February 27th 2008

CLIF user manual and programmer's guide

http://clif.objectweb.org/

Copyright © 2006-2008 France Telecom SA

CLIF user manual and programmer's guide

Table of contents

L. INErOAUCEION....cceeeeineeiineeinresnissaecssnnssnesanssssesssaesssecssnssssnsssasssssessassssssssassssssssssssassssassssesssasssssasasssns 4
2. KEY COMCEPLS..cccrrrriersercssssresssaresssressrsssssssssssssssssasssssasssssassessssassssssssssssanssss 5
3. How to get CLIF working? cersresssnnssesens 7
3.1. Technical FEQUITEIMENTS.c...eoiuiiriiiiierieeeeee ettt eee e e sane e e sane s 7
3.2. Ready-t0-USe diSIIIDULIONS.cccuiiiriieieiieeiite ettt ettt ettt et e st e s sabeesbbeesbeeesmmnreeens 7
3.3. Generating a runtime environment (OPtioNal)........c.c.eecuieriiriiieniiniienie e 8
3.4, ConfiUIING CLIF.......iiiiiiiiiiiee ettt e st e e st e e et e e saasee st esnbeeens 8
3.5. Checking CIlif version and eXecution €NVIrONMENL............eerveeerieerrreerneeeriremereeenireessireesnneeens 9

4. CLIF servers and the RegiStry......cccccerrcsssercsssercsssarcsssancsssssossssscssssssssasssssssssssassssssssssssssssssssssassass 10
410 RATONALE. ..ottt ettt et e sttt ettt e s mne e s esaneees 10
4.2, RUNNING @ REGISIIY....eiiiiiiiiiieeieeeite ettt et e e ste e et e e s aa e e et e e e nseeenaseeennneesnnnees 10
4.3. RUNNING CLIF SETVETS. ...cceiuttiiiitiiiieieiteeette ettt ettt sttt e st e st e st e e et e e satee e s 10

S PIODES ccceeiineeitennnicsnnnnnecssecsnesssnsssnsssesssssssssssssssssessssssssssssassssessssssssssssassssassssssssasssassssasssssssssasses 11
S RALONALE........eiiiieiiccee ettt et sttt et e s e 11
5.2, AVATLADIE PIODES. ...ccueiiiiiiiieiiiieeieeee ettt ettt e et e st e e st e e et e e e ase e e e enes 11
S5.2.10 CPU PIOD ...ttt e e et e e e e et e e e s bb e e e e e aabaee e e e e e nnnnnnnrararanes 11
5.2.2. @ISK PFOD ... e et a e e ettt aaaaaaaaaas 12
5.2.3. INEIIOTY PTODC........ccccveeeeeee ettt e et e e e etae e e et a e e st ee e e ssaeeeeensaaaaaaaeaens 12
5.2.4. OIWOTK PFOD.........ccc.eeeeeeee ettt ettt e e et a e e tae e e e s aba e e e e e aaaaaaaaaeaeas 12
5.2.5. JUML PFOD ..ottt ettt e e et e ettt e e e baaaaaaaaaaaaaas 12

5.3. Defining YOUT OWN PIODES......cciiuiiiiiiiieiieiritieeeieeeritee et e et e et e e et e e sibtessabeesabmneeesabeessabeeenns 13
5.3.1. Relying on the provided probe frameWork.............ccc.ccccueeveeieniieeiiieeiiieenieeesieeeseee s 13
5.3.2. Implementing a Blade COMPONENL..............cccceevcueierciiieniieesiieeeieeeeiee et eeeeere e 13

6. Load injectors and ISAC..........iieiiniiiieiiininininnnnsnnisnicsncsssnsssnessssesssssssssssssssssssssssssssssssssssaes 14
6.1, RAIONAIC........eeiiiiiiiiii ettt ettt et e e st e e et mme e e st e e sbee e 14
6.2. ISAC is a Scenario Architecture for CLIF..........ccoccooiiiiiiiiiiieeee e 14
(oI B T A T USRS 14
0.2.2. LOAA PTOJILES.........eeeeeaeeeeeeeeee ettt e et e e e e e e e s aa e e s esnas e e e e e sbaeeessnsaaeeaeaeeens 14
6.2.3. ISAC PLUGTTIS...c..eeeiiiiiiieiete ettt ettt ettt e et e et e e 14
6.2.4. Writing an ISAC SCONATIO...........ccueieiueiaiiiieiieeeeeeete ettt ettt e e e e s 15
6.2.5. Recording an ISAC SCeNArio fOr HIP........ccccooovuiiiiieiiiiiiiiieieieeetee et 15
6.2.6. Deploying and executing an ISAC SCENATIO.ccccueeeeiueeinieiaiiiieiieeniieeeee et 16

6.3. Defining your own load injectors (Java programimers)..........cccceeeveerueerueesueerneenseeseemmeresnneens 16
6.3.1. Using MTSCenario ULIlity CLASS............cccoceiiiiiiiiiiiiiiieiie ettt 16
6.3.2. Writing your OWn ISAC PIUG-ITS.........cccuceiueiiuiiiiiiiiieteeee ettt 16
6.3.3. Implementing a Blade COMPONENL.............ccueeeeueeeeciieeeiieeiieeeeieescieeeecieeesseeesveesssaeeeannns 21

7. Eclipse-based graphical user interface 22
7.1 INEEOAUCTION. ...ttt ettt et ettt bt et e bt st e e b e ssbeebeesane e bt e saenane 22
7.2, GUNZ SLATTEA. . .eeeiiieeiiie et et ettt et e e et e e st eesateeensteeesateeesseeensseeensss s ensseesnsneennns 22
7.2.1. From an Eclipse-RCP based standalone CLIF distribution......................c.cccccccceeeeeeenn.. 22

7.2.2. From the EClipSe PIUG-ITS......ccc..coeviuiiiiiiiieiieeiite ettt ettt ettt e e e e enaeea e e 22

7.3, TSt Plan @AITIOM.eeeueiieiiiieiie ettt ettt et e et e e st e e et eessabee s st e e smmeseeeenbeeenseeennee 24
7.4, ISAC SCENATTIO EAITIOM.eeiuiiiiiiiiieeiteet ettt ettt et e e bt e et e bt e sabeeaeebeesaneenbee e 25

February 27th 2008

7.5. test deployment and EXECULION.........c.cueerueeriiiriienieeiie ettt ettt ettt esneeseeas 26
7.6. ISAC plug-in creation Wizard............ceeeeiieiniiiiniieeiieeeeee ettt s 27

8. Java Swing-based graphical user INterface........ccccceeverecsnrcssnicssnicssnnicssasesssssessssesssssosssssossssssses 28
8.1 INETOAUCTION. ...ttt ettt et e b e et b e st be e e st e e e sanean 28
8.2, GEING STATTE™.veeeiiieeiiieeiiee et et ettt e ettt e et eesbeeestbeeesabeeessbeeesabeesaseesaseesnsseesassessanmsnseens 28
8.3. Test plan €dition taDIe............coiiiieiiiieeiiee et e e sbe e e ste e e sebee e eae e s smmme e s 28
8.4. Performance and resource usage MONILOTING.eervreerreeerreeerreeeireeeieeesreeennreeernseesnnneesnnns 29
T T 1 (Y (531 USRS 30
8.6, TESt PLAN TNEMUL....eeiiiiieiiieeeiie ettt et e et ee et ee ettt e st e e st e e ebeeeensaeesasaeesmmmeensaeeensneesnseens 30
TN A ReTo) K 111 1<) 11 SRS 30
8.7 1. BASIC ANALYZOF ..ottt ettt e et e ettt e e et e e s eaateeessnssssannnees 30

