

ChainBuilder ESB
Visual Enterprise Integration™

Version 1.1

Custom Component Guide

©Copyright 2007
 Bostech Corporation

2800 Corporate Exchange Drive
Suite 260

Columbus, OH 43231

Acknowledgements

This document contains proprietary information that is the property of Bostech Corporation.
Any reproduction, disclosure, or transfer of this document or the information contained herein
without the express written consent of Bostech Corporation is strictly prohibited.

The use of the information contained in this document and the implementation of any of its
techniques are the sole responsibility of the client and depend on the client’s ability to evaluate
the information and implement it into the client’s operational environment.

Except for any express written warranties made by it, Bostech Corporation makes no
warranties or representations with respect to any information contained herein, whether
express, implied, statutory, or otherwise, in fact or in law, including without limitation, any
implied warranties of merchantability or fitness for a particular purpose; and in no event shall
Bostech Corporation be liable for any special, consequential, indirect, punitive, or exemplary
damages in connection with the use of the information contained herein. The information
contained in this document is subject to change at any time without notice.

Trademarks
The following trademarks and acknowledgments apply to the information presented in this manual:

 ChainBuilder is a registered trademark of Bostech Corporation.

 Adobe and Acrobat Reader are registered trademarks of Adobe, Inc.

 Java is a registered trademark of Sun Microsystems, Inc.

 Windows (NT, 2000, XP, and Server 2003), .NET Framework, Internet Information Services
(IIS) are registered trademarks of Microsoft Corporation.

Credits
The following third-party products are used within the ChainBuilder product, and acknowledgments
apply to the information presented in this manual:

 Acrobat Reader is created and licensed by Adobe, Inc.

 This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)

 This product includes software developed by Eclipse (http://www.eclipse.org/)

Table of Contents

1. Introduction..1
2. Creating a New Component ..1

2.1. New Custom Component Wizard...1
2.1.1. Custom Component Properties Page..1
2.1.2. Consumer/Provider Property Pages ...1
2.1.3. Java Build Properties..1

2.2. Custom Component Project Layout ...1
2.2.1. Base Package ...1
2.2.2. Processors Sub-Package ..1
2.2.3. UI Sub-Package...1
2.2.4. WSDL Sub-Package ...1
2.2.5. Ant Build Scripts...1

2.3. Example...1
2.3.1. HelloWorld_SEWsdl1Deployer ...1
2.3.2. HelloWorld_SEProviderProcessor..1
2.3.3. HelloWorld_SECustomComponent ...1
2.3.4. Building the Component ...1

3. Using a Custom Component ...1
3.1. Custom Component Wizard ..1
3.2. Example...1

4. ChainBuilder ESB Community..1

ChainBuilder ESB Custom Component Guide

 1

1. Introduction

The ChainBuilder ESB IDE provides the ability to create and use custom Binding
Components and Service Engines.

First, a new project wizard may be used to built out the framework for a new component.
The wizard gathers information about the components setup and generates a new Java
project for the component. Most of the "plumbing" for the component is automatically
generated, so the developer can concentrate on the core logic. The generated project also
creates a configuration jar file that allows the end user to include the new component in the
Component Flow Editor.

In order to create a useful component, it is important to understand the concepts in the JBI
specification. It is not the intent of this document to provide a full explanation of what is
involved in developing JBI components, but rather to give an overview of how the
ChainBuilder ESB Custom Component Wizard can be used to generate the skeleton of a
component. This skeleton does provide much of the JBI "plumbing", but the developer
must still have an understanding of Message Exchanges, Normalized Messages, etc in order
to create a useful component.

ChainBuilder ESB Custom Component Guide

 2

2. Creating a New Component
This section describes the process to create a new JBI component using the Custom
Component Project Wizard.

2.1. New Custom Component Wizard
To create a new component, right click in the Package Explorer view and select New →
Project from the menu. In the wizard, select "New Custom Component Project" from list
of project types.

2.1.1. Custom Component Properties Page
The Custom Components Properties page contains the settings used to define the
identification of the component as well as how it will function.

ChainBuilder ESB Custom Component Guide

 3

The information in the Naming Properties area is used to identify the component.

The information in the Functional Properties area is used to generate the appropriate code
for the component.

• Use Default Deploy - This specifies that the component will use the CBESB default
deployer classes. If this is not used, then the developer must create their own
method for deploying a Service Unit.

• Use Default WSDL Generator - This specifies that the Component Flow Custom
Component plug-in will use the default WSDL generator to create the deployment
WSDL. This consists of a "config" extensibility element that contains an attribute
for each property defined for the component.

