

ChainBuilder ESB
Architecture
White Paper

Bostech Corporation
April 2008

This document contains confidential information that is the property of Bostech Corporation. Any
reproduction, disclosure, or transfer of this document or the information created herein without the express
written consent of Bostech is strictly prohibited.

ChainBuilder® ESB is a trademark of Bostech Corporation. ©2008 Bostech Corporation.

Table of Contents

About This Document ... 1

Introduction .. 1
Open Standard Based ... 2
Composite Application Development ... 3
Integration with Disparate Systems ... 3
Easy to Develop .. 3
Easy to Extend .. 3
Monitoring and Control .. 3

Architecture Overview ... 4
Java Business Integration ... 4
Layered Architecture ... 5
ChainBuilder Common Services Layer (CCSL) ... 6
User Point of Control (UPoC) Framework ... 6
Exception Handling and the Error Database ... 8
Message Content and Metadata ... 9
Supported Messaging Patterns ... 9

ChainBuilder ESB Services and Features 10
Transport Protocols ... 10
Web Services .. 10
Routing .. 11
Transformation .. 11
Data Normalization .. 12
Validation .. 12
Security ... 12
Transactional Support ... 13
Scheduling .. 13
Scripting .. 13
Reliable Delivery ... 13
Industry Standards and Variants ... 14
Alerts ... 14
Database Integration Services .. 15
Migration between Environments .. 15

ChainBuilder ESB Design Tools .. 16
Component Flow Editor ... 16
Map Editor ... 17
Format Editor ... 18
Variant Editors ... 18
Testing Tools ... 18
WSDL Designer ... 18
WSDL Importer .. 19
ETL Design Studio .. 19
Certificate Management .. 20

 3

ChainBuilder ESB Control and Management 20

Monitoring and Control .. 20
Statistics View ... 21
Error Diagnosis .. 21
Alert Configuration and View ... 21
User Management ... 21
Command-Line Tools .. 22

Supported Environment .. 22

References .. 22

For More Information .. 22

 1

About This Document

This white paper provides a technical overview of Bostech ChainBuilder® ESB, a
comprehensive Service Oriented Architecture development and runtime environment.
The document describes the architecture overview of the product, the key features that
ChainBuilder ESB provides to develop, integrate and manage services integration within
and across an enterprise.

The audience for this document includes potential customers evaluating the ChainBuilder
ESB product for their application integration, data integration or Service Oriented
Architecture (SOA) development.

Introduction

Information access and control remains a major hurdle for many organizations. Since
markets continue to change rapidly, businesses need to react quickly to the changes.
Information Technology (IT) needs to have an agile, service-oriented infrastructure to
support rapid changes in the business to serve the business better. Many IT organizations
adopt SOA principles and patterns as the best practice to build their IT infrastructure. The
keys to SOA are reuse of services, agility and flexibility.

An Enterprise Service Bus (ESB) is known as the most economical and efficient solution
to build out the service and integration layers in an SOA environment. An ESB provides
the basic mediation capability such as service orchestration, routing, transformation and
protocol brokering as well as additional services such as security, logging, alerts and
auditing.

ChainBuilder ESB is an enterprise service bus targeted at rapid SOA development.
ChainBuilder ESB consists of simple, easy-to-use GUI tools with drag-and-drop and
wizard approach for designing a process flow or a map. ChainBuilder ESB focuses on
application and data integration with existing IT assets such as legacy systems and
databases, and supports open standards, industry-specific communication, and message
standards.

 2

The following diagram is the ChainBuilder ESB product schematic.

Open Standard Based

ChainBuilder ESB is compliant with the single industry standard for building an
Enterprise Service Bus – Java Business Integration (JBI). With that, developers can be
assured their critical SOA IT asset is not locked in with one vendor. Solution Architects
have the choice to mix and match components and technologies from a list of JBI
vendors and communities and the advantage of developing solutions with a standard
application programming interface (API).

In addition, ChainBuilder ESB supports technology standards such as WSDL, HTTP,
SOAP, JDBC, JMS, SOAP with Attachment, SSL as well as industry standards like
Health Level 7 (HL7) and EDI.

 3

Composite Application Development

Instead of traditional application development where users either develop the application
from the ground-up or reuse the existing IT asset at the library or framework level,
ChainBuilder ESB enables SOA development by allowing users to assemble a composite
application from pre-built JBI components which are supplied by a vendor or built in-
house. Composite application development elevates code reuse to a new level.