8.7.2. Quick GrapRiCAl ARNALYZET..........cccuoeeeueeieiiiieiiieeiee e et stee e e ste e e saeesaeesaaaeeeennens 30

8.8. T (NEIP) MENU...ceiiiiiiiiiiieiiieee ettt e e sttt e e e st e e e somme s sbeeeesnbbeeessnnseeas 35

9. Command line user INLEIface.........ccceeverrecsrrcsensncsanssenssecssnsnssaecssnssnsssnssssssnssssssssssesssssesanes .36
0.1, TNTOAUCTION. ...ttt ettt et e s e et sat e ettt et ese e e e saneenne 36
9.2, RUN CLIF REZISIIY....eetiieitiiiierieeiieettesite ettt ettt sttt ettt sate e b sar et esaneebeesaneeneesane 36
9.3. Test plan deployment: dePlOY.......c.ueeeuiiiriiieiiieeniie ettt e e e saee e 36
9.4. Test INTHAIIZAION: INIE.....eiitiiiiieiieriie ettt ettt st ettt et esare e b e eaneesesemmnreesaeeenne 36
9.5. Test XECULION SLATL: SEATT....cecuvietieriiieiieriie ettt ettt ettt et st e bt e et e e bt e sate e semseeeabeesbeesaneens 37
9.6. Suspend test eXeCUtion: SUSPENA.......cccuieriuiieiriieriiieeiieeeiieeeiteeesiteesteeesbeeesiame e sebeesnreesneeenns 37
9.7. ReSUME teSt EXECULION: TESUITIC.eeuuveeuteeriteetteniieeieesuteettesuteenteesabeenteeesbeenseesaseesbeeenbeenseesneens 37
0.8. StOP LESt EXECULION: STOP...vteeuurieririeriteeeiteesittee sttt esteeesteeesiseeessteeensseeessseessseesasnsseesanseesnsseenns 37
9.9. Wait for a test execution to terminate: JOIM.........cerueerueeriieriieeniieeieenite et eniee e e seee e emeseesaeeens 37
9.10. Collect test results (measurements): COLECE......uuiiiiiiiiiiiiiiiiiieeeeieeeeee e e 37
9.11. Shortcut for full test eXeCULiON PrOCESS: TUM........eeuvieruierieeniieeieeriteerieesiteeteeseteesteesaeeebeesmmeens 37
9.12. Shortcut for full deployment and execution process: launch...........cccoeecuveeriieiniieennieennieenns 38
9.13. Get specific runtime parameters of a probe or Injector: Params...........ccoceeeeveerveriueeneeeinene 38
9.14. Change a runtime parameter of a probe or injector: Change............ceevervveenieeenienneeniieeneene 38
10. Test results and measurements 39
11, LLICEIISES . uueierrrecssaressnressssnessssrosssssessssssssssssssssssssssssssssssssasssssssssssssesssssssssssssssssssssssssssssssnsssssssssssnnns 40
Appendix A: XML DTDS for ISAC......uiiiiiniinninsinnsninsnssssisssssssnssssessssssssesssssssssssssssssssssssssssssses 41
Appendix B: injector and probe (aka blade)'s life cycle..........ccuvueevuerisueisennsnecserssnecsnccsnnnenns 46
Appendix C: SYSteIN PrOPEITIeS....cccceveessersssrcssrissancssnsssnessssssnsssssssssssssssssssssssssssessssssssssssssssssssssssssss 47
Appendix D: Class and resource files (remote) loading 50
Appendix E: ISAC PIUG-inS....cicceeicsssnicssnccssancsssaresssasssssassss 51
Appendix F: ISAC execution eNGINeE..........ccccceveieseissnncsssisssnssssssssnssssessssssssssssossssssssssssssssnsssss 52

CLIF user manual and programmer's guide

1. Introduction

CLIF is a component-oriented software framework written in Java, designed for load testing
purposes of any kind of target system. By load testing, we mean generating traffic on a System
Under Test in order to measure its performance, typically in terms of request response time or
throughput, and assess its scalability and limits, while observing the computing resources usage.

Basically, CLIF offers the following features:

+ deployment, remote control and monitoring of distributed load injectors;
+ deployment, remote control and monitoring of distributed probes;
- final collection of measurements produced by these distributed probes and load injectors.

Probes measure
usage of arbitrary

_\Acomputing resources
system under.

Execution test (SU
control and
monitoring of resource
load injectors probes
and resource resource

probes. probes

Load injectors :

» send requests, wait for replies, measure response times

» according to a given scenario

 for example, emulating the load of a number of real users

Analysis tools for these measurements will be provided as soon as possible. For the time being, all
measurements are available as CSV (comma separated values)-formated text files.

Thanks to its component-based framework approach, CLIF is easily customizable and extensible to
particular needs, for example, in terms of specific injectors and probes, definition of load generation
scenarios, storage of measurements, user (tester) skills, integration to a test management platform,
etc. For instance, user interfaces are available as command-line tools, Java Swing-based GUI and
Eclipse-based GUI.

February 27th 2008

2. Key concepts

blade

an active component that can be deployed within a CLIF application, under control of the
supervisor component, that provides statistical information about its execution (for monitoring
purpose), and produce results stored by the storage component. Blades exist either as load
injectors or probes.

CLIF application

set of deployed components making it possible to run a test. A CLIF application is a
distributed component holding as sub-components: one supervisor, one storage, and an
arbitrary number of probes and load injectors (aka blades).

CLIF server

a JVM with a bootstrap component that will locally handle blade deployment requests from the
supervisor. In other words, one must run a CLIF server on a given computer in order to be able
to deploy load injectors and probes. CLIF server have a name. They register themselves in the
Registry with this name in order to be found by the deployment process.

code server

the code server is responsible for delivering Java byte-code and resource files on demand
during the deployment process. This is achieved through a socket server with a specific
protocol. As of current version, files greater then 2GB cannot be transfered.

collect, collection

action of getting all measurements, possibly disseminated through the blades by the storage
proxy feature, into the storage component. Collection should not occur before a test is
terminated.

deployment

local or remote instantiation of load injectors and probes (aka blades). During this process,
Java byte-code and resource files may be loaded from the code server, through the network,
and to the target JVM of the blade being deployed.

load injector

a component that conforms to the blade component type, whose activity consists in generating
traffic on an arbitrary SUT, using arbitrary protocols, according to an arbitrary scenario.

probe

a component that conforms to the blade component type, whose activity consists in measuring
the usage of an arbitrary computing resource. Probes may be deployed at the SUT's side, in
order to better analyze and understand its performance, as well as at the load injectors' side, to
check that they are performing all right (since saturating injectors may result in unreliable
measurements or violated load scenarios).

(load) scenario

optional concept referring to the way a single load injector generates traffic, for instance by
emulating the load of a variable number of users performing a variety of requests on the SUT.
In other words, a scenario defines both shape and content of the traffic generated by a load
injector.

Storage

centralized component for storing measurements produced by load injectors and probes (aka
blades). The storage component is typically associated to a storage proxy feature supported by
each blade.

CLIF user manual and programmer's guide

« Storage proxy
local buffering of measurements feature provided by blades in order to avoid flooding the
network and the storage component, which could also disturb the test and spoil measurements.

+ Supervisor or supervision console
component responsible for controlling and monitoring of a test execution.

+ System under test (SUT)
an arbitrary system one wants to assess the performance of. It is typically composed of one or
several computers, networks, etc. It has to be reachable, either directly or indirectly via some
gateway, native library or any wrapping mechanism, from the Java Virtual Machine where
CLIF servers are running.

+ Registry
a distributed naming service used by the deployment process to lookup CLIF servers and
deploy load injectors and probes.

« Test (execution)
execution (shot) of an already deployed test plan. A test ends under 3 possible conditions:
completed, manually stopped or self-aborted.

+ Test plan
specifies a set of distributed load injectors and probes, including their instantiation arguments
and the name of the CLIF servers where they must be deployed.

February 27th 2008

3. How to get CLIF working?

3.1. Technical requirements

CLIF framework and provided load injectors are 100% Java™ . CLIF requires a Java runtime
environment (JRE) or development kit (JDK), and the Java-based ant utility from Apache.org.
Current CLIF version is known to be working with:

« Sun JDK 5.0 (also known as J2SDK™ 1.5)
Download from http://java.sun.com/javase/downloads/index jdkS5.jsp
+ Apache ant utility version 1.5.4 or greater
download from http://ant.apache.org/bindownload.cgi
Make sure ant is using the right JDK!
« Linux 2.4 and 2.6 kernels
« MacOS.X tiger
« Microsoft Windows XP ™

System probes for Linux are also 100% Java, while system probes for Windows and MacOS.X are
native (C-code embedded in Java code via the Java Native Interface).

Since CLIF is written in Java, the only constraint about the SUT is that it must be reachable from a
Java Virtual Machine (JVM), either directly or indirectly through some wrapping, gateway or native
library.

There are two ways of getting a CLIF runtime environment: either by getting the whole source from
the CVS repository, or by getting a ready-to-use binary distribution.

3.2. Ready-to-use distributions

CLIF's site at ObjectWeb Forge offers several binary distributions, available as zip files (see
http://forge.objectweb.org/project/showfiles.php?group id=57):

« clif

full runtime environment with a Java Swing based GUI and support for CLIF servers.
* Server

reduced runtime environment just for running CLIF servers.
+ console-Linux

Eclipse-RCP based standalone console for Linux/Intel.
+ console-Windows
Eclipse-RCP based standalone console for Windows/Intel.
*+ console-Macosx
Eclipse-RCP based standalone console for Windows/Intel.
e clif-plugin
CLIF console as an Eclipse plug-in. Refer to section 7 for plug-in installation.
+ isac-plugin
ISAC editor as an Eclipse plug-in (requires CLIF console plug-in). Refer to section 7 for plug-
in installation.
You may unzip these files wherever you like, except Eclipse plug-ins that you may install in your
Eclipse environment (see section 7). Avoid installing a distribution in a directory containing a
whitespace character in its path (set-up problems have been reported in some conditions).

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://forge.objectweb.org/project/showfiles.php?group_id=57
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

CLIF user manual and programmer's guide

3.3. Generating a runtime environment (optional)

Optionally, you may want to recompile CLIF and generate your own runtime environment. This task
is quite easy using the ant utility. Main targets are:

+ ant dist
compiles CLIF and generates a runtime environment with a Swing GUI, and Javadoc-style

API documentation, available in output/dist subdirectory
* ant server

compiles CLIF and generates a minimal runtime environment to run a CLIF server, zipped in

output subdirectory
* ant product

compiles CLIF, generates CLIF plug-ins for Eclipse (console and isac) and a standalone
Eclipse™ RCP based full-fledged runtime environment for the current operating system,

available as .zip files in output subdirectory
« ant zip

compiles CLIF and generates binary distributions including the generic Swing-based GUI and

server run-times, in separated zip files available in output subdirectory.
+ ant clean

destroys output directory
Then, subsequent operations are given in the following sections, considering the output/dist
subdirectory as "CLIF's runtime environment root directory".