• Use CCSL - This determines whether the component will use the ChainBuilder
Common Services Layer. By using checking this, Service Units deployed to the
component will be able to take advantage of the CCSL functionality and the
Component Flow wizard for the component will include panels to configure the
CCSL settings.

• Components Role - The component may be configures as a Consumer, Provider or
Both. If developing a Binding Component, then usually Both is an appropriate

ChainBuilder ESB Custom Component Guide

 4

setting. If developing a Service Engine, then Provider would be the appropriate
setting.

• Consumer/Provider Default MEP - For each role, the developer should select the
default Message Exchange Pattern used by the component.

2.1.2. Consumer/Provider Property Pages
For each Role that a component functions as, one or more property pages can be defined.
These property pages are used in the Component Flow Editor when configuring the
component.

The Pages table on the left is used to identify the configuration pages that will be displayed
in the Component Flow Editor. Most components will probably only need one page, but
multiple may be defined. For each page added to the Pages table, a set of properties may be
defined in the table on the right. These properties will be used to configure the component
at runtime (through WSDL extensions) as well as define what is displayed on the wizard
page in the Component Flow Editor.

ChainBuilder ESB Custom Component Guide

 5

Property Settings:

• Name - the name of the property must be a valid XML name, so it is best to stick to
a combination of alphanumeric characters.

• Type - Defines the type of data for the property.
o Text - String data
o File - Allows for the selection of a file using a Browse button.
o Enumeration - A fixed set of values.
o Boolean - True/False.
o Endpoint - Allows the selection of an endpoint defined within the SA

project.
• Required - Determines whether the property is required or not.
• ReadOnly - Determines whether the property is read-only, or if the user may

configure it.

ChainBuilder ESB Custom Component Guide

 6

2.1.3. Java Build Properties
The Java Build Properties is the same as a normal Eclipse Java project. You may edit these
settings to add dependent libraries/jar files or just click Finish. Any of these settings may be
changed later if necessary.

ChainBuilder ESB Custom Component Guide

 7

2.2. Custom Component Project Layout
The generated project will contain four Java packages and two ant build scripts as shown in
the example below.

2.2.1. Base Package
The base package for the component contains four classes. These classes (and their base
classes) implement the interfaces defined by the JBI specification for a component.

Bootstrap - This class can perform initialization of the component if necessary. The
generated class is empty, but methods from the base class may be over-ridden if the
component needs some custom initialization.

Component - This is the main component class. This will rarely need to be modified.

Endpoint - The endpoint class contains the settings for a particular consumer or provider
endpoint that has been deployed to the component. The generated class will contain all of
the properties defined in the wizard as well as setter/getter methods.

Wsdl1Deployer - This class is responsible for configuring a new Endpoint from a WSDL
document. This class will need to be modified to take the settings from the WSDL
extension classes and set the appropriate properties in the Endpoint class.

ChainBuilder ESB Custom Component Guide

 8

2.2.2. Processors Sub-Package
The processors sub-package contains the consumer or provider (or both) processor class.
This is where most of the component-specific logic will be added.

ConsumerProcessor - Handles the consumer role processing. This involves taking input
from some external source and creating a new Message Exchange that is sent to the
Normalized Message Router. If In-Out MEP is supported by the component, it will also
process the response message when the Message Exchange is returned.

ProviderProcessor - Handles the provider role processing. This involves processing a
Message Exchange that is received from the Normalized Message Router, doing component
specific logic and optionally returning a reply.

2.2.3. UI Sub-Package
The ui package is used by the Component Flow Editor to display the configuration wizard
for the component.

CustomComponent - This class implements the ICustComponent interface by extending
the BaseCustComponent class. This class should be modified to set appropriate default
values, set up custom Icons, etc.

2.2.4. WSDL Sub-Package
the wsdl package contains the WSDL extension classes needed to process the custom
configurations settings in the deployment WSDL file. Each role defined for the component
will have a set of classes to de-serialize the settings in the WSDL file. These settings can
then be accessed by the Wsdl1Deployer to create a new Endpoint instance. In most cases
these classes can be used without modification.

2.2.5. Ant Build Scripts
The Ant build scripts are located in the scripts directory in the project. To execute

build.xml - Compiles and packages the runtime component. When finished, the component
jar file is placed in the components directory of the ChainBuilder ESB installation where it
can be used at runtime.

build_ui.xml - Compiles and packages the UI jar file. When finished, the custom component
archive is placed in the customComp directory of the ChainBuilderESB installation where
the Component Flow Editor will detect it and display it as a selection when Custom
component is selected from the palette.

