

ChainBuilder® ESB
Transaction Support

White Paper

Bostech Corporation
April 2008

This document contains confidential information that is the property of Bostech Corporation. Any
reproduction, disclosure, or transfer of this document or the information created herein without the express
written consent of Bostech is strictly prohibited.

ChainBuilder® ESB is a trademark of Bostech Corporation. ©2008 Bostech Corporation.

Table of Contents

About This Document ... 1

Introduction .. 1
Local Transactions .. 1
Global Transactions .. 2
Compensating Transactions .. 2

Transaction Support in ChainBuilder ESB 3
ETL Component Transaction Support ... 3
JDBC Component Transaction Support .. 4
JMS Component Transaction Support .. 5
Transformer Component Transaction Support .. 5
Transaction Coordinator Component .. 5

Case Study .. 6
Business Case .. 6
ChainBuilder ESB Solution .. 6

For more Information .. 7

 1

About This Document

This white paper provides a technical overview of transaction support in Bostech
ChainBuilder® ESB, a comprehensive Service Oriented Architecture development and
runtime environment based on the Java Business Integration (JBI) standard. This
document describes the concept of transactions in ChainBuilder ESB, transaction support
in JDBC, JMS, Transformer and ETL components followed by a case study of how
transaction support is applied to a real-world example.

The audience for this document includes potential customers who will be evaluating the
ChainBuilder ESB product for their application integration, data integration or Service
Oriented Architecture (SOA) development.

Introduction

Transaction support is an important requirement for an enterprise service bus. A
transaction is a set of operations executed as a single unit. When a transaction has the
characteristic of either being completed in its entirety or not at all, it is considered
indivisible or atomic. An atomic transaction type guarantees transaction integrity such
that any partial updates are rolled back automatically in the event of a failure during the
transaction update. Transaction integrity is especially critical in the financial industry or
any application where money exchanges hands. Loss of transaction integrity can have
detrimental effects to company business and customer satisfaction.

ChainBuilder ESB is implemented in 100% Java. Java and J2EE provide extensive
support of transactions. Two types of transactions (local transactions and global
transactions) are supported in J2EE. A third type of transaction, compensating
transactions, is used to ensure transaction integrity when an enterprise service bus
interacts with non-Java applications or systems.

Local Transactions

A local transaction represents a unit of work on a single connection to a data source
managed by a resource manager. Relational DBMS and JMS servers are examples of
resource managers.

Each resource manager offers a specific API to support local transactions. In JDBC, a
connection call of conn.setAutoCommit(false)will disable transaction auto
commit. Developers can use commit or rollback methods to control the transaction. In
JMS, developers can use the JMS API to get a transacted session and call similar commit
or rollback methods for the transaction objects.

 2

Local transaction is supported in both Java Standard Edition and J2EE.

Global Transactions

When an application updates multiple data sources, a transaction manager is needed to
coordinate the updates to multiple resource managers. This type of transaction is called a
global transaction.

J2EE defines the Java Transaction API (JTA) to support global transaction. A Java
application uses JNDI to get a JTA UserTransaction object and calls the BEGIN,
COMMIT and ROLLBACK on the transaction object. The JTA UserTransaction can be
used to implement a global transaction between JDBC, EJB or JMS.

Compensating Transactions

For many legacy systems or even web services, there is no specific standard technology
available to participate in a global transaction using JTA. Fortunately, this type of
application or system often supports compensating transactions. In the compensating
transaction model, an early business activity can be semantically reversed by executing a
compensating transaction. For example, when a trade order is placed into a stock trading
system, the order is effectively removed from the system when a delete order is received
and posted.

Compensating transactions allow legacy systems to be included in a global transaction to
ensure transaction integrity across the multiple enterprise systems.

 3

Transaction Support in ChainBuilder ESB

ChainBuilder ESB provides extensive transaction support to ensure transaction integrity.

When ChainBuilder ESB is deployed into a Java Standard Edition environment, Java
local transactions are used in the components. If ChainBuilder ESB is deployed in a J2EE
environment, such as IBM Websphere Application Server (WAS) or JBoss App Server, a
global transaction can be used for transactions across multiple data sources using JDBC,
JMS or EJB.

ETL Component Transaction Support

The ETL component can be used to perform database queries and updates without
writing SQL code. The ETL component is implemented using the JDBC API.

The ETL consumer provides the following transaction settings:

• Single with AutoCommit on - The JDBC driver’s AutoCommit is set to true. The

transaction will not be rolled back even if there is an error.
• Batch with AutoCommit off – The JDBC driver’s AutoCommit is set to false. A

batch of database updates will be committed or rolled back depending on if an error
occurs at the provider endpoint.

The ETL provider supports the following transaction settings based on message
metadata:

• Etl.Provider.StartTransaction: If set to true, the component starts a new
transaction for the message exchange.

• Etl.Provider.EndTransaction: If set to true, it will mark the end of a
transaction. If no errors occurred since the start transaction message was
received, then the transaction will be committed. If at least one error occurred,
then the transaction will be rolled back.

• Etl.Provider.CommitTransaction: If set to true, the component commits the
current transaction.

• Etl.Provider.RollbackTransaction: If set to true, the component rolls back the
current transaction.

 4

JDBC Component Transaction Support

The JDBC component uses an XML-based message interface to execute SQL statements
against a relational DBMS using the JDBC API.