The source code is available through a CVS repository at ObjectWeb's forge. You may obtain the
source code using CVS utility or by downloading a nightly-built snapshot of CLIF's CVS repository
as a single zipped file (see information at http://forge.objectweb.org/scm/?group 1d=57).

3.4. Configuring CLIF

From now on, you are supposed to set CLIF's runtime environment root directory as your current
directory. You may configure CLIF either by editing file c1if.props in etc/ subdirectory, or by
using command "ant config". In the latter case, the following questions will be asked:

« please enter the host where the console will be run:
enter the IP address or name of the computer where you will run the Registry, either embedded
in the Swing or Eclipse GUI, or launched by command line.

« please enter the port number for the console embedded code server:
enter the port number used by the code server, for example 1357.

This configuration operation must be done everywhere you want to run a CLIF server or a console.
You may also make this configuration step only once, and copy the resulting file etc/clif.props
wherever needed.

Note that this configuration utility uses file etc/clif.props.template as a template. You may
edit this file to change some default Java properties so that any further configuration will keep your
changes.

Should you edit file etc/c1if . props, refer to the appendix on System properties page 47.

http://forge.objectweb.org/scm/?group_id=57

February 27th 2008

3.5. Checking Clif version and execution environment

Use command “ant version” to get the version numbers of Java environment, operating system
and CLIF. Command “ant -version” gives the ant version.

CLIF user manual and programmer's guide

4. CLIF servers and the Registry

4.1. Rationale

CLIF servers are necessary to deploy any test plan, since they host load injectors and probes. CLIF
servers are designated by a name, which is registered in a Registry. In order to run, CLIF servers
must be able to find this Registry, which implies:

1. that the Registry must be running before a CLIF server can be launched;

2. that parameters must be given to tell the CLIF servers where to find the Registry and register
themselves.

4.2. Running a Registry

There are three ways of starting a Registry: running the Java Swing console GUI (section 8), using
the Eclipse-based console GUI (section 7), or using the appropriate command (section 9).

4.3. Running CLIF servers

CLIF must be configured on each host you plan to run a CLIF server (see section 3), accordingly to
where your Registry is running. Then, run a CLIF server with command:

e ant server

to create a CLIF server that registers with the local host name as CLIF server name
* ant -Dserver.name=myFirstServer

to create a CLIF server that registers with the provided name

The second solution is a good practice for defining test plans regardless of the actual execution
computers you will have, since the CLIF servers' names are not computer names. You may even first
locally try a distributed test plan by running as many CLIF servers as needed on a single computer,
with different CLIF server names.

10

February 27th 2008
5. Probes

5.1. Rationale

When load testing, it is often a good idea to check the usage of computing resources, both at the
SUT side and the injectors' side. For instance, one may imagine system probes measuring CPU
usage percentage, memory consumption, network bandwidth, etc. But other probes may be
imagined that measure the size of a request queue length, a cache usage, or any activity data of any
kind of middleware/software element involved in the SUT.

With CLIF, you may include probes in a test plan, as a complement to load injectors. Probes are
supposed to have their own activity, typically (but not necessarily) consisting in polling a resource
to measure its usage. All measurements are available from the Storage component once the test
execution is over and the collection process has completed, while statistical values may be retrieved
by the supervision console for monitoring purpose during test execution, directly from the probe.
These statistical values are moving statistics computing on the period between two consecutive
retrievals.

5.2. Available probes

Probes delivered with CLIF all consist in a periodic measure of the resource. They all take two
arguments that must be specified in the test plan: the polling period (in milliseconds) and the
execution duration (in seconds). Although probes start measuring once initialized for convenience,
this execution time is counted once actually running (i.e. started and not suspended). When
terminated, no measure is performed anymore.

To set a probe in a test plan:

- enter its family name as the “class name” information field;

+ select the “probe” type;

- select the CLIF server where to deploy this probe, making sure that the target CLIF server
actually runs on a computing environment (hardware, operating system or whatever) that
is compatible with the probe family (see table below);

- enter the specific argument line, as explained hereafter.

5.2.1. cpu probe

family/class name cpu

measurements global used CPU %, user used CPU %, kernel/privileged used CPU %
alarms none

arguments polling period (ms), execution duration (s)

compatibility Linux 2.4/2.6, MacOS.X 10.4, Windows XP

11

CLIF user manual and programmer's guide

5.2.2. disk probe

family/class name

disk

measurements # issued read operations, # of sectors read, # issued write operations, # of
sectors written, time spent for I/O (ms), time spent for read operations (ms),
time spent for write operations (ms).

alarms none

arguments polling period (ms), execution duration (s), disk name (e.g. hda or sda for
Linux, diskO for MacOS.X, C: for Windows XP)

compatibility Linux 2.4/2.6, MacOS.X 10.4, Windows XP

5.2.3. memory probe

family/class name

memory

measurements used RAM %, used RAM (MB), cached memory (MB), buffers size (MB),
used swap %, used swap (MB)

alarms none

arguments polling period (ms), execution duration (s)

compatibility Linux 2.4/2.6, MacOS.X 10.4, Windows XP

5.2.4. network probe

family/class name

network

measurements received KB, # of packets received, sent KB, # of packets sent

alarms none

arguments polling period (ms), execution duration (s), network adapter name (e.g. eth(
for Linux, en0 for MacOS.X, Broadcom NetXtreme 57xx Gigabit Controller
for Windows XP)

compatibility Linux 2.4/2.6, MacOS.X 10.4, Windows XP

5.2.5. jvm probe

family/class name

measurements

alarms

arguments

compatibility

jvm
free memory in currently allocated heap (MB), used memory % with regard to

currently allocated heap, free % of maximum allocatable memory heap

An alarm with severity level “Info” is generated at each JVM garbage
collection.

polling period (ms), execution duration (s)

system independent

12

February 27th 2008

5.3. Defining your own probes

5.3.1. Relying on the provided probe framework

You may define your custom probes very easily by using the probe framework used by the provided
probes. To do so, you must define a sub-package of package org.objectweb.clif.probe, and
create three classes:

+ a DataCollector class extending class, whose role is basically to provide statistical values
for monitoring;

- an event class implementing interface BladeEvent to hold the set of values produced by each
measure;

- an Insert class implementing the method that actually performs the measures and produces the
events of the class defined below.

For example, let's assume you want to define a weather probe sensing temperature and pressure.
Then you will define the following classes:
« org.objectweb.clif.probe.weather.DataCollector

* org.objectweb.clif.probe.weather.MyWeatherEvent
« org.objectweb.clif.probe.weather.Insert

Note that the package path construction is mandatory, as well as the DataCollector and Insert
class names, in order the deployment system to find your probe. The event class name is up to you.
Once you have compiled your probe, build a jar file with the classes and copy it to CLIF's 1ib/ext
directory. Then start a CLIF console and set your probe in the test plan by typing “weather” for the
so-called “class name” field.

5.3.2. Implementing a Blade component
[TODO]

13

CLIF user manual and programmer's guide

6. Load injectors and ISAC

6.1. Rationale

Load injectors are set in a CLIF test plan in order to generate traffic on the SUT. With CLIF, you
may use and imagine any kind of way to define and execute your load scenarios, on any kind of
SUT. You may even mix a variety of load injectors in the same test plan. This is the reason why you
must set a class name for each load injector you define in a test plan, and set an arbitrary line of
arguments, specifically to the actual load injector you use. Fortunately for non-programmers, CLIF
comes with the ISAC extension in order to provide an easy, powerful and user-friendly way to
define load scenarios. Luckily for Java programmers, they may also define their own load injectors.

6.2. ISAC is a Scenario Architecture for CLIF

With ISAC, testers are given a way to define load scenarios by combining:

definitions of elementary behaviors, typically representing users;
optional definitions of load profiles setting the population (i.e. the number of active
instances) of each behavior as a function of time.

6.2.1. behaviors

An ISAC behavior basically consists in a sequence of actions (requests) on the SUT interlaced with
delays (think times). It may be enriched with the following constructs:

conditional loop: while <condition>

conditional branches: if <condition> then <true_branch> else <false_branch>

probabilist branches: nchoice <weight 1, branch_1> <weight_2, branch_2>,
<weight_n, branch_n>

where weight_i is an integer representing the chance of executing branch_i (in other
words, probability of executing branch_i equals weight_i divided by > weight_j)
preemptive condition: preemptive <condition, branch>

program branch will exit as soon as condition is true (this condition is actually evaluated
before executing each instruction of branch)

6.2.2. load profiles

Load profiles enables predefining how the population of each behavior will evolve, by setting the
number of active instances according to time. A load profile is a sequence of lines or squares. For
each load profile, a flag states if active instances shall be stopped to enforce a decrease of the
population, or if the extra behaviors shall complete in a kind of a “lazy” approach.