Integration with Disparate Systems

Leverage your investment in mature applications and databases with straight-forward
integration paths to disparate systems. In addition to standard XML and Web Services
support, you can use ChainBuilder ESB to create message definitions for fixed, variable,
and other non-XML structure message formats and easily connect to non-Web Services
protocols like FTP, File and TCP/IP.

Easy to Develop

Bostech chose the popular Eclipse IDE as the standard development platform for
ChainBuilder ESB. Developers can use this familiar interface with accompanying
wizards and drag and drop functionality to easily create a process flow, map or other
artifacts without hand coding.

Easy to Extend

ChainBuilder ESB contains an extension framework called “User Point of Control
(UPoC)” which allows users to write Java and Groovy code to be plugged into the bus.
Bostech recognizes that integration is a complex task. Users are faced with unique
integration requirements in their environment. The ability to extend the pre-built
components is a must for a successful integration solution.

Monitoring and Control

Operators can remotely manage the Enterprise Service Bus through ChainBuilder ESB’s
Administrative Console. Use this AJAX-based web interface to perform remote
monitoring, administration and configuration of alerts on run-time JBI components and
ChainBuilder ESB Service Assemblies.

 4

Architecture Overview

ChainBuilder ESB uses the Java Business Integration (JBI) standard that sets up a layered
component based architecture. All integration services are provided by individual
components. The architecture enables message content based, metadata-driven
integration in all components with consistent exception and error handling and user point
of control framework. All components have statistics support, logging, persistence of
service endpoint settings and endpoint control.

Java Business Integration

Java Business Integration (JBI) is a key differentiator of ChainBuilder ESB. JBI serves
as the cornerstone of the enterprise service bus.

JBI (JSR 208) is a standard specification created by Sun Microsystems and over twenty
other major middleware infrastructure vendors.

The major characteristics of JBI are:

• Support within a single JVM or multiple JVMs with vendor implementation
• Plug-in components interoperate through the method of mediated message

exchange. Supported message exchange patterns include InOnly, ReliableIn,
InOut and InOptionalOut

• Exchange model based on WSDL
• Exchange infrastructure is provided by a NMR (Normalized Message Router)
• Contains Components of two distinct types

o Service Engine (SE) : providing business logic, transformation, …
services as well as consuming of such services

o Binding Component (BC) : providing connectivity to services external to
a JBI environment : communication protocols, services provided by EIS
(Enterprise Information Systems), resources using remote access
technology unavailable directly in Java

• Management structure based on JMX (Java Management eXtensions)

The following is the JBI architecture diagram:

 5

Layered Architecture

The ChainBuilder ESB runtime uses a layered architecture (see the diagram below).

At the bottom of the stack is the Java runtime environment (JVM). It supports both J2SE
and J2EE Java environments. The next level up is the JBI container layer. ChainBuilder
ESB is designed to be container-agnostic, although the Apache Servicemix container is
currently included in the platform. Next to the JBI container is the Registry. In the
current implementation, the Registry is internal to the JBI container. In the future, A
UDDI-compliant Registry will be supported for service registration, versioning and
service lookup.

The next level up in the stack is the ChainBuilder Common Services Layer (CCSL). The
CCSL is Bostech’s extension to the standard JBI container. The CCSL defines and
implements many services that are critical to the ChainBuilder ESB product but are not
defined in the JBI 1.0 spec. The examples of such services include User Points of Control
(UPoC) via scripting, exception handling, transactional support, logging, auditing, etc.

ChainBuilder ESB includes JMS-compliant ActiveMQ in the stack to support reliable
delivery, message queuing, store and forward, pub and sub and clustering. Also included
in the architecture is a relational database (RDBMS) for the CCSL. Apache Derby is
embedded into ChainBuilder ESB, but any RDBMS that supports JDBC can be used.
Three distinct databases – runtime, error and user are defined in the ChainBuilder ESB
architecture.

At the top of the ChainBuilder ESB stack, there are JBI-compliant components. The
components provide the services necessary for an enterprise service bus.

 6

ChainBuilder Common Services Layer (CCSL)

The ChainBuilder Common Services Layer (CCSL) is a module that plugs in between
JBI components and the JBI container. It provides a set of general services that can be
useful for any component.

