

ChainBuilder ESB
Visual Enterprise Integration™

Version 1.0

Message Format Editor Guide

©Copyright 2007
Bostech Corporation

2800 Corporate Exchange Drive
Suite 260

Columbus, OH 43231

Acknowledgements

This document contains proprietary information that is the property of Bostech Corporation.
Any reproduction, disclosure, or transfer of this document or the information contained herein
without the express written consent of Bostech Corporation is strictly prohibited.

The use of the information contained in this document and the implementation of any of its
techniques are the sole responsibility of the client and depend on the client’s ability to evaluate
the information and implement it into the client’s operational environment.

Except for any express written warranties made by it, Bostech Corporation makes no
warranties or representations with respect to any information contained herein, whether
express, implied, statutory, or otherwise, in fact or in law, including without limitation, any
implied warranties of merchantability or fitness for a particular purpose; and in no event shall
Bostech Corporation be liable for any special, consequential, indirect, punitive, or exemplary
damages in connection with the use of the information contained herein. The information
contained in this document is subject to change at any time without notice.

Trademarks
The following trademarks and acknowledgments apply to the information presented in this manual:

 ChainBuilder is a registered trademark of Bostech Corporation.

 Adobe and Acrobat Reader are registered trademarks of Adobe, Inc.

 Java is a registered trademark of Sun Microsystems, Inc.

 Windows (NT, 2000, XP, and Server 2003), .NET Framework, Internet Information Services
(IIS) are registered trademarks of Microsoft Corporation.

Credits
The following third-party products are used within the ChainBuilder product, and acknowledgments
apply to the information presented in this manual:

 Acrobat Reader is created and licensed by Adobe, Inc.

 This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)

 This product includes software developed by Eclipse (http://www.eclipse.org/)

Table of Contents

1. Introduction..1

1.1. Overview ...1
1.2. Introduction to Message Formats ...1

1.2.1. Fixed Format...1
1.2.2. Variable Format - Non-Tagged (CSV) ..1
1.2.3. Variable Format - Tagged ...2

1.3. Introduction to the Message Format Editor..2
1.3.1. Accessing the Message Format Editor ..2
1.3.2. Root Node...7
1.3.3. Message Node...8
1.3.4. Element Node...11
1.3.5. Group Node..12

2. Creating Fixed Format Messages...13
2.1. Creating a new Message ..13
2.2. Adding Child Elements ...13

3. Creating Non-Tagged Variable Format Messages ..16
3.1. Creating a new Message ..16
3.2. Adding Child Elements ...17

4. Creating Tagged Variable Format Messages..18
4.1. Creating a new Message ..19
4.2. Adding Child Elements ...20
4.3. Adding Groups...20

5. Advanced Features ..22
5.1. Include and Import ..22

5.1.1. Using Include ..22
5.1.2. Using Import...22

5.2. Global Element Definitions and References ...22
5.2.1. Defining a Global Element ...23
5.2.2. Referencing a Global Element ...23

6. Format Tester...24
7. ChainBuilder ESB Community..27

ChainBuilder ESB Message Format Editor Guide

 1

1. Introduction

1.1. Overview
ChainBuilder ESB is built upon the JBI standard and because of this XML messages can be
easily configured, mapped, and processed. However, there are vast number of legacy
systems that still exist and have their own unique messaging requirements. In order to meet
these requirements to handle non-XML formatted messages, the Message Format Editor
was created. This document will cover how to create MDL (Message Definition Language)
messages within the ChainBuilder ESB Message Format Editor.

1.2. Introduction to Message Formats
The ChainBuilder ESB Message Format Editor can be configured to handle three different
types of message formats: a fixed message format, a variable message format, and a tagged
variable message format.