6.2.3. ISAC plug-ins

A behavior can be understood as a logic definition, a kind of a skeleton. In order to actually generate
traffic on the SUT, this skeleton must be associated to one or more ISAC plug-ins. Plug-ins are
external Java libraries, that are responsible for:

14

February 27th 2008

- performing actions (i.e. generating requests) on the SUT, whose response times will be
measured, using and managing specific protocols (e.g. HTTP, DNS, JDBC, TCP/IP, DHCP,
SIP, LDAP or whatever);

« providing conditions used by the behaviors' conditional statements (if-then-else, while,
preemptive);

« providing timers to implement delays (think time), for example with specific random
distributions or computed in some arbitrary way;

« providing ad hoc controls for the plug-in itself (e.g. to change some settings);

- providing support for external data provisioning (e.g. a database of product references or a file
containing identifier-password pairs for some user accounts), used as parameters by the
behaviors.

6.2.4. Writing an ISAC scenario

ISAC scenarios are stored in and read from XML files, with extension ".xis" (standing for XML
Isac Scenario). An ISAC scenario holds three main sections:

1. a section for plug-in imports, where default/initialization parameters can be set. A plug-in may be
imported more than once if necessary: for each imported plug-in, each instance of each behavior
will hold a sort of private context (called session object). Each imported plug-in is designated via
a unique identifier.

2. a section for behaviors definition. All actions (aka samples), conditions (aka tests), controls and
delays (aka timers) must refer to an imported plug-in using its identifier. For each call to the
plug-in, specific parameter strings may be set. Those strings may hold variables: when the
pattern ${plugin-identifier:key} is found, it is replaced at runtime by a value that the
designated plug-in associates with the provided key string. The designated plug-in must be a
"data provider" type plug-in, and the interpretation of the key depends on it (refer to the
documentation of the data provider plug-in).

3. an optional section for load profiles, with (at most) one profile per behavior.

The most user-friendly way to edit a scenario is to use the Eclipse-based ISAC graphical editor (see
section 7). The alternative is to use an XML or text editor (the DTD of ISAC scenarios is given in
appendix page 41).

6.2.5. Recording an ISAC scenario for Http

In order to make realistic scenarios corresponding to real users behaviors, session web can be
recorded in ISAC scenario. It consists on using a proxy called MaxQ, available here:
http://maxgq.tigris.org/, which will capture user sessions.

To record an ISAC scenario:

1. You have to edit the maxq.properties file and to choose which timer will be used during the
injection (ConstantTimer and RamdomTimer are available). You can also specify on which
port starts MaxQ. By default, it starts on the port 8090.

2. You have to configure your web browser to go through a proxy for Http requests.

3. Then you have to click on "File" -> "New" -> "ISAC scenario". At this point, the proxy is
started but doesn't record ISAC scenario yet : it works as a transparent proxy.

15

http://maxq.tigris.org/

CLIF user manual and programmer's guide

4. Click on "Test" -> "Start Recording". Now, all requests going from the web browser to a
server will be stored in the ISAC scenario.

5. At the end of the web session, click on "Test" -> "Stop Recording". A pop-up appears to
select a name and a destination to save the file. Give a name with the extension ".xis". Then
save.

Now you have a scenario corresponding to a user behavior. You can import it in your Clif Console
to edit the load profile in order to replay it on a large scale.

6.2.6. Deploying and executing an ISAC scenario

Remember that a scenario is local to each load injector. When editing your test plan, the key idea is
to use the ISAC execution engine as a load injector, and to set the test plan file as argument:

- class name: IsacRunner
« arguments: myScenario.xis

Your code server path should include the directory where your scenario file is, in order to benefit
from the automatic remote loading of the scenario file by every remote ISAC execution engine you
may have defined in your test plan (see appendix page 50 for details).

A number of the execution engine's parameters may be modified, including at runtime:

- about the engine itself (size of the thread pool, polling period for load profile management,
tolerance on deadlines);
- about the active scenario, in particular the number of active instances (population) of each
behavior.
ISAC scenarios end on completion (load profiles time have elapsed), failure (abort), or manual stop.
As soon as at least one behavior population has been manually set, or when no load profile is
defined for any behavior, the scenario must be manually stopped.

6.3. Defining your own load injectors (Java programmers)

6.3.1. Using MTScenario utility class

MTScenario is an abstract Java class dedicated to programmers, although the webtest example,
based on MTScenario, may be used by non-programmers for simple web testing. MTScenario
makes it easy to define a test scenario as a set of concurrent threads ("sessions") looping on
arbitrary actions, with an initial ramp-up time and during a given test duration. The programmer just
has to define the session objects and actions.

6.3.2. Writing your own ISAC plug-ins
Principle

Writing your own ISAC plug-in is a simple way to customize the injection capabilities of ISAC, still
relying on the generic language for defining behaviors and load profiles. Writing an ISAC plug-in
basically consists in defining a Java class that encapsulates (a part of) the state of each behavior
instance, and provides specific methods for:

- instantiating new session objects for new behavior instances;

16

February 27th 2008

implementing load injection primitives;

implementing timer primitives (e.g. to implement think times);
implementing external data provisioning;

implementing condition primitives;

session object control primitives.

The primitives offered by an ISAC plug-in, as well as a GUI-oriented description for its parameters,
are declared through 3 descriptor files:

plugin.properties file specifies Java properties plugin.name, plugin.xmlFile and
plugin.guiFile to respectively set the ISAC plug-in name, the name of the XML file
describing the list of primitives and parameters, and the name of the XML file describing the
GUI concerns. Usual values for these file names respectively are plugin.xml and gui . xml.
plugin.xml file (or any other name as specified in plugin.properties file)

gui.xml file (or any other name as specified in plugin.properties file)

To add a new ISAC plug-in, you must create a directory in subdirectory isac/plugins of CLIF
execution environment. You may also create a local build.xml file that will be called by CLIF's
main build.xml file (at the root of CLIF runtime environment) through targets isac-plugins

and isac-clean, respectively for compiling and cleaning all ISAC plug-ins.

The ISAC plug-in creation Wizard for Eclipse

CLIF's Eclipse-based GUI comes with a wizard for
creating ISAC plug-ins. It consists in creating a new
ISAC plug-in project which combines a classical
Eclipse Java project wizard with specific GUI pages
dedicated to the declaration of ISAC primitives and
parameters. The wizard generates the three descriptor
files as well as a Java class skeleton accordingly to
specific code design patterns. This skeleton is
supposed to be completed with your specific code,
preferably keeping the same design patterns if you
want to keep an optimal support from the wizard
when modifying your plug-in. In case of consistence
troubles between the descriptor files and the Java
code, the XML descriptors are regarded as the
reference.

& New Project
Select a wizard

Create a ISAC Plug-in Project.

Wizards:

¥ = CUF

b= Java

b = Simple

b = Examples

]
@

r

Next = Cancel

The following sections give some explanations about the construction of ISAC plug-ins.

XML descriptor files

The plug-in descriptor file specifies:

« the plug-in name, which must match the plug-in's directory name,
- the associated session object class and the initial settings parameters, with some help
- the samples, controls, conditions and timers with their parameters and help.

17

CLIF user manual and programmer's guide

<?xml version="1.0" encoding="1S0-8859-1" 7>
<!DOCTYPE plugin PUBLIC "-//objectweb.org//DTD CLIF Isac 1.0//EN"
"org/objectweb/clif/scenario/isac/dtd/plugin.dtd">
<plugin name="DnslInjector">
<object class="org.objectweb.clif.isac.plugins.Dnslnjector">
<params>
<param name="server_arg" type="String" />
</params>
<help>
This plugin sends UDP-based type A DNS queries to the specified server
</help>
</object>
<sample name="query" number="0" >
<params>
<param name="name_arg" type="String" />
</params>
<help>
Resolves a name
</help>
</sample>
</plugin>
The user interface descriptor file adds explicit labels to primitives and parameters, and associates
each parameter to GUI-related information. Possible graphical widgets are available through the
following tags : radiobutton, field, checkbox, nfield (variable number of fields), combo.
Parameters may also be visually grouped together with the group tag. The parameter value
resulting from a nfield widget is the concatenation of the variable number of fields separated by

one ;' character.

<gui>
<object name="Dnslnjector" >
<params>
<param name="server_arg" label="IP address or name of DNS server"
type="String" >
<field/>
</param>
</params>
</object>
<sample name="query" number="0" label="query" >
<params>
<param name="name_arg" label="DNS name to resolve" type="String" >
<field/>
</param>
</params>
</sample>
</qui>

Session object instantiation

When writing an ISAC scenario, each imported plug-in will result in a session object associated to
each behavior instance. If a plug-in is imported several times by a single scenario, each behavior
instance will be associated to as many session objects as plug-in imports. For each import, different
settings may be entered. So, for each import, the ISAC execution engine instantiates and initializes
with these settings a specimen session object. For that purpose, your plug-in class must implement a
public constructor taking a Map as a single argument. This map will hold the specimen settings with

18

February 27th 2008

the parameters names as keys, as specified in the plug-in XML descriptor file. The specimen objects
will be used just for replication, according to the load profiles, but will never be associated to
behavior instances.