The CCSL is an optional layer. Since the CCSL is separate from and invisible to both the
component and the container, the CCSL can work with any JBI components and
containers. Both ChainBuilder ESB components and third-party JBI components can be
configured to use the CCSL layer.

The CCSL currently provides the following functions.

• Allows for user scripting at various points of the exchange flow.

• Provides an exception handling mechanism that saves exchanges to a database in
the event of processing exceptions.

• Provides conversion of the message content between raw XML and an enveloped,
multi-record format used by other ChainBuilder ESB components.

• Provides standard implementation for scheduling, persistence of endpoint settings,
statistics gathering and changes of logging.

• Provide an extension MBean for implementing endpoint control and component
custom status.

User Point of Control (UPoC) Framework

One of the most important and powerful features in ChainBuilder ESB is the User Point
of Control (UPoC) framework. The UPoC framework provides a user-extensible method
to control or change how a message gets processed in the engine at runtime. Java or any
JSR-223 compatible scripting language can be used for scripting in ChainBuilder ESB.
Groovy is the supported JRS-223 scripting language out-of-the-box.

 7

The following diagram shows the 8 call out areas where UPoC scripts can be added:

CreateMessage
Exchange Send

IB
Upoc

Pre-
Send
Upoc

Post-
Send
Upoc

Consumer

External
System

Accept

Post
Accept
Upoc

OB
Upoc

Provider

Inbound

Outbound

NMR

CreateMessage
ExchangeSend

Pre-
Send
Upoc

Post-
Send
Upoc

Consumer

Accept

Post
Accept
Upoc

Provider

Upoc Call Out JBI API

Binding Component Service Engine

ChainBuilder ESB Component UPoCs

As illustrated in above diagram, ChainBuilder ESB supports the following:

• Inbound and outbound: Most of the transport protocol components in
ChainBuilder ESB support a handler framework to allow users to write UPoC to
customize how data is read from the transport connection before being turned into
an ESB Normalized Message and how a message is written to the transport
connection.

• Presend: The UpoC is run immediately before a JBI DeliveryChannel’s send() or
sendSync() call. A presend UPoC may change the content or metadata of a
message, the endpoint to get a message routed dynamically, or prevent a message
from being sent.

• Postsend: The UPoC is run immediately after a call to sendSync() returns. When
sendSync() returns, the out message is available in the exchange so this script
allows you to process the response.

• Postaccept: The UPoC is run immediately after an exchange is received from a
call to accept().

• Start: The UPoC is run immediately after the service unit starts. The exchange is
null for the start context.

• Stop: The UPoC is run immediately before the service unit stops. The exchange
is null for the stop context.

 8

Exception Handling and the Error Database

ChainBuilder ESB provides consistent and robust exception handling for the services
defined in the process flow. The Java Business Integration standard defines the Fault
message in the message exchange to report an exception. The ChainBuilder ESB
components or services catch the low-level Java exception and wrap it in a JBI fault,
propagate it back to the high-level services and back to the service consumer.

ChainBuilder ESB triggers the standard error handling for the following:

• A low-level Java exception occurs in the component’s service provider logic
• A low-level Java exception or user-defined Java exception occurs in UPoC code

or custom code in Script component
• A low-level or user-defined exception occurs in the user operation in message

transformation
• A low-level or user-defined exception occurs in the custom code in routing

services
• A message does not match any route defined in context-based routing
• A JBI exception occurs in exchanging a message between components and

Normalized Message Router (NMR)

ChainBuilder ESB introduces two types of exceptions – the connection-related exception
and the content-related exception. The error handling works in conjunction with JMS
reliable delivery to retry any connection-related exception to minimize human
intervention when an exception occurs. For content-related exceptions, the original
request message along with exception cause are stored in the error database. The
messages stored in the error database can be resent to the ChainBuilder ESB server after
resolving the problem.

The ChainBuilder ESB Admin Console can be used to view the error database and
diagnose errors. An alert can be triggered to notify users in case of error.

 9

Message Content and Metadata

The Java Business Integration standard defines message content and metadata in the form
of a Message Exchange. The JBI component communicates with the Normalized
Message Router (NMR) via a Message Exchange.

The content type in a Message Exchange supported by ChainBuilder ESB can be the
following:

• XML, SOAP, or SOAP with Attachment
• Non-XML text when the MDL type of interface is expected
• Binary data in base64 encoded format for passing through

 ChainBuilder ESB provides extensive metadata support in all its components. When a
message exchange is received from the service consumer, metadata is attached to the
message exchange as it passes through the process flow. The metadata and message
content along with context information are made available to User Point of Control code
to allow metadata-driven integration. The metadata in a message always overrides the
default endpoint settings.