1.2.1. Fixed Format
The fixed format message is a message structure where the length of the message and its
elements is of a known value. For example, a name message may be of a fixed length, left
justified, and space filled, lets say that the message has the following definition:

Name Length Example
Message Type 4 NAME
First 25 John
Middle Initial 1 Q
Last 25 Public

Then the example data, within braces, would look like:
[NAMEJohn QPublic]

1.2.2. Variable Format - Non-Tagged (CSV)
The variable format message is a message structure where the length of the message is
unknown and each element within the message is separated by a message delimiter. Often
the delimiter is a comma and the messages are referred to a CSV (Comma Separated Values)
file. However, within ChainBuilder ESB this delimiter is configurable. Again, for example,
let us use the name message type as it is configured below:

Name Delimiter Example
Message Type , NAME
First , John
Middle Initial , Q

ChainBuilder ESB Message Format Editor Guide

 2

Last Public

Then the example data, within braces, would look like:
[NAME,John,Q,Public]

1.2.3. Variable Format - Tagged
The tagged message format deals with messages that contain tags and delimiters to denote
different fields within a message Again, we will use the name message to show an example
of a tagged message format:

Name TAG Delimiter Example
Message Type 1: , 1:NAME
First 2: , 2:John
Middle Initial 3: , 3:Q
Last 4: , 4:Public

Then the example data, within braces, would look like this:
[1:NAME,2:John,3:Q,4:Public]

1.3. Introduction to the Message Format Editor

1.3.1. Accessing the Message Format Editor
The Message Format Editor can be accessed from the within the Package Explorer within
the ChainBuilder ESB application. The Message Format Editor opens and edits Message
Definition Language files. These files are located within the src/formats directory within a
ChainBuilder ESB Project or a Service Assembly Project, see Figure 1.

ChainBuilder ESB Message Format Editor Guide

 3

Figure 1

A Message Definition Language, herein referred to as MDL, can be created here by right-
clicking on the formats file directory, selecting new, Message Format File, Figure 2.

Figure 2

Upon selecting to create a new Message Format File, a window will appear asking you to
name the file, Figure 3.

ChainBuilder ESB Message Format Editor Guide

 4

Figure 3

Name the MDL file, which will contain the message definitions that will be created. Often
the name of this file will reflect the name of the system that ChainBuilder ESB is connecting
to i.e., lab.mdl, oracle.mdl, teminal.mdl, etc. Keep in mind that the .mdl extension will be
appended into the MDL file name when the file is created.

Once the new MDL file has been created, the ChainBuilder ESB IDE is changed to the
Message Format perspective. There are three areas: the Menu Bar, the Definitions View,
and the Properties View.

ChainBuilder ESB Message Format Editor Guide

 5

.

Figure 4

Definitions View
The definitions view is a tree structure that is the main presentation for message and element
definitions. It gives the user the ability to generate messages and elements using a tree
structure. Each node within the tree can be Message or and Element, with the exception of
the Root Node. There is only one Root Node within the MDL file tree. Figure 5 gives an
outline of the nodes within the tree.

ChainBuilder ESB Message Format Editor Guide

 6

Figure 5

Properties View
The properties view displays the detailed setting for each node within the definition tree.
The contents of the properties view will change according to the node type that is selected
and the properties that have been set for a nodes parent.

Menu Bar
The Menu Bar gives you quick access to actions that are of use when creating and editing
MDL files. The actions that are available are as follows:

Insert Element – Used to insert an element at the selected node within Definition View
section of the screen.

Insert Message – Used to insert a message at the selected node within the Definition View
section of the screen.

Insert Group – Used to insert a group at the selected node within the Definition View
section of the screen.

ChainBuilder ESB Message Format Editor Guide

 7

The Insert Group, Message, and Element buttons will only be enabled within nodes in the
message definition tree where they are applicable, otherwise these buttons will be disabled.

Search – Can search for Message, Element, and Group names within an MDL file.

Move Node – Can be used to move a node within the Definition View tree. The up
and down arrows can move a node up and down the tree structure.

1.3.2. Root Node
The Root Node represents the entire MDL document and there is only one root node
available for a document.

Root Node Actions
There are two possible actions that can be applied to a Root Node, New Message and New
Element, these can be created by using the toolbar Insert Message icon, , or by using the
Insert Element icon, . The actions can also be applied by using the context-sensitive pull
down menu that appears when you right click on the root node, see Figure 6.

Figure 6

- Insert Message: Will add a new Message Node to the tree. This represents a
message tag in the MDL document. There may be many Messages within an MDL
document.