Then, your plug-in class must implement the SessionObjectAction interface to handle
replication of specimens for creation of session objects that will be actually associated to behavior
instances (method createNewSessionObject ()). This interface is also used for freeing
resources used by session objects before they are discarded (method close ()), and recycling old
session objects into fresh ones (method reset ()).

public class MyPluginSessionObject implements
org.objectweb.clif.scenario.isac.util.SessionObjectAction {

public MyPluginSessionObject(java.util.Map arguments) {...} // mandatory constructor for
session object specimen

public Object () {...} // called on a specimen to instantiate a new session object and
return it

public void reset() {...} // called on a used session object for recycling (i.e. turning it to a
fresh session object)

public void close() {...} // called on a used session object for cleaning before being
discarded

Load injection primitives

Load injection primitives are declared in the XML plug-in descriptor using tag sample, and
identifying each primitive with a unique integer value. All load injection primitives for a given plug-
in are implemented by method doSample (int, Map, ActionEvent), as specified by interface
SampleAction.

« The first argument gives the primitive identifier;

- the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params;

« the third argument gives a report object whose fields will have to be filled before being
returned.

Basically, the dosample () method is supposed to perform a load injection request, wait for some
kind of response, state if this request is a success or a failure, measure its response time and return a
sample report. Returning null is also possible, to make CLIF ignore this sample.

public class MyPluginSessionObject implements
org.objectweb.clif.scenario.isac.plugin.SessionObjectAction,
org.objectweb.clif.scenario.isac.plugin.SampleAction {
public ActionEvent doSample(int number, Map params, ActionEvent report) {
switch (number)

Timer primitives

Timer primitives are declared in the XML plug-in descriptor using tag t imer, and identifying each
primitive with a unique integer value. All timer primitives for a given plug-in are implemented by
method doTimer (int, Map), as specified by interface TimerAction.

« The first argument gives the primitive identifier;

19

CLIF user manual and programmer's guide

« the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params.
The doTimer () method must return a number of milliseconds that will be taken into account by
the execution engine to make the calling behavior instance sleep. This method shall not perform a
sleep period by itself!

public class MyPluginSessionObject implements
org.objectweb.clif.scenario.isac.plugin.SessionObjectAction,
org.objectweb.clif.scenario.isac.plugin.TimerAction {
public ActionEvent doTimer(int number, Map params) {
switch (number)

Condition primitives

Condition primitives are used by the conditional constructs of behaviors (while, if,
preemption).Condition primitives are declared in the XML plug-in descriptor using tag test, and
identifying each primitive with a unique integer value. All condition primitives for a given plug-in
are implemented by method doTest (int, Map), as specified by interface TestAction.

« The first argument gives the primitive identifier;
- the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params.
The doTest () method must return a boolean according to whether the condition is met or not.

public class MyPluginSessionObject implements
org.objectweb.clif.scenario.isac.util.SessionObjectAction,
org.objectweb.clif.scenario.isac.plugin.TestAction {
public ActionEvent doTest(int number, Map params) {
switch (number)

Control primitives

Control primitives are used to perform an arbitrary control action on a session object (e.g. increment
a counter session object). Control primitives are declared in the XML plug-in descriptor using tag
test, and identifying each primitive with a unique integer value. All condition primitives for a
given plug-in are implemented by method doControl (int, Map), as specified by interface
ControlAction.

+ The first argument gives the primitive identifier;
« the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params.
The doControl () method just performs the control action and returns.

public class MyPluginSessionObject implements
org.objectweb.clif.scenario.isac.util.SessionObjectAction,
org.objectweb.clif.scenario.isac.plugin.ControlAction {
public ActionEvent doControl(int number, Map params) {
switch (number)

20

February 27th 2008

External data provisioning

All parameters set in an Isac scenario may contain an external data reference, through an expression
of this form : ${dataProviderIdentifier:reference}. At runtime, this expression will be
replaced by the String returned by the doGet (reference) call on the plug-in session object
identified by dataProviderIdentifier. The format of reference is unspecified and typically
depends on the data provider plug-in implementation.

To implement a data provider plug-in, just implement interface DataProvider and the
corresponding doGet (String) method. You are free to interpret the string argument and return
any String (computed or picked up from any source).

Note that the XML plug-in descriptor does not declare the data provisioning capability. On the other
hand, this capability is not checked and the outcome of trying to get data from a plug-in that does
not implement the DataProvider interface is unspecified.

public class MyPluginSessionObject implements

org.objectweb.clif.scenario.isac.util.SessionObjectAction,

org.objectweb.clif.scenario.isac.plugin.DataProvider {
public ActionEvent doGet(String reference) {

6.3.3. Implementing a Blade component
[TODO]

21

CLIF user manual and programmer's guide

7. Eclipse-based graphical user interface

7.1. Introduction
CLIF comes with an Eclipse-based Graphical User Interface. This GUI has 3 functions:

« a CLIF console for test deployment, execution and monitoring, including a test plan editor;

- a graphical editor for ISAC scenarios;

« a programming environment for ISAC plug-ins.
All parts are available as separate Eclipse plug-ins, or delivered as a single ready-to-use standalone
program. Note that CLIF's runtime environment directory, as often referred to in this

documentation, is located in the console plug-in path, 1i.e. something like
plugins/org.objectweb.clif.console.plugin_x.x.x/

The console GUI uses the same project-and-files pattern as Eclipse. You must begin by creating a
new project (using the project wizard and choosing the "Simple" project). Then you can use the
"New ClifTestPlan" wizard to create one or several test plans in your load test project. Similarly, you
may also use the "New Isac Scenario" wizard to create ISAC scenarios. To create a new ISAC plug-
in, create a new project using the “New ISAC plug-in” wizard.

Please refer to the on-line help for detailed documentation about these parts.
As an Eclipse applications, a number a useful options may be set on the command line, such as:

« —consoleLog to see messages printed out to your terminal;

« —vm /path/to/the/jvm to set the right Java Virtual Machine to be used;

+ —data /path/to/my/workspace to use a different workspace directory from the default
one.

Should you require to set some specific system properties, please edit file c1if.props.template
in directory plugins/org.objectweb.clif.console.plugin_x.x.x/etc.

7.2. Getting started

7.2.1. From an Eclipse-RCP based standalone CLIF distribution

Eclipse RCP based binary distributions of CLIF are full-fledged standalone executables that include
Eclipse RCP environment for a specific operating system. They require a JDK, and most often
Apache ant utility to run CLIF servers (see requirements in section 3.1).

You just have to get the right binary distribution for your operating system (see section 3.2), or
generate it from the source (see section 3.3). Then, unzip it wherever you want on your computer,
avoiding path names with whitespace characters. Finally, run clif-console program with any
useful argument (as detailed above).

7.2.2. From the Eclipse plug-ins

CLIF provides 2 Eclipse plug-ins, namely the clif.console plug-in and the clif.isac plug-in. The
clif.isac Eclipse plug-in contains the Isac scenario editor and the Isac plug-in creation wizard. The
clif.console Eclipse plug-in contains all the remaining parts of CLIF (the test plan editor, the
supervision console, the analysis tools).

22

February 27th 2008

The clif.isac Eclipse plug-in depends on the clif.console Eclipse plug-in.
Dependencies

CLIF Eclipse plug-ins depends on a number of Eclipse plug-ins that may not be present by default
in your Eclipse Workbench installation. We recommend to download the Eclipse-based CLIF
console (whatever the target operating system) and get the missing Eclipse plug-ins from the
plugins subdirectory. The list of necessary Eclipse plug-ins is given below:

+ Directories:
—org.apache.xerces_2.7.0
—org.eclipse.jem.util_1.1.0

. Jar files:
—org.eclipse.emf.common_2.1.0
—org.eclipse.emf.ecore.edit_2.1.0
—org.eclipse.emf.ecore.xml_2.1.0
—org.eclipse.emf.ecore_2.1.0
—org.eclipse.emf.edit_2.1.0
—org.eclipse.wst.common.emf_1.0.0
—org.eclipse.wst.common.emfworkbench.integration_1.0.0
—org.eclipse.wst.common.environment_1.0.0
—org.eclipse.wst.common.project.facet.core_1.0.0
—org.eclipse.wst.common.ui_1.0.0
—org.eclipse.wst.common.uriresolver_1.0.0
—org.eclipse.wst.common.frameworks_1.0.0
—org.eclipse.wst.dtd.core_1.0.0
—org.eclipse.wst.sse.core_1.0.0
—org.eclipse.wst.sse.ui_1.0.0
—org.eclipse.wst.validation_1.0.0
—org.eclipse.wst.xml.core_1.0.
—org.eclipse.wst.xml.ui_1.0.0
—org.eclipse.xsd_2.1.0

(@)

Installation

Up to version 1.2.1, CLIF plug-ins rely on Eclipse 3.1, while starting from version 1.2.2, they rely on
Eclipse 3.2. You may simply copy all the Eclipse plug-ins in the plugins directory of your Eclipse
installation. Make sure you get the right CLIF version with regard to your Eclipse version.

Take care to set write permissions for the clif.console Eclipse plug-in directory. Although this is not
really satisfactory and it is going to be fixed, you would not be able to run tests without being
granted write permissions.

Execution

Remember to run Eclipse with the right JVM, as mentioned in section 3.1. Use option —vm to make
sure Eclipse uses the right JVM. See section 7.1 for the most important options you may set when
launching your Eclipse workbench.

