives will be created in the project's src/sa
directory. You may need to refresh the folder for them to be displayed. To refresh, select
the src/sa folder and press the F5 key.

The Service Assembly archive has the same name as the JBI Service Assembly project. Each
Service Unit archive has the same name as the Service Unit. The Service Assembly archive
contains a copy of each Service Unit archive and is the only file needed for deployment.

ChainBuilder ESB Component Flow Editor Guide

 33

Refer to the Reference Guide for instructions on how to deploy the Service Assembly
archive.

ChainBuilder ESB Component Flow Editor Guide

 34

7. ChainBuilder ESB Community

ChainForge.net is the internet’s premier destination to share ChainBuilder and JBI
knowledge with your peers.

Join the ChainBuilder ESB Community:
 http://www.chainforge.net/community

As a member you can view content or contribute to a Forum:
 http://www.chainforge.net/community/forums.html

Read ChainBuilder ESB related Blogs:
 http://www.chainforge.net/blogs