- Insert Element: On the root level, creating an Element actually creates a Global
Element Definition, which is described in a later section. In a nutshell the Global
Element Definition allows a user to create an element that can be used in many
different messages. This saves the user the hassle of having to create a unique
element for each message that may contain basically the same element structure.

Root Node Properties
The root node has two properties that can be set, the Target Namespace and the Element
Form Default. See Figure 6.

ChainBuilder ESB Message Format Editor Guide

 8

- Target Namespace, optional: The namespace is used when a parsed message is
represented as XML. This is equivalent to the target namespace of an XML Schema
definition.

- Element Form Default, required if Target Namespace is set: The element defines
how the Target Namespace is applied to the MDL file. There are two values that
can be applied here, qualified and unqualified. If the Element Form default has been
set to qualified then the MDL is processed like an XML message and is equivalent to
the XML Schema elementFormDefault attribute. It determines if non-global
elements in the message are namespace qualified or not.

Figure 7

1.3.3. Message Node
The message node does what its name implies, it represents a message tag within the MDL
definition. Message nodes will only appear as a direct child of the root node.

Message Node Actions
There are a number of actions that can be applied to a message:

- Delete: Removes a message from the MDL document.
- Copy: Makes a copy of the message node. This can be helpful when creating many

messages with few differences between them.
- Insert Element: Allows the user to add an element to a message. The following

Element Insert actions can be performed, see Figure 8:
o As Child: Creates a new element within the message tag.
o As Reference: Adds a reference to a global element definition. The Global

Element definition is described in section 1,3.2
o As Sibling: Inserting an element as a sibling from a Message Node will create

a new element.

ChainBuilder ESB Message Format Editor Guide

 9

Figure 8

In addition a Message Node may be moved up or down the same level of the MDL tree by

using the up or down arrows within the tool bar, .

Message Node Properties
The default properties for a Message Node, Figure 9, are described as follows:

- Name: The name of the message within the MDL document. All message, element
and group names must be valid XML element names.

- Type: The type of message format that the current message definition represents.
There are three types of formats; fixed, variable, or leaf. Also, depending on the
value of Type, additional properties may be displayed. The default type for a
message is set to fixed.

- Description: Allows the user to add a brief sentence or two to describe the purpose
of the message.

Figure 9

For the Variable type additional properties can be set for a message. These properties are
defined as follows:

- Delimiter: Defines the delimiter that will be used within the message to separate
elements within the message.

- Escape Char: Defines the escape character within a message if a delimiter value is
encountered within a message that is actual data for the message.

- Quote Char: Defines the quote character. The Quote Char is used as a pair in the
data to escape a sequence of characters. For example, if the Quote Char is " and the

ChainBuilder ESB Message Format Editor Guide

 10

delimiter is ~, and the data was abc"~~~~~", then the multiple ~ chars would be
escaped.

- ID Method: There are two possible ID Methods that can be set for a variable
message, position and tag.

o position: When position ID Method is selected, the child elements in the
message are identified by the order they occur in the message. If the
delimiter property has been set to a semi-colon then every character up to
that semi-colon is considered part of that message. The semi-colon is not
used.

 Repeat Delimiter: Unique to the position ID Method, this setting
defines a repeating element within the message.

Figure 10 Position ID Method Properties

o tag: The tag method is used to define a message which may contain tags.

When the tag ID Method is selected, the child elements in the message are
identified by the value of a tag at the beginning of the data in the element.
The tag can be defined as fixed or variable length.

 Tag Length: Sets the tag length when the ID Method is set to tag
and the tag is of a fixed length.

Figure 11 Tag ID Method set to Fixed Length Properties

 Tag Delimiter: Sets the tag delimiter when the ID Method is set to

tag and the tag is of a variable length. For example, in the case of X12
standard, segment names such as “ST” is of variable length.

Figure 12 Tag ID Method set to Variable Length Properties

ChainBuilder ESB Message Format Editor Guide

 11

1.3.4. Element Node
There are two different types of element nodes, a Global Element node or as a Local
Element that is singularly defined for a specific message or element. The Global Element
node can be referenced from multiple points within a message or an element. A Local
Element node is defined as a child within a message node or within another element node.