Supported Messaging Patterns

An enterprise service bus needs to be able to communicate with applications or services
in heterogeneous environments, adopting the messaging patterns of the external
applications and service. ChainBuilder ESB supports the following messaging patterns:

• Synchronous request and response: This is the most common messaging pattern
supported by ChainBuilder ESB. It maps into the InOut Message Exchange
Pattern in JBI. The consumer sends a request to the ESB and it blocks. The ESB
processes the request and sends the response back.

• Asynchronous request and response: The asynchronous request and response

messaging pattern is more reliable and tends to scale better compared to
synchronous request and response. For example, when the back-end service
requires human interaction, asynchronous request and response should be used.
ChainBuilder ESB provides the mechanism to correlate the request and response
via message ID and correlation ID.

• Fire and forget: The fire and forget pattern maps to the JBI’s ReliableIn message

exchange pattern. ChainBuilder ESB provides the reliable delivery option for
message queuing and guaranteed delivery. The fire and forget is similar to store
and forward integration pattern.

• Publish and subscribe: ChainBuilder ESB provides support for the pub and sub

messaging pattern via the JMS component.

 10

ChainBuilder ESB Services and Features

ChainBuilder ESB provides varieties of services via pre-built JBI binding components
and service engines as well as the CCSL layer.

Transport Protocols

Transport Protocols are supported via pre-built JBI binding components in ChainBuilder
ESB. ChainBuilder ESB supports the following protocols:

• File – Uses data files as the source or target of messages.
• FTP – Uses FTP to process files over remote server. It supports basic mode like

the File protocol and advanced XML-based scripting mode for flexibility and
performance.

• JMS – Places or retrieves messages over JMS queues. Supports both JMS
queues and JMS topics. The JMS component provides a reliable delivery mode
for guaranteed message delivery.

• TCP/IP – Communicates between different types of computers and computer
networks using TCP/IP (Transmission Control Protocol/Internet Protocol). It
supports both client and server with SSL. It provides built-in handlers for CR
LF, length-encoded and HL7 MLLP (minimum low layer protocol). Users can
define their own protocol handlers as well.

• HTTP(S) – Supports secure HTTP client and server. Uses HTTP client to transmit
messages to remote web servers. The HTTP server is built on top of Jetty to allow
messages transferred from web-enabled application client.

• SOAP over HTTP(S) – Similar to the secure HTTP protocol. Enables
interaction with SOAP-based web services and expose as a web services.

• SMTP/POP3/IMAP – Enables sending and receiving emails.
• Script - Develops custom communication protocols.

Web Services

The support of web services is a fundamental concept in an enterprise server bus.
ChainBuilder ESB provides comprehensive support for web services. There are three
common use case scenarios in ChainBuilder ESB web services. First, it can be used to
invoke the back-end web service as part of a process flow. Second, it can be configured
as a proxy for back-end web services with additional routing, transformation and business
rules. Third, it can be configured to expose the back-end legacy services, application and
databases into a callable web service. ChainBuilder ESB supports web service standards
like SOAP, SOAP with Attachment and MTOM, and the web service component is built
on top of the Axis2 engine.

 11

Routing

The Content-Based Router (CBR) examines the message content and routes the message
onto a different channel based on data contained in the message. The routing can be
based on a number of criteria such as existence of fields, specific field values and
message metadata. The CBR also supports a message split pattern by splitting an
incoming message and routes to multiple destinations in parallel.

The Content-Based Router can identify the message using:

• HL7 – Based on the HL7 standard
• X12 – Based on X12 standard
• Fixed data
• Comma Separated Value (CSV)
• XPath
• Script - Use a custom program written in a JSR-223compliant scripting language,

like Groovy.

The routing expression can be specified with:

• Regular expression
• XPath expression
• Exact match

Transformation

Transformation is often needed when the message formats between source and
destination are different. A map file is defined to translate data from one format to
another. ChainBuilder ESB supports translation using the standard XSLT language as
well as XML-based transformation language which includes features such as looping,
iteration, condition, JDBC database operation and user operation to provide maximum
power and flexibility.

A data mapping can be created between XML to XML, XML to non-XML, non-XML to
XML and non-XML to non-XML mapping. A Map Editor tool is provided to allow users
to easily create a map via a drag-and-drop visual interface.