ChainBuilder ESB Custom Component Guide

 9

2.3. Example
The screen shots in the previous sections showed settings for a Service Engine named
"HelloWorld_SE". Continuing with this example, this section will show how to modify the
generated class files to create a component that receives a message exchange and writes a
message to the process log and if the exchange is In-Out, a message will be returned as the
response.

2.3.1. HelloWorld_SEWsdl1Deployer
The generated Wsdl1Deployer file needs some logic added to it to read the setting from the
WSDL extension and set it in the Endpoint class.

First, the registerExtensions method should be modified to register the custom extension
classes. The changes are shown highlighted below:

protected void registerExtensions(ExtensionRegistry registry) {
 super.registerExtensions(registry);
 //TODO: add code like this: FileInputExtension.register(registry);
 HelloWorld_SEProviderExtension.register(registry);
}

Second, the createEndpoint method should be modified to set the appropriate properties in
the new endpoint instance.

protected CbEndpoint createEndpoint(ExtensibilityElement[] portElement,
 ExtensibilityElement[] bindingElement)
{
 logger.debug("createEndpoint portElement="+portElement);

 HelloWorld_SEEndpoint endpoint = new HelloWorld_SEEndpoint();

 HelloWorld_SEProvider providerPortElement =
 (HelloWorld_SEProvider)portElement[0];

 endpoint.setHelloText(providerPortElement.getHelloText());
 // if JBI extension is used, its value (role, defaultMep,
defaultOperation) will no longer be used

 //TODO: add property to endpoint
 //Code like:
 endpoint.setRole(Role.PROVIDER);
 endpoint.setDefaultMep(
 ((BaseCommonAttribute)portElement[0]).getDefaultMep());

 return endpoint;
}

ChainBuilder ESB Custom Component Guide

 10

2.3.2. HelloWorld_SEProviderProcessor
The generated ProviderProcessor needs to be modified to process a Message Exchange
when it is received. This (and ConsumerProcessor when appropriate) is where most custom
logic needs to be placed.

First, we will add a class variable to hold the endpoint and set it in the constructor. This will
be used in the other methods to access endpoint properties. In our example, the property
we will need to access is the text message that will be written to the log file and used as the
reply message.

private HelloWorld_SEEndpoint endpoint;

public HelloWorld_SEProviderProcessor(HelloWorld_SEEndpoint endpoint) {
 super(endpoint);
 this.endpoint = endpoint;
}

Next, we will modify the processInMessage method. This method is called when an In-Only
Message Exchange is received by the component. In our example, when an In-Only
message exchange is received, we will just write a message in the process log.

public void processInMessage(QName service, QName operation,
 NormalizedMessage in, MessageExchange exchange)
 throws Exception {

 logger.info("Received In-Only Message Exchange.");
 logger.info(endpoint.getHelloText());

}

Finally, we will modify the processInOutMessage method. This is called when an In-Out
Message Exchange is received by the component. In our example, when an In-Out message
exchange is received, we will write a message to the log and set the contents of the out
message to the message.

public boolean processInOutMessage(QName service, QName operation,
 NormalizedMessage in, NormalizedMessage out,
 boolean optionalOut, MessageExchange exchange)
 throws Exception {

 logger.info("Received In-Out Message Exchange.");
 logger.info(endpoint.getHelloText());

 //Set the hello text as the content of the out message
 NormalizedMessageHandler nmh = new NormalizedMessageHandler(out,
 getProviderSvcDescHandlerInstance());
 StringSource strSrc = new StringSource(endpoint.getHelloText());
 nmh.addRecord(strSrc);
 nmh.generateMessageContent();

 return true;
}

ChainBuilder ESB Custom Component Guide

 11

The NormalizedMessageHandler class is a convenience class that is used by all ChainBuilder
ESB components. By using this class, it makes sure that the message contents are
compatible with other CBESB components.

2.3.3. HelloWorld_SECustomComponent
The CustomComponent class is used by the Component Flow Editor to display the
component configuration wizard. By modifying this class, it is possible to control what is
displayed in the wizard in the IDE.