Element Node Actions
The following is a list of actions that can be performed on an element node:

- Delete: Removes the element definition and all its sub-elements.
- Insert Element

o As Child: Inserts a sub-element within the currently selected element.
o As Reference: Allows the user to set the current element to a Global

Element.
o As Sibling: Inserts an element on the same node as the current element.

- Insert Group: Inserts a group of sub-element to this element. Only available if the
current element is of type variable and has an ID Method of tag.

Element Node Properties
An element has three basic properties: Name, Type, and Description. All other properties
that an element may have are derived from the elements parent node. There are different
properties when the parent node’s type is set to Fixed, Variable, or Leaf.

- Default Properties:
o Name: The unique name for the element.
o Type: The type of element that is being created; Fixed, Variable, or Leaf.
o Leaf: The end node of a tree.

- Element Properties when the parent node is of type Fixed:
o Element Properties when the element is of type Fixed:

 Length: The length of the element.
 Fill Char: The fill characters that will be used if data does not occupy

the entire length of the element.
 Justification: Left or right justified.

o Element Properties when the element is of type Variable:
 Contains the Length, Fill Char, and Justification properties.
 Also contains the ID Method attributes that are the same as a

message.
o Element Properties when the element is of type Leaf:

 Contains the Length, Fill Char, and Justification properties.
 Data Type: Defines the type of data that this element will contain.

Currently only the string data type is supported.

ChainBuilder ESB Message Format Editor Guide

 12

1.3.5. Group Node
A group node may only appear as a child of a message or element that whose type is variable
and whose ID Method is set to tag. What a group node allows the user to do is to define a
number of repeatable elements within a tagged formatted message. For example, let’s say
that the current message that you are defining has a requirement for 1 to 10 family member
names. The first, middle, and last names can be defined as sub-elements within a group of
names.

Group Node Actions
The following is a list of actions that can be defined within a group:

- Delete: Used to remove a group and all its sub-elements.
- Insert Element:

o As Child: Inserts a sub-element within the current group.
o As Reference: Inserts a sub-element reference to a Global Element.
o As Sibling: Inserts an element on the same level as the current group

element.
- Insert Group: Inserts a group sub-element.

Group Node Properties
A group node only has three properties:

- Name: The name of the group node
- Min Occurs: The minimum number of times a group may occur.
- Max Occurs: The maximum number of times a group my occur.

Figure 12 Group Properties

ChainBuilder ESB Message Format Editor Guide

 13

2. Creating Fixed Format Messages
The goal of this section is to give the user the basic tools and understanding on how to
create a fixed format message within the ChainBuilder ESB Message Format Editor.

For example, let’s say that we have a fixed formatted message for a persons address that
contains the following definition:

Name Length Example
Message Type 3 ADD
First Name 25 John
Middle Initial 1 Q
Last Name 25 Public
Street 50 123 Any Street Dr.
City 25 Cleveland
State 2 OH
Zip Code 5 43000

2.1. Creating a new Message
If you do not have a MDL file created already, follow the steps outlined in section 1.3.1 to
create a new MDL file. For our purposes here we will create an MDL file with the name
“SystemERP”.

Once you have a root node available there are two ways to create a new message, right click
on the root node then select Insert Message, or you may use the Insert Message icon, , to
create a new message.

For our example here the name will be “FixedMessage” and the Type will be set to fixed.
The Description attribute is an optional value.

2.2. Adding Child Elements
When looking at our example message structure we can clearly see that there are 8 fields that
can be created. However, to show the flexibility of the Message Format Editor we will only
have three sub-elements directly beneath the message element.

1) Right click on the message, select Insert Element As Child.
2) Set the name for the element to “Message Type”
3) Set the Type of the element to leaf.
4) Set the length to 3

At this point you have defined a message within one element, Message Type. One element
down, seven more to go.