 12

Data Normalization

Data normalization converts all inbound non-XML messages such as HL7, X12 EDI, and
proprietary format from a transport into a XML format via a Parser component. Unlike
other ESB products where normalization is required in the architecture, in ChainBuilder
ESB, normalization is an option. In most integration scenarios implemented using
ChainBuilder ESB, data normalization is not required since non-XML data can be
transformed to non-XML data directly. But in some cases when the process starting from
source endpoint focuses on the XML processing, data normalization should be used as a
best practice to follow for performance and simplicity.

Validation

ChainBuilder ESB provides the capability for validating incoming and outgoing
messages for both XML data and non-XML data. XML data is validated using XML
schema. Non-XML data is validated against the message format built from the
ChainBuilder ESB Format Editor.

Message validation can be configured to occur at the inbound transport protocol or at the
transformation in a process flow. Validation can be applied independently at the source
or the target at transformation.

Security

ChainBuilder ESB provides a range of support for security including encryption,
authentication, authorization, certificate management and role-based authorization. The
following different aspects of security are supported in ChainBuilder ESB.

• Transport-Level Security: ChainBuilder uses SSL (Secure Socket Layer) to
support confidentiality, message encryption and authentication for transport
protocols of HTTP, TCP/IP, SMTP and POP3. It can be configured to use
anonymous, basic authentication, client authentication and server authentication.

• Message-Level Security: ChainBuilder ESB PGP Service Engine supports
message level security. The HTTP component supports the latest Web Service
standards like WS-Security, SAML, and WS-Trust by passing the digitally-signed
SOAP message. ChainBuilder ESB provides the infrastructure support to allow
users or development partners to develop the Security Token Service (STS) to
verify, sign and map security assertion.

• User Management and Role-based Authorization: The Admin Console
supports adding users in different groups with different roles. The functionality
provided by the Admin Console is based on user role.

 13

Transactional Support

ChainBuilder ESB supports transactions in the JDBC, ETL and the JMS components. In
the JDBC component, ChainBuilder ESB accepts an XML-based message interface with
actions of startTransaction, endTransaction, commit and rollback. In the JMS component,
the commit or rollback of a transaction (when receiving message from a queue) is based
on the result of the message exchange from the destination endpoint. In ETL component,
the coordination of the transaction commit and rollback is based on the result of a
message exchange and its metadata.

Scheduling

A Unix Cron-like schedule can be defined for any polling-based source endpoint. This
includes the File, FTP, ETL, Script, and custom components. The built-in scheduling can
retry until a certain condition is satisfied, and it can create a success or a failure message
that routes to different endpoints for email notification.

Scripting

ChainBuilder ESB supports scripting via JSR-223, using the ScriptEngine built within
Java 6. Java or any JSR-223 compatible scripting language can be used for scripting in
ChainBuilder ESB. Groovy is the supported JRS-223 scripting language out-of-the-box.

Reliable Delivery

Reliable delivery is an important requirement of an ESB when using the Fire and Forget
messaging pattern. When a one-way message is received from a source endpoint, the
message is always to be delivered or logged in case of errors.

ChainBuilder ESB uses the JMS component to accomplish reliable delivery. When a
message is received from source endpoint, it is routed to a JMS component for reliable
delivery. Built-in transactional retry logic in the JMS component is used based on the
result from the target endpoint. The message will be removed from the JMS queue only
if it is delivered to the target.

 14

Industry Standards and Variants

ChainBuilder ESB provides data definition and translation support for industry standards
like HL7 and X12. An entire set of data dictionaries is provided online, with all elements,
fields, segments, and message layouts.

A variant is a copy of a message standard that uses the base definition of that standard to
rearrange or augment it. The original message standard remains unchanged in the
repository, for reference or to create new variants. Users can create their own extensions,
if necessary. Enterprise-specific extensions can automate data translation runtime
systems, or they can adapt incompatible “compliant systems” to one other.