23

CLIF user manual and programmer's guide

7.3. Test plan edition

File Edit -

Search CLIF Window Help

22 jzeedo xis & j2eedo.ctp

my_test_campaign
[¥] project
& j2eedo.ctp

L2jzeedo.xis

& ClifTreeview & =0

- i local host

@Yjvm 3

G injector 0
v P og-ong

@Yjvm 2

@w: memory 1

Test Plan Editor

Injectors and probes

Allinjectors and probes in the test plan

jvm injector] memory

Id |Ser\.rer | Role |C|a55

Arguments

Comment

~ Properties

Manage injector and probe properties

Add

Remove

Rermove All

Id* 0

Serverk ||oca| host |Z| ‘ Refresh ‘
Role* : |injector El
Class* : IsacRunner

Arguments : j2eedo.xis

Comment :

ﬂJTesq

24

7.4. ISAC scenario edition

February 27th 2008

Fle Edit - Search CLF wWindow Help |

|

|#]w|&

5 Navigator 2 l

=0

22 helloworld xis _szeedo‘ctp |

9@ BDE "~

-

my_test_campaign

[X] project

22 helloworld xis

&

j2eedo xis

28 scenariol.xis

Edition page for behavior description

Behaviorid : write

| MNew HDup\icateH Remove|

¥:Load profile :

~ Behavior tree :

- @Bwhile
@ timer 5s.period_begin
= efnchoice
b == choice
= == choice
0
b == choice
b == choice

@ timer 5s.period_end

u

Remove

II:D
o
o

Clear

p || Down

~ Properties :

Manage plug-ins properties

sample : Httplnjector_1.0.get

id : Ijzeedu client

=]

Configure the Sampl

URI (required) : |http:f/g-dellrack1:9000/doActio

Set automatic redirection (optional)
[ﬂ enabled

Enter Parameters (scheme : 'name=value')(opf

| Add field || Remove field |
field 0 Iaction:newproj
field 1 : Icontainer:false
field 2 IwithTrans:faIse

Design | Source | Import | Behavior ping | Behavior write

]

(7 Load profiles 52 l

Time : 38 Value : 198

Profiles :
write 200
ping
100 p

25

CLIF user manual and programmer's guide

7.5. test deployment and execution

EHle CLIF Window

Jo]s

©5 Navigator 2 = B & new_test_plan.ctp SSI =8
& ¥ | Test Commands
= Projetl Injectors and probes
dbnew_test plan.cip All injectors and probes in the test plan
cpu ime:tnrl
Select All
Id ‘ Server ‘ Role ‘ Class Arguments ‘Cumm| State
= 0 local host injector IsacRunner helloworld.xml initialized Deselect All
x 1 g-necml3-199 injector Autotest 10010 10 100 initialized
Global state
initialized
Start Stop Parameters
Edit | Test
& Monitor 2 \ =0
Testl - 20 septembre 2005 3:53:29 2 I
cpul \njectnr‘
DlEpJay|ColJect‘BJade‘ Time ‘Time 27\’7'3“557 e
. . =
@& ClifTreeView &% =] “l =] 2 0 100
ad -necmi>-199 _
3 g B0
@,(cpu 2
G injector 1
- a local host
G\mecturo 40 -
%CPU hd 20 a0) 20
Drawing timeFrame : 100 sec.Polling Period : 1 sec
Projetl

26

7.6. ISAC plug-in creation Wizard

type filter text =

Info
~ SessionObject
Conditions
Controls
Samples
Timers
Java Build Path
b Java Code Style
b Java Compiler
Javadoc Location
Project References

Task Tags

Properties for C5VProvider

February 27th 2008

(@) Plugin properties are valid. D o
Plugin name: CSWProvider
Source: JCSVProvider/src Browse...
Package: org.objectweb.clifisac.plugins
Class name;: CSVProvider

v Implements DataProvider interface

GUI file name:

Plugin file name:

gui.xml

plugin.xmil

(o]'4 Cancel

27

CLIF user manual and programmer's guide
8. Java Swing-based graphical user interface

8.1. Introduction

CLIF comes with a Java/Swing-based Graphical User Interface. This GUI consists of a console for
test deployment, execution and monitoring, including a test plan editor. It also provides an analysis
tool to help produce test reports.

Compared to the Eclipse RCP-based console (see section 7), the Swing-based console has the
advantage of light-weight, simplicity and operating-system independence. On the negative side, its
simplicity springs from a reduced set of features. In particular, it does not provide an ISAC scenario
editor nor an ISAC plug-ins creation wizard. As far as the test results analysis is concerned, the
consoles provide different tools that suit different needs. The one provided by the Swing console is
probably more straightforward to use, and rapidly gives graphical views, while the one provided by
the Eclipse console is suited to the creation of long reports based on well-structured report
templates. Of course, once a test has been run, any analysis tool may be used regardlessly of the user
interface that has been used to run the test.

Note that the Swing console is actually embedded in the CLIF Eclipse-RCP distribution, since it
provides the so-called CLIF runtime environment directory, located in the console plug-in path, i.e.
something like plugins/org.objectweb.clif.console.plugin_x.x.x/.

8.2. Getting started

To run the CLIF Swing console, the mandatory requirement is the right JDK and preferably the
Apache ant utility (see requirements in section 3.1).

You just have to get the right CLIF distribution (see section 3.2), or generate it from the source (see
section 3.3). Then, unzip it wherever you want on your computer, avoiding path names with
whitespace characters. To run the console, use command ant console in the root directory of the
unzipped distribution.

28

February 27th 2008

File Testplan Tools 7

& probeTP.prop

Blade id] Server Role Blade class Blade argurnent Cormment State |

3 g-smithp2.rd francetelecorn ™ probe sy sterm 1000140 sonde systerne completed
g-smithp2.rd francetelecorn ™ probe cpu 1000140 sonde CPU completed

0 g-smithp2.rd francetelecomn. T injector Autotest 10010050100 injecteur completed

1 g-smithp2.rd francetelecorn ™ probe mernory 1000140 sonde memoire completed

rmemury |/cpu rsystem |/iniec"tu-r |

Dizplay | Collect | Blade [94]924
v L '
ez L o _______
ee2 Ll _________
T I
. : o
action throughput {actions/... i 230

Drawing timeframe: 507 SeC. Polling period:|1 SeC. SetiDraw Reset

opped - ellapsed time 0:2:40

8.3. Test plan edition table

A test plan defines the probes and the injectors to be used, with their parameters, and where to
deploy them. Remember that injectors and probes are uniformly designated as "blades". The table in
the upper part is the test plan editor. Note that the bottom part (monitoring) is hidden as long as the
test is not initialized. Note also that the test plan is not editable when the monitoring area is shown.

Each row of the test plan table defines a blade configuration, through 6 columns:

Blade id is a unique identifier for the injector or probe to be deployed. A default id is

automatically set when adding a new blade, but it may be freely changed by the user as long as

it remains unique within current test plan;

Server offers a choice between available CLIF servers, where the blade is to be deployed. The

list of CLIF servers may be updated using option "Window > Refresh server list";

Role specifies whether the blade is a probe or an injector;

Blade class is where the user sets:

—either the Java class to be instantiated as a load injector (fully qualified name, without
trailing .class extension - see section 6),

—or a family name in case of a probe (see section 5);

Blade argument is an argument line that will be passed to the new blade instance at

deployment time;

Comment is an arbitrary user comment line.

29

CLIF user manual and programmer's guide

The last column State is not editable. It shows state information about the blade (undeployed,
deploying, deployed, starting, running, stopping, suspending, resuming, completed, aborted...).

Test plans may be saved and restored using options in the File menu.

8.4. Performance and resource usage monitoring

As soon as the test plan is deployed and initialized, the monitoring area pops up in the test plan
window's bottom part. This area holds a set of tabbed panels:

- one for all injectors
« one for each probe family

For each panel, the user may set the monitoring timeframe, the polling period, and start or stop the
monitoring process. Moreover, a checkbox table at the left side of each panel makes it possible to
selectively disable or enable the collect and display of monitoring data, for each blade.

8.5. File Menu

From this menu, the user can find options for saving and loading a test plan.

This menu also holds the "Quit" option to exit from CLIF console, which also terminates the
registry where CLIF servers are registered. As a result, whenever you terminate a CLIF console, any
remaining CLIF server will then become unreachable - you may stop these unreachable CLIF
servers manually. Running the CLIF console again will create a new, empty registry, and then you
may launch new CLIF servers. The user may not quit the console while a test is running (other wise,
the behavior is undefined).

8.6. Test plan menu
This menu holds test deployment and control commands. There are 2 subsets of options:

« the first set holds test plan definition and deployment commands

—option Refresh server list updates the list of available CLIF servers,

—option Edit switches to test plan edition mode, when enabled (i.e. when not already in
edition mode, and when no deployed test is currently running),

—option Deploy deploys the probes and injectors defined by current test plan

- the second set holds test control commands

—command initialize initializes all the blades so that they are actually ready to start;

—commands start, suspend, resume and stop respectively start, suspend, resume and stop the
execution of all blades;

—command collect tells the storage system to collect all test data from the blades (the actual
effect of this command fully depends on the Storage component). This option may be used
only after a test run. Collecting more than once after a test run has no effect; collecting is
not mandatory, which means that the user may not collect data if s/he is not interested in the
test results.