ChainBuilder ESB Message Format Editor Guide

 14

What we would like to show now is how to create an element with sub-elements. If you
notice there are really two distinct parts to the sample message; one is for a name and the
other is for an address. So let’s go ahead and create two elements as siblings to the
“Message Type” element, one called “Name” and the other called “Address”

1) Right click on the element “Message Type” and try and insert an element, you will
notice that this cannot be done. A leaf type element cannot have elements inserted.
Instead right click on the message “FixedMessage”, select Insert Element Child.

2) Set the name for the element to be “Address”
3) Set the type to be fixed.
4) Set the length to be the total length of the elements that will make up the address, in

this case 82.
5) Repeat above steps for “Name.” The name field has a length of 51.

Now we have a message with three sub elements defined. Let’s continue now and create
sub-elements for both the Address and Name elements. Basically, for each sub-element do
the following steps:

1) Right click on the selected element, select Insert Element Child or you can select
the Insert Element icon and it will insert a child element for you.

2) Set the name of the element to be what has been defined within the specification,
First Name, City, State, etc.

3) Set the Type to be leaf.
4) Set the length of the field. 25 for First Name, 2 for State, etc..
5) Repeat above steps for the remaining fields.

When you look at your message format it should look something like this:

You will notice that the Name element is below the Address element and our definition
states that the name values will come before the address values. An element can be moved
within a message and to other messages simply by using the arrow keys within the tool bar.
Try moving the elements around a bit to see where an element can and cannot go. Once the

ChainBuilder ESB Message Format Editor Guide

 15

message has been completed you can save the file by using normal windows protocol, Alt-F-

S, File Save, or by using the icon.

ChainBuilder ESB Message Format Editor Guide

 16

3. Creating Non-Tagged Variable Format Messages
The goal of this section is to give the user the basic tools and understanding on how to
create a variable format message within the ChainBuilder ESB Message Format Editor.

For example, let’s say that we have a variable formatted message for a person’s address that
contains the following definition:

Name Sub-Group Name Delimiter Example
Message Type , ADD
Name ,
 First ~ John
 Middle ~ Q
 Last ~ Public
Address ,
 Street ~ 123 Any Street Dr.
 City ~ Cleveland
 State ~ OH
 Zip ~ 43000

In addition the following are attributes of the address message: The escape character is a \.

3.1. Creating a new Message
If you do not have a MDL file created already, follow the steps outlined in section 1.3.1 to
create a new MDL file. For our purposes here we will create an MDL file with the name
“SystemCRM”.

Once you have a root node available there are two ways to create a new message, right click

on the root node then select Insert Message, or you may use the Insert Message icon, ,
to create a new message.

For our example here the name of the message will be “VariableMessage” and the Type will
be set to variable. The Description attribute is an optional value.

You will notice that when the type of message has been set to variable that additional
attributes for the variable message have appeared within the properties view. Being that our
message is a variable message within delimiters and no tags are present the value of the
attributes under properties should be the following:

- ID Method: Set to position, there are no tags in the message and the message is
defined by delimiters.

- Delimiter: The default value for a variable message is a comma, which is the
delimiter required by elements within the address message.

ChainBuilder ESB Message Format Editor Guide

 17

- Escape Character: The escape character for the variable message is a \ and it should
be entered here.

- Quote Char: If quotes are allowed within the message we are receiving then the
value of the quote would go here. Being that one was not defined within the
message specifications we will assume one is not needed, leave blank.

- Repeat Delimiter: If a section within the message is repeatable and it is defined by a
delimiter that value would go here.

Figure 13 Variable Message Properties

3.2. Adding Child Elements
Our message structure for the Address message is unique. The message contains two
elements, Name and Address. In addition the elements Name and Address have their own
elements, or sub-elements that need to be defined within the Message Format Editor.

The first thing we need to do is create an element for the message called “Message Type”,
follow these steps:

1) Right click on the “VariableMessage” message element, select Insert Element As
Child.

2) Set the name for the element to “MessageType”
3) Set the Type of the element to leaf.
4) Set the length to 3.

For our purposes here, we will go ahead walk through the example of creating the Name
element and its attributes which will give you all the information needed in creating the
Address element on your own.

1) Right click on the “Variable Message” element, select Insert Element As Child.
2) Set the name for the element to “Name.”