Alerts

ChainBuilder ESB provides the ability to define an alert based on a set of conditions.
Users can define the severity levels for alerts including info, warning, error, critical and
fatal. Multiple alerts can be combined to monitor the Service Level Agreement (SLA) for
business. ChainBuilder ESB supports the following alert types:

• Server status
• Transaction count
• Error count
• Transaction per second
• Latency
• Service Assembly status
• Endpoint status
• Component status
• Component installation status
• JMS Dead Letter Queue
• JMS transaction retry count exceeded
• Endpoint last received
• Endpoint last sent
• File change status
• License expiration
• CPU usage
• Virtual memory usage

 15

Database Integration Services

ChainBuilder ESB provides extensive data integration services using the standard JDBC
API. Users can define JDBC operations in a message transformation for online database
lookup and update.

The JDBC component provides an XML-based messaging interface with embedded SQL
to perform transactional database query and update. Users can control the beginning and
end of a transaction as well as the commit and rollback via a messaging interface.

At the consumer endpoint, the ETL component provides the ability to generate a complex
XML message from database queries based on a data source map. At the provider
endpoint, it can be used to perform complex database updates from an XML message
based on a data source map. There is no SQL coding required. A drag-and-drop visual
tool is provided to create a data source map.

Migration between Environments

ChainBuilder ESB provides macro support to ease the migration from one environment to
another. The user-defined macros can be used virtually anywhere in the configuration
including endpoint setting, map, file, lookup file. The macro is defined externally to the
Service Assembly archive in a properties file. This allows settings to be changed without
modifying and re-deploying the Service Assembly. This also makes it much easier to
place settings for different environments (test, production, etc) in separate locations while
using the same service assembly archive.

 16

ChainBuilder ESB Design Tools

Component Flow Editor

The Component Flow Editor is the process design tool for ChainBuilder ESB. It provides
an easy to use graphical interface for creating JBI Service Assemblies. Using the popular
Eclipse IDE platform, developers can create new and modify existing components
through drag and drop, wizard, and fill-in forms functionality. The Custom Component
Framework allows any user-defined JBI component to be configured within the flow.

 17

Map Editor

ChainBuilder ESB provides a powerful mapping tool to create a map from source to
target for both XML and non-XML formats. The easy-to-use Map Editor allows users to
use drag-and-drop to quickly create a complex map.

The available map operations include:

Copy Combine If/ElseIf/Else While
Comment Comment Block Math Iterate
Send Suppress Table Lookup JDBC
User Operation

Users can define variables in operations and use a variable to dynamically evaluate a path
in the source or target. The filter framework allows users to change the values before it is
assigned to a target. The Map Editor also has access to all built-in metadata as well as
user-defined metadata.

The Map Editor provides User Interface convenience features such copy, paste, cut,
delete, search, short cut key, move, and synchronization to maximize developer
productivity. It has an auto mapping feature to allow users to create a map with a single
drag and drop, particularly beneficial if the source and target share a common structure.

 18

Format Editor

The Format Editor is the message format builder for ChainBuilder ESB. It allows users to
create format definitions for fixed-record layout, variable-record layout (e.g, Comma
Separated Values) as well more complex structured layout (e.g, HL7 or X12).

Depending on the type of message layout, users can specify the following in the Format
Editor:

• Data type
• Length
• Offset
• Prefix character
• Fill character
• Delimiter
• Escape character
• Tag

The format file saved by the Format Editor can be used by the Map Editor to create a
map.

Variant Editors

The Variant Editor allows users to view or create a variation based on the data directory
for industry standards. ChainBuilder ESB has two Variant Editors: the HL7 Editor and
the X12 Editor.

In the HL7 Editor, users can define fields, data segments, and messages for the HL7
standard. In the X12 Editor, users can define data elements, composite data structures,
data segments, and transaction sets used by the X12 standards.

Testing Tools

Testing tools in ChainBuilder ESB allow users to run a test on a map, on an HL7/X12
variant, or on a message format file without starting the ChainBuilder ESB runtime
environment. A graphical user interface displays the test result.

WSDL Designer

The WSDL Designer allows users to build a WSDL definition by importing an existing
schema. It hides the complexity of hand-coding a WSDL file. A common usage scenario
allows user to specify the WSDL file for the HTTP component to expose a web service.

 19

WSDL Importer

The WSDL Importer is a tool to import an existing WSDL and create the XML schema
from it. When consuming a web service, users are responsible for creating a correct
SOAP message. With the generated XML schema, users can use the Map Editor to easily
create a map for it.

ETL Design Studio

ChainBuilder ESB’s ETL Design Studio is a set of Eclipse plug-ins that utilize wizard-
driven configuration screens to walk the user through the process of connecting to a
database, and the drag-and-drop selection of tables and fields to be extracted or loaded.