8.7. Tools menu

This menu displays on/off additional tools:

30

February 27th 2008

8.7.1. Basic analyzer

Basic analyzer tool provides an analysis tool/sample of test results (after test run) - this is just a
preview.

8.7.2. Quick graphical analyzer

Graphical analyzer tool provides functions to analyze quickly test results after test run.

Quick Graphical Analyzer

File Preferences Help

€§3 Fafrash Chart Configuration: Chart Title:
X Axis:
CLIF executions |CPU and [vM
7 Ctest#0 Lahel [Date (ms) Chart:
20,0
¥ ljloj ¥ Axis: ’ A\ 1,00
o [T lifecycle 17,5 Y
= e i Event field Y label I\ -
LIk | sy %CPU ® 150) 0,75 &
D date || jused memory % used memory % o 125 / g
™y sacPU E 10,0 T n50 &
Ia 1\
D HCPU user 7,5 /-4 I\ =]
Selected v Axis Properties: \ v 2
7y %CPU kernel 50 58
o CJtest#l Label: CPU | -
9 [test#fvM - 0,0 0,00
¢ o0 Chart type: |r9“der as line |'| "o 250 500 7SO 1000 1250 1500 1750 2000
o= [lifecycle Data vype: Date {ms)
o= [Jalarm [—=cCPU + used memory %|
() Raws data) : :
o WM Time dispaly {X Axis):
[date i || ® Moving statistic: Start: Ny , End:
free memary (ME -) mean) min
D v om0 21665 [2000 | ms
D used rmemory %) standard deviation) max
[0 free usable me Chart Comment:
i t's a chart for .|
P] ‘ M | | 1y Time Configuration:
@Add T Maximum number of point: (1000

Chart Statistics:

CLIF executions ftest#0 0 CPUSCPL

rmir:

0.0

rrean:

4. 75630252 1008403
mariance:

195101125 19584032
rnas:

850

stol_dewviation:

13 8967EE04372598203

Menu:

By the file menu, the user can export his analyze in various formats (Text, XML or HTML).

n Quick Graphical Analyzer

Quick Graphical Analyzer Quick Graphical Analyzer :

File | Preferences | Help Fi|e| Freferences Help File Preferences |7
Irmage Type P ® FMNG [Chart To HTML.. ADE B
d Mowing Statistic... | D JPG X Ax To XML, 5
o O test#0 O Vg | Lahe To Text File. . i
o n | | —a

The Preferences menu contains export options and moving statistics options.

The help menu holds a single About entry which displays informations about the graphical analyzer.

31

CLIF user manual and programmer's guide

€§§ Fefresh

[CLIF executions
o [test#0
0
o= [lifecyrle
¢ CJcCrU
D cate

[scpPu
D BCPU uszer
[el karnal

o=] test#l 'ﬁ' Add to Y axis

o [test#vM ~£§S* Fefresh

L
o= [lifecyrle
o= [alarm
7 Jvm
D cate
D free memary (ME)
D used memory %

[free usable memory %

| 'f‘f' Ardd 1o Y axis

Chart configuration:

- [Execution tree:

The test execution tree lists the available tests under a tree
representation with the following hierarchy : fest / blade / event /
|event field

If a test execution doesn't appear in the hierarchy the user can press
|the “Refresh” button to update the tree.

The “Add to Y axis” button add the value of the selected leaf to the
chart. The user can also add it by doing a double click on the leaf

A double click on a leaf do the same action. The user can do this
action by doing a “right click” in the tree.

32

February 27th 2008

The user can configure the chart using the “chary Chart Configuration:

configuration” frame. In this frame he can define the

X Axis:

X axis label, modify the curve, and define the Lahek Date (ms) |

maximum number of point to display.

You can configure the curve by modifying her label,
her color, her appearance (line, dot, area or bar), and
the type of data to display (raw or moving statistic).

After modifying a value, this values is colored in
yellow and to apply the modification you validate

them by clicking on the @| putton.

X Axis:

Lakel: [Date] | <]

To remove an event field from the chart select the
event in the table and click on the red cross.

Chart Title:

¥ Axis:

Ewent field T lakel |
P P ®
used memory & used memory & ®

Selected v Axiz Properties:

Lakel: [%CPU |

Chart type: ‘render as line |v|

Ciata type:

) Raw data

& Moving statistic
) mean 1 min

@ standard deviation () max

Time Configuration:

[CPU and JwM

Chart:
20,0

17,5 |
15,0
12,5
10,0
7.5
5,0
2,5

FCPLU

2 fAloLizawl pasn

0,0 : . . v ' - -
0 250 500 7S50 1000 1250 1500 1750

Date (ms)

|—%CPU — used memory %l
Time dispaly (X Axis):
start: G) End:

0
2000

0 ms I 71668 2000 ms

Chart Comment:

It's a chart for ...

| nurmber of point; |1000

Chart panel:
The chart panel displays the chart
generate using the chart
configuration.

At the top of the panel you can add a
title to the chart.

There is a time line under the chart.
Using the cursor, the user can
modify the time window to display.
He can also modify this time
window by modifying the start and
stop values. To validate the
modifications he should click on the
validation button.

At the bottom of the frame, a text area allows the user to comment the chart.

Statistics frame:

33

CLIF user manual and programmer's guide

The Statistics frame display statistics about each event field for the displayed time window.

Imin:

00

mearn:
SLO0BE49557522124
wAriance:

204 27eT0RTO02799
A

=50

st _dewiation:

14 292540248583473

1]

Export the chart :
The chart export create various file in accordance with the type of export.
Export as text:

When the user export the chart as text three files are created : a picture, a text file that
contains the comments and one that contains statistics.

Export as XML:

If the user choose to export as XML, two files are create the picture of the chart and an XML
file with the following Document Type Definition :

<!ELEMENT chart (image, comments, statistics, generation)>

<!ATTLIST chart title CDATA #REQUIRED>

<!ELEMENT image >

<!ATTLIST image file CDATA #REQUIRED>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT statistics (serie)>

<!ELEMENT serie (measure)>

<!ATTLIST serie name CDATA #REQUIRED >

<!ELEMENT measure >

<!ATTLIST measure name CDATA #REQUIRED

value CDATA #REQUIRED>

<!ELEMENT generation (#PCDATA)>

Export as HTML:
At last if the user choose the HTML format, an HTML file and a folder are created

34

February 27th 2008

CPU and JVM

100 J 7
=i}
a0

|
70 |
80 4
&0

%CPU

40 |

g Aowaw pasn

30

20

10 I [‘

0 . 0

250 500 750 1000 1250 1500 1750
Date (ms)

[—%CPU —used memory %|

Comments

a comment far my chart .
hla hla hla
Statistics
standard deviation min mean variance max

CLIFtest#0/0/VMuused memory % 0.7757 74119027694 30 BTV1084337349397 060122548375314948 7.0
CLIFtest#0/1/CPUMCPU 11.302858286176976 0.0 1.60240963355942168 127.79462826317429 100.0

Generated at 2007-2-20 10:9 A

8.8. ? (help) menu

This menu holds a single "About..." option, which displays CLIF version and compilation
information. This information is important to get and mention whenever you report a problem using
CLIF.

35

CLIF user manual and programmer's guide

9. Command line user interface

9.1. Introduction

Once you have created a test plan file (either using the Eclipse-based or the Java Swing-based GUI,
or editing a text file with the appropriate syntax), you may deploy and run tests using the following
commands. Those commands are packaged as Apache ant targets defined in the build.xml file
available at CLIF runtime environment's root.

Prior to any command, one Registry must be run for the whole test. It will be used by every
command to register or lookup the components of the deployed test plan (aka CLIF application):
injectors, probes, supervisor, storage.

Most of these commands apply either to every probe and injectors from a deployed test plan, or to a
subset of them. To do this, you must specify an extra argument to give the list of the target injectors
and probes identifiers (so-called blade identifier, as defined in the test plan): -Dblades
.id=id1:id2:...idn. Note that separately managing probes and injectors can become tricky in big test
plans... A typical usage of CLIF may not need this feature, and would only make use of the
commands' default global scope.

Note that authorized commands depend on the state of the injectors and probes. Refer to appendix
page 46 for details about the blade life-cycle.

9.2. Run CLIF Registry

ant registry

Runs a Registry on the local host. All CLIF servers that will be involved in the test plan the user is
planning to deploy must then be launched with the right configuration. See sections 3 and 4 for
details. Only one Registry shall me launched on a given host (further attempts will just fail).

9.3. Test plan deployment: deploy
ant -Dtestplan.name=name -Dtestplan.file=myTestPlan.ctp deploy

Deploys a new test plan (probes and injectors) as defined by a given test plan file. This deployed test
plan is given a name that is further required for all others commands. When successful, this
command does not return, and should not be manually terminated as long as you want to use the
deployed test plan. The resulting process' role is similar to a (graphical) console's role, in that it
contains the Supervisor and Storage components, as well as the code server.

9.4. Test initialization: init
ant -Dtestplan.name=name -Dtestrun.id=testld [-Dblades.id=id1:1d2:...idn] init

Initializes all probes and injectors in a deployed test plan, or just a subset of them when mentioned.
The target deployed test plan is designated by its name (as set with deploy command). An identifier
for this new test being initialized must be provided. This identifier will only be used to identify this
test run, for instance when accessing to results.