In our example, we will set a default value for the "HelloText" property. This is done by
changing a value in the constructor.

public HelloWorld_SECustomComponent() {

 super();
 //TODO: set big icon name,like "Echo32.ico", and make sure the icon
has copyed to src/resources

 bigIconResourceLocation="";

 //TODO: set samll icon ,like "Echo16.ico",make sure the icon has
copyed to src/resources

 smallIconResourceLocation="";

 componentURI=
"http://cbesb.bostechcorp.com/component/se/helloworldhelloworld_se/1.0"
;
 name="HelloWorld_SE";
 componentName="HelloWorld_SE";

 description="Description";
 vendor="Bostech Corporation";
 useDefaultDeploy=true;
 useDefaultWSDLGenerator=true;
 useCCSL=true;
 version="1.0";
 providerDefaultMep=DefaultMEP.IN_OUT;
 consumerDefaultMep=DefaultMEP.IN_OUT;
 role=Role.PROVIDER;

 //BaseCustWizard providerWizard1=new
BaseCustWizard("EchoWizard","this is the provider wiazrd");
 //providerWizard1.addProperty(new
FileProperty("EchoFile",false,false,"f://Echo",null,true,null));
 //this.addWizardPage(providerWizard1, Role.PROVIDER);

 /* Please Modify all the default values of the constructor's
parameters

 public BooleanProperty(String name,

ChainBuilder ESB Custom Component Guide

 12

 boolean readOnly,
 boolean required,
 boolean defaultValue)
 public EnumProperty(String name,
 boolean readOnly,
 boolean required,
 String defaultValue,
 String[] values,
 boolean editable)
 public FileProperty(String name,
 boolean readOnly,
 boolean required,
 String baseFolderName,
 String fileName,
 boolean allowNewFile,
 FolderBrowseStyle folderBrowseStyle)
 public TextProperty(String name,
 boolean readOnly,
 boolean required,
 String defaultValue)
 EndPointProperty(String name,
 boolean readOnly,
 boolean required)
 */

 // ---Provider Pages
 BaseCustWizard providerWizard1= new BaseCustWizard("Hello World
Providor", "Please provide the settings for the Hello World Provider
endpoint.");
 providerWizard1.addProperty(new
TextProperty("HelloText",false,true, "Hello!"));
 this.addWizardPage(providerWizard1, Role.PROVIDER);
}

ChainBuilder ESB Custom Component Guide

 13

2.3.4. Building the Component
After making the modifications, the project needs to be built. This is done by running the
two ant scripts that were generated.

First, right-click on the build.xml file in the scripts directory and select Run As -> Ant Build.

When this completes, do the same thing for the build_ui.xml file.

The runtime component jar file will be placed in the %CBESB_HOME%/components
directory where it can then be used by the server. The UI custom component jar file will be
placed in the %CBESB_HOME%/customComp directory where the Component Flow
Editor will be looking for it.

ChainBuilder ESB Custom Component Guide

 14

3. Using a Custom Component
To configure a Service Assembly project to use a custom component, it is simply a matter of
selecting the "Custom" component from the palette. This will start the wizard the allows
you to select which custom component to use.

3.1. Custom Component Wizard

Select the radio button in the row containing the component you would like to use and click
Next.

The rest of the panels in the wizard depend on the custom component's implementation.
The first screen allows the selections for name and role similar to the CBESB built-in
components.

ChainBuilder ESB Custom Component Guide

 15

Then each property page that was defined during the creation of the component is displayed.

ChainBuilder ESB Custom Component Guide

 16

Our example component only has a single page with a setting for the message that will be
written to the log or reply message.

ChainBuilder ESB Custom Component Guide

 17

3.2. Example
To test the HelloWorld_SE example component, we will create a new Service Assembly
project that will use a File component to read a file to generate a message exchange. The
contents of the message isn't important. The message exchange will be sent to the
HelloWorld_SE component.

First add a File component to the component flow diagram. The file component should be
configured as follows:

ChainBuilder ESB Custom Component Guide

 18

ChainBuilder ESB Custom Component Guide

 19

ChainBuilder ESB Custom Component Guide

 20

Then, add the HelloWorld_SE component to the flow, by selecting the Custom component
from the palette and selecting the HelloWorld_SE component.

ChainBuilder ESB Custom Component Guide

 21

Then draw a connection from the File Component to the HelloWorld component.

ChainBuilder ESB Custom Component Guide

 22

Save the file and do a Deploy. The project can then be executed with the cbesb_run
<project name> command.

The following shows the results that are written to the log when a file is placed in the
"inbox" folder.

INFO - HelloWorld_SEProviderProcessor - Received In-Out Message Exchange.
INFO - HelloWorld_SEProviderProcessor - Hello!

A file is also created in the "outbox" folder containing the message "Hello!" as well.

ChainBuilder ESB Custom Component Guide

 23

4. ChainBuilder ESB Community

ChainForge.net is the internet’s premier destination to share ChainBuilder and JBI
knowledge with your peers.

Join the ChainBuilder ESB Community:
 http://www.chainforge.net/community

As a member you can view content and contribute to a Forum:
 http://www.chainforge.net/community/forums.html

Read ChainBuilder ESB related Blogs:
 http://www.chainforge.net/blogs