ChainBuilder ESB Message Format Editor Guide

 18

3) Set the Type to variable. This will allow for child nodes to be placed within the
element “Name.”

4) The delimiter for the element Name is different than that from the Message node, it
is a ~. Because of this the Delimiter value needs to be set as a ~.

5) Select Apply to set the new element.
6) Right click on the “Name” element, select Insert Element As Child.
7) Set the Name of the element to be First and set the type to leaf, select Apply.
8) Repeat steps 6 and 7 for MI and Last names.
9) Once the name element has been completed you can go ahead and use the same

steps to produce the Address element as well.

Once the variable message has been completed it should look something like figure 14.

Figure 14

4. Creating Tagged Variable Format Messages
The goal of this section is to give the user the basic tools and understanding on how to
create a tagged variable format message within the ChainBuilder ESB Message Format
Editor.

For example, let’s say that we have a tagged variable formatted message for a person’s
address that contains the following definition:

Name Sub-Group Name Tag Example
Message Type M1 ADD
Name Group Name N1 1 to 10 Name values
 First John
 Middle Q
 Last Public
Address Group Address A1
 Street 123 Any Street Dr.
 City Cleveland
 State OH
 Zip 43000

ChainBuilder ESB Message Format Editor Guide

 19

4.1. Creating a new Message
If you do not have a MDL file created already, follow the steps outlined in section 1.3.1 to
create a new MDL file. For our purposes here we will create an MDL file with the name
“SystemHR”.

Once you have a root node available there are two ways to create a new message, right click
on the root node then select Insert Message, or you may use the Insert Message icon, , to
create a new message.

For our example here the name of the message will be “TaggedMessage” and the Type will
be set to variable. The Description attribute is an optional value.

You will notice that when the type of message has been set to variable that additional
attributes for the variable message have appeared within the properties view. Being that our
message is a tagged variable message the value of the attributes under properties should be
the following:

- ID Method: Set to tag and leave as a Fixed Length. The reason for leaving as a
fixed length is that the tag value of Message Type, Name, and Address are all of a
fixed length of 2.

- Delimiter: Not needed.
- Escape Character: If an escape character is needed it would be placed here.
- Quote Char: If quotes are allowed within the message we are receiving then the

value of the quote would go here. Being that one was not defined within the
message specifications we will assume one is not needed, leave blank..

- Tag Length: Set to 2, the length of the Tags being used.

The property screen of the new message should look something like figure 15.

ChainBuilder ESB Message Format Editor Guide

 20

Figure 15

4.2. Adding Child Elements
Our message structure for the Address message is unique. The message contains many
elements and one group. We will go ahead and define how to add the Message Type
element to the Tagged Message.

The first thing we need to do is create an element for the message called “MessageType”,
follow these steps:

1) Right click on the “TaggedVariableMessage” message element, select Insert Element
 As Child.

2) Set the name for the element to “MessageType”
3) Set the Type of the element to leaf.

These steps can be repeated for adding the Street, City, State, and Zip elements.

4.3. Adding Groups
With tagged messages comes the added convenience of being able to add groups. Groups
are what they sound like, a grouping of repeatable elements. For instance if you had more
than three addresses within a message, it would be time consuming and not make much
sense to create three different Street, City, State, and Zip elements (a total of 12 elements)
when one group can be defined with Street, City, State, and Zip elements that is repeatable 3
times.

A group can be added by right clicking the message with a type set to variable and an ID

Method set to tag, and selecting Insert Group, or selecting the Insert Group icon will
insert a group as well.

For our example specification we have a group called NameGroup that is repeatable up to
10 times. The properties for the group being created should be set as follows:

- Name: NameGroup
- Min Occurs: 1
- Max Occurs: 10

An example of this is given in Figure 16.

ChainBuilder ESB Message Format Editor Guide

 21

Figure 16

The resulting MDL definition for the example is shown in Figure 17.

Figure 17

ChainBuilder ESB Message Format Editor Guide

 22

5. Advanced Features

5.1. Include and Import
There are instances when creating a MDL that a lot of the elements and or messages may be
reused in certain circumstances. If a system that ChainBuilder ESB is connecting to has a set
of messages with a similar structure, each file would require all components that make up the
message. This most likely would force you, the user, to re-define the same components for
each individual message. ChainBuilder ESB provides the include and import functions in
Message Format Editor to alleviate user’s burden.