The following are the transaction request messages supporting JDBC transactions:

• BEGIN - Starts a new transaction for the session.
• COMMIT - Commits pending operations for the session.
• ROLLBACK - Rolls back the pending operations for the session.
• END - Indicates the end of a transaction for the session. If all operations since

the BEGIN transaction statement were executed successfully, then the transaction
is committed. If one or more operations failed since the BEGIN, then it is rolled
back.

The following are examples of XML request messages that can be processed by the
JDBC component. The example illustrates a single transaction which updates two fields
(SALARY and QUANTITY) in two database tables (PERSON and ORDER).

<jdbc_request xmlns="http://cbesb.bostechcorp.com/jdbc/1.0">
 <transaction>BEGIN<transaction>
</jdbc_request>

<jdbc_request xmlns="http://cbesb.bostechcorp.com/jdbc/1.0"
 sessionId="2399823459">
 <execute>
 <statement>UPDATE Person SET Salary = ?
WHERE LastName = ?
</statement>
 <vars>
 <var mode="IN" datatype="INTEGER">25000</var>

 <var mode="IN" datatype="VARCHAR">Smith</var>
 </vars>
 </execute>
</jdbc_request>

<jdbc_request xmlns="http://cbesb.bostechcorp.com/jdbc/1.0"
 sessionId="2399823459">
 <execute>
 <statement>UPDATE Order SET Quantity = ?
WHERE orderId = ?
</statement>
 <vars>
 <var mode="IN" datatype="INTEGER">15</var>

 <var mode="IN" datatype="VARCHAR">Smith01</var>
 </vars>
 </execute>
</jdbc_request>

<jdbc_request xmlns="http://cbesb.bostechcorp.com/jdbc/1.0"
 sessionId="2399823459">
 <transaction>END<transaction>
</jdbc_request>

 5

JMS Component Transaction Support

In the JMS component, the JMS consumer mode has a transaction property setting of
“Transactional”.

When the Transactional property is set to “yes”, the JMS component creates a JMS
transacted session. The JMS component reads a message from a JMS queue and creates
and sends a JBI message exchange to the destination endpoint. The JMS transaction is
committed when the message exchange is returned. If an error occurs at the destination
endpoint, the JMS transaction is rolled back.

Transformer Component Transaction Support

The Transformer component provides the JDBC operation for database queries and
updates, by a transaction setting, “AutoCommit”. When the “AutoCommit” is set to false,
the transaction will be committed when all map operations complete successfully,
otherwise, the transaction will be rolled back. When the “AutoCommit” is set to true, the
transaction will be committed regardless of detected errors.

Transaction Coordinator Component

The Transaction Coordinator component is a custom component to coordinate
transactions among multiple service components. It is responsible for sending the BEGIN
transaction, END transaction, COMMIT or ROLLBACK messages to the components
that support transactions (e.g., JDBC and ETL). The Transaction Coordinator is also
responsible for invoking a compensating transaction to an external system when
supported. If the Transaction Coordinator fails to invoke a compensating transaction, the
message is saved into the error database. An alert may be triggered for human
intervention, assisting with extreme cases such as a fatal network error or system error
has occurred.

The Transaction Coordinator is an implementation-specific component.

 6

Case Study

Business Case

This business case is when transaction integrity needs to be ensured:

• The external OrderWebApp sends an order request to the enterprise service bus
• The enterprise service bus invokes multiple JDBC updates to the OrderDB

database
• The enterprise service bus invokes a web service call to the back-end OrderSys

system.

If the invocation to the back-end OrderSys fails, the updates to the OrderDB must be
rolled back to ensure transaction integrity

ChainBuilder ESB Solution

The following diagram shows the solution implemented by ChainBuilder ESB with a
description of the flow below the diagram.

 7

ChainBuilder ESB processes the incoming request and ensures the transaction integrity
between database updates and the back-end web service invocation, as illustrated in the
following steps:

1. The OrderProxy web service server receives an order from the OrderWebApp.
2. The Order message is passed to the TransactionCoordinator custom component.
3. The TransactionCoordinator component creates a JDBC request message that

contains the begin transaction and SQL updates. It passes the JDBC request to the
JDBC component. The JDBC component executes the SQL updates to the
OrderDB database and returns the status.

4. The TransactionCoordinator component creates a new Order message based on
the original Order message received from OrderWebApp. The new Order message
is passed to the web service OrderService component to invoke the back-end
OrderSys system and returns the status.

5. The TransactionCoodinatior component checks the status from the OrderService.
If the status is a success, the TransactionCoordinator component commits the
transacation by createing a JDBC request message that contains a JDBC commit
and sending it to the JDBC component. Otherwise, the TransactionCoodinator
component rolls back the transaction by creating a JBDC request with a JDBC
rollback and sending it to the JDBC component.

6. The TransactionCoodinator component creates a result for OrderProxy and
returns it back the calling OrderWebApp.

For more Information

To learn more about the ChainBuilder ESB, please send your inquiry to
Bostech Corporation at info@bostechcorp.com, or visit
Bostech’s Contact Us page at: http://www.bostechcorp.com/ContactUs.

©Copyright Bostech Corporation 2008
Bostech Corporation, 2800 Corporate Exchange Drive, Suite 260, Columbus, OH 43231 USA

April 2008 All Rights Reserved
Bostech, ChainBuilder ESB and all related logos logo are trademarks of Bostech Corporation.