The ETL Design Studio wizard finishes by generating an XML schema, defining either
the format of data to be extracted from the database or the format used for inserts or
updates. Advanced settings, such as transaction and batch size, can be configured to
achieve maximum throughput performance.

After data extraction, the ChainBuilder ESB Map Editor can be used to perform data
mapping, validation and data cleansing before data is loaded into target data source.

 20

Certificate Management

The Certificate Manager Wizard provides the ability to maintain keys and certificates
used to establish an SSL connection. The wizard provides the ability to import and export
certificates to/from a Key Store or Trust Store. The Certificate Manager Wizard creates
self-signed certificates, issues Certificate Signing Requests, and provides viewing of the
contents of certificate files and Key Store files.
The wizard guides users through the common scenarios of anonymous, self-signed, and
Certificate Authority (CA) signed certificate.

ChainBuilder ESB Control and Management

The ChainBuilder ESB Admin Console is a web-based application that provides control
and management of the ChainBuilder ESB server.

Monitoring and Control

The Admin Console provides the following control and management capability:

• Install and remove JBI components and shared libraries
• Install and remove ChainBuilder ESB JBI Service Assemblies
• Start and stop components and shared libraries
• Start and stop ChainBuilder ESB JBI Service Assemblies or Endpoints
• View and change ESB endpoint settings
• Graphic view of ChainBuilder ESB JBI Service Assembly

 21

Statistics View

The Statistics view shows the endpoint-level statistics information like message count,
transaction per second and message latency.

Error Diagnosis

The Error Database view gives users the ability to view the detailed error information
when an error occurs in ChainBuilder ESB. It helps users trouble shoot runtime issues.
Original messages are saved in the error database to allow users to reprocess them.

Alert Configuration and View

Alert functionality in ChainBuilder ESB allows the user to define varieties of conditions
and the desired notification mechanism if the conditions are met.

The ChainBuilder ESB Admin Console allows users to create one or more alert definition
files as well as to define notification actions (e,g, to execute a command, Email and JMS).
It allows users to activate or de-activate alert definitions.

When an Alert definition is activated, the alert engine monitors the conditions being
checked and triggers an alert if the conditions are met. Users can use the Admin Console
to view, archive or delete triggered alerts.

User Management

The ChainBuilder ESB Admin Console provides user management to allow an
administrator to add additional users with different roles.

The available roles are:

• Administrator: A “Super User”. Admin users can add/delete/modify users.
Administrators can perform all functionalities allowed to the Operator or to the
“normal” user

• Operator: Administer the entire ChainBuilder ESB, but without the ability to
create new users.

• User: Can only view information. Users can not perform any action such as
delete, update, start, stop, or uninstall.

 22

Command-Line Tools

ChainBuilder ESB provides a set of command line utilities to allow developers to
perform deployment and testing without running the entire server environment. It also
allows system administrators to perform administration such as viewing the audit log,
viewing runtime database and user database or perform maintenance to JMS queue for
reliable delivery.

Supported Environment

 The following is the supported and recommended environment for ChainBuilder ESB:

• Operating Systems: Windows and Linux (x86/GTK2)
• System Requirements: Pentium 4 with minimun1GB RAM and 10GB hard disk

space; Dual 3.0Ghz with 2GB RAM preferred
• Java : JDK 1.5 and JDK 1.6
• Languages: English and Chinese

Since ChainBuilder ESB IDE is built on Eclipse and the runtimes is built using 100%
Java, ChainBuilder ESB can run on any platform that has JDK 5 or 6.

References

1. Bostech Company homepage: http://www.bostechcorp.com
2. ChainBuilder ESB community site: http://www.chainforge.net
3. JBI Specification: http://www.jcp.org/en/jsr/detail?id=208
4. JSR-223: http://www.jcp.org/en/jsr/detail?id=223
5. Groovy: http://groovy.codehaus.org/

For More Information

To learn more about the ChainBuilder ESB, please send your inquiry to
Bostech Corporation at info@bostechcorp.com, or visit the
Bostech Contact Us page at: http://www.bostechcorp.com/ContactUs.

©Copyright Bostech Corporation 2008
Bostech Corporation, 2800 Corporate Exchange Drive, Suite 260, Columbus, OH 43231 USA

April 2008 All Rights Reserved
Bostech, ChainBuilder ESB and all related logos logo are trademarks of Bostech Corporation.