The ChainBuilder ESB Format Editor provides the ability to define multiple messages in a
single file. It also support namespaces and allows include and import tags, so definitions can
be broken down into multiple files for better re-use.

An MDL file can contain multiple includes and imports.

5.1.1. Using Include
The include function allows the user to include all the elements and messages within a
previously defined MDL file and include them in the current MDL file.

To include an already produced MDL file do the following:

1) Right click on the root node and select Insert Include from the drop down menu.
2) Select the MDL file you would like to include in the current MDL definition.

5.1.2. Using Import
An import of a file is similar to the include of a file in that it allows for the inclusion of an
MDL file within the new MDL file. However, it differs in that the imported file can have a
target namespace defined for it. The namespace is used when a parsed message is
represented as XML. This is equivalent to the target namespace of an XML Schema
definition.

To import an MDL file and set its target namespace do the following:

1) Right click on the root node and select Insert Import from the drop down menu.
2) Select the MDL file you would like to import.
3) Set the target namespace of the MDL file.

5.2. Global Element Definitions and References
There are a great many systems that contain elements in them that can be reused. As an
example lets take a Name definition that contains a first name, MI, last name. This name
could be present within many messages like a address message, insurance provider message,
financial provider, etc. It would become redundant to create a new Name element for use

ChainBuilder ESB Message Format Editor Guide

 23

within each message structure. Because of this ChainBuilder ESB has the capability to create
a Global Element that can be referenced by many messages. For our example, we would
create a global element called Name that could be referenced by many messages. This
means that the Name element would only be defined once, instead of many time.

5.2.1. Defining a Global Element
A global element is an element that resides under the root node of the MDL tree and does
not reside within a message. To create a global element within an MDL file do the
following:

1) Right click on the Root node, Select Insert Element As child or Right click on a
message, Select Insert Element As Sibling

2) Define the element as any element within a message would be defined.

At this point the Global Element is ready to be referenced.

5.2.2. Referencing a Global Element
Referencing a Global Element is an easy process, the only requirement is that a Global
Element has already been created and is ready to be used. To use a Global Element within a
Message do the following:

1) Right click the Message where you want the Global Element to reside.
2) Select Insert Element As Reference.
3) There is Reference property with a pull down list of available Global Elements.
4) Select the one you would like to use.
5) Set the required attributes for the message.

ChainBuilder ESB Message Format Editor Guide

 24

6. Format Tester

After you define the message, you can run a test on the message definition by choosing a test
data file. The testing feature in the Format Editor will display the parsed result based on the
message definition. You can then visually examine if the result is what you expect to ensure
that the message definition is correct before it is used in the Map Editor or Parser
component.

You can test the format definition by clicking the green “Test” button on the toolbar or click
“Format Test” in the context menu. This will open the Test Editor and bring up a new
dialog window for you to choose test data as shown in Figure 18.

Figure 18

Click the “Cancel” button. You will close the dialog and the Format Tester.

Click the “Browse…” button. You will then be prompted to select a file that contains test
data. as shown in Figure 19:

ChainBuilder ESB Message Format Editor Guide

 25

Figure 19

Select a file that contains a single sample record and click the “Open” button. The test data
in the file will then be parsed using the message definition and the results will be displayed
on the right side of the window as shown in Figure 20 for the example defined in the section
4.

ChainBuilder ESB Message Format Editor Guide

 26

Figure 20

When you finish reviewing the test output, just close the window.

ChainBuilder ESB Message Format Editor Guide

 27

7. ChainBuilder ESB Community

ChainForge.net is the internet’s premier destination to share ChainBuilder and JBI
knowledge with your peers.

Join the ChainBuilder ESB Community:
 http://www.chainforge.net/community

As a member you can view content and contribute to a Forum:
 http://www.chainforge.net/community/forums.html

Read ChainBuilder ESB related Blogs:
 http://www.chainforge.net/blogs