36

February 27th 2008

9.5. Test execution start: start
ant -Dtestplan.name=name [-Dblades.id=id1:id2:...idn] start

Starts probes and injectors of the given deployed test plan, or just a subset of them when mentioned.
They must be initialized prior to this command.

9.6. Suspend test execution: suspend
ant -Dtestplan.name=name [-Dblades.id=id1:1d2:...idn] suspend

Suspends probes and injectors of the given deployed test plan, or just a subset of them when
mentioned. They must be running (started or resumed) prior to this command.

9.7. Resume test execution: resume
ant -Dtestplan.name=name [-Dblades.id=id1:1d2:...idn] resume

Resumes probes and injectors of the given deployed test plan, or just a subset of them when
mentioned. They must be suspended prior to this command.

9.8. Stop test execution: stop
ant -Dtestplan.name=name [-Dblades.id=id1:id2:...idn] stop

Definitively and immediately (in a best effort sense) stops probes and injectors of the given
deployed test plan, or just a subset of them when mentioned. Stopping is possible for both running
and suspended probes/injectors, as well as right after initialization. Don't forget to use the collect
command to gather all measurements to the local site. Once a test is stopped, the same deployed test
plan may be initialized again to run another test.

9.9. Wait for a test execution to terminate: join
ant -Dtestplan.name=name [-Dblades.id=id1:1d2:...idn] join

Waits until the probes and injectors of the given deployed test plan, or just a subset of them when
mentioned, terminate. Probes and injectors should be running to prevent this command from
blocking forever.

9.10. Collect test results (measurements): collect
ant -Dtestplan.name=name [-Dblades.id=id1:id2:...idn] collect

Collects results generated by the probes and injectors of the given deployed test plan, or just a subset
of them when mentioned. Collecting is optional, i.e. the user may not collect results s/he is not
interested in. Injectors and probes must be terminated prior to this command.

9.11. Shortcut for full test execution process: run
ant -Dtestplan.name=name -Dtestrun.id=testld [-Dblades.id=id1:...idn] run

Shortcut for init, start, join and collect on the probes and injectors of the given deployed test plan, or
just a subset of them when mentioned.

37

CLIF user manual and programmer's guide

9.12. Shortcut for full deployment and execution process: launch
ant -Dtestplan.name=name -Dtestrun.id=testld -Dtestplan.file=myTestPlan.ctp launch

Shortcut for deploy, init, start, join and collect on all probes and injectors of the given test plan. The
command exits when the full process is complete. As a major difference with the use of target
deploy that enables several consecutive runs on the same deployed test plan, here the test plan is
deployed and executed only once.

9.13. Get specific runtime parameters of a probe or injector:
params

ant -Dtestplan.name=name -Dblade.id=id params

Lists all parameters of a probe or injector that may be changed (including while running). These
parameters and corresponding possible values are specific to the target probe or injector.

9.14. Change a runtime parameter of a probe or injector: change
ant -Dtestplan.name=name -Dblade.id=id -Dparam.name=param -Dparam.value=value change

Changes a parameter's value for a given injector or probe in a given deployed test plan.

38

February 27th 2008

10. Test results and measurements
CLIF tests gather the following data:

« test plan copy,

- Java system properties at test execution time for all probes and injectors,
+ measurements from all probes and load injectors,

- life-cycle events for all probes and injectors,

- alarms generated by injectors or probes (if any).

As of current Storage component implementation, all these data are gathered in a hierarchy of CSV-
files in a subdirectory of CLIF's runtime environment named "report" by default. This target
directory may be changed with a system property (see section 11).

Both the Eclipse RCP-based console (section 22) and the Java Swing-based console (section 8)
provide graphical and statistical analysis tools.

39

CLIF user manual and programmer's guide

11. Licenses
CLIF is open source software licensed under the GNU Lesser General Public License (LGPL).

CLIF comes with facilities including the following open source software libraries:

- Jakarta commons Httpclient, from the Apache Software Foundation, released under Apache
License;

« OpenLDAP from the OpenLDAP Foundation, released under OpenLDAP Public License

« Htmlparser from Source Forge, released under LGPL license;

- Eclipse graphical user interface libraries and Rich Client Platform, released under Common
Public License;

« PostgreSQL JDBC driver, released under BSD license;

« DnsJava for DNS injection support, released under BSD License;

« JDOM for XML parsing in ISAC, released with a specific license.

40

http://clif.objectweb.org/JDOM_LICENSE.txt
http://www.jdom.org/
http://www.xbill.org/dnsjava/
http://jdbc.postgresql.org/license.html
http://jdbc.postgresql.org/
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/
http://www.gnu.org/copyleft/lesser.html
http://sourceforge.net/projects/htmlparser/
http://www.openldap.org/license.html
http://www.openldap.org/
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/httpclient/
http://www.gnu.org/copyleft/lesser.html

February 27th 2008

Appendix A: XML DTDs for ISAC

ISAC scenarios (org/objectweb/clif/scenario/isac/dtd/scenario.dtd)

<!-- A scenario is composed of two parts :-->
<!-- - behaviors, to define some behavior...-->
<!-- -load, to define the load repartition...-->
<!ELEMENT scenario (behaviors,loadprofile)>
<!-- In the part behaviors, we must define the plugins that will be used in behaviors-->
<!ELEMENT behaviors (plugins,behavior+)>
<!-- For each plugin we define the plugin with the use tag-->
<!ELEMENT plugins (use*)>
<!-- We can add some parameters if it's needed-->
<!ELEMENT use (params?)>
<!-- We define an id which can be used in the next parts, to reference the plugin used-->
<!-- The name is the name of the plugin that will be used-->
<!ATTLIST use
id ID #REQUIRED
name CDATA #REQUIRED
>
<!-- Now we can define the behaviors-->
<!-- a behavior begin with the behavior tag, and can be composed of: -->

<!-- - A sample : reference to a specified sample plugin... -->

<!-- - Atimer: it's a reference to a timer plugin... -->

<!-- - A while controller : it's a while loop... -->

<!-- - A preemptive : it's a controller adding a preemptive for all it children... -->

<!-- - Anif controller : it's a controller doing the if / then /else task... -->

<!-- - A nchoice controller : it's a controller which permits doing random choices between some

sub-behaviors with a weight factor -->
<!ELEMENT behavior (sample|timer|control|while|preemptive|if|nchoice)*>
<!-- When we define a behavior we must define the id parameter too, -->
<!-- it will be used to reference behavior in load part-->
<!ATTLIST behavior
id ID #REQUIRED
>
<!-- A sample element could need some parameters-->
<!-- the parameters needed are defined in the plugin, which will be used, definition file-->
<!ELEMENT sample (params?)>
<!-- A sample element have for parameter : -->

<!-- - use : the id of the plugin that will be used for this sample-->

<!-- the id of this plugin must be defined into the plugins part-->

<!-- - name : the name of the action that is referenced by the sample tag-->

<!-- this action name must be specified in the plugin, which is used, definition file-->

<!ATTLIST sample
use CDATA #REQUIRED
name CDATA #REQUIRED
>
<!-- A timer element could need some parameters-->
<!-- the parameters needed are defined in the plugin, which will be used, definition file-->
<!ELEMENT timer (params?)>
<!-- The timer have got the same parameters of a sample element-->
<!IATTLIST timer
use CDATA #REQUIRED
name CDATA #REQUIRED
>
<!ELEMENT control (params?)>
<!ATTLIST control

41

CLIF user manual and programmer's guide

use CDATA #REQUIRED
name CDATA #REQUIRED
>
<!-- A while controller must contain a condition and a sub-behavior-->
<!ELEMENT while (condition,(sample|timer|control|while|preemptive]if|nchoice)*)>
<!-- A condition is a reference to a test of a specified plugin-->
<!-- it could need some parameters-->
<!ELEMENT condition (params?)>
<!-- we need specified as parameters for this tag, the plugin used and the name of the test, like
sample or timer tag-->
<!ATTLIST condition
use CDATA #REQUIRED
name CDATA #REQUIRED

>
<!-- A preemptive element is defined as a while element, the difference is in the execution
process-->

<!-- For a while we evaluate the condition before each loop, in a preemptive before each
action...-->
<!ELEMENT preemptive (condition,(sample|timer|control|while|preemptive|if|[nchoice)*)>
<!-- An if controller must contains a condition and a sub-behavior ('then' tag)-->
<!-- And optionally it could contain another sub-behavior (‘else' tag)-->
<!ELEMENT if (condition,then,else?)>
<!-- A then tag delimited the sub-behavior that will be executed if the condition is true-->
<!ELEMENT then (sample|timer|control|while|preemptive|if|nchoice)*>
<!-- A else element contains a sub-behavior too-->
<!ELEMENT else (sample|timer|control|while|preemptive|if|nchoice)*>
<!-- A nchoice plugin contains n sub-behavior, each sub-behavior have a probability to be
executed-->
<!ELEMENT nchoice (choice+)>
<!-- An choice element contain a sub-behavior-->
<!ELEMENT choice (sample|timer|control|while|preemptive|if|nchoice)*>
<!-- And this element take for parameter a probability-->
<!IATTLIST choice
proba CDATA #REQUIRED
>
<!-- Now we define the params element, this element begin the part to define parameters for
the parent element-->
<!ELEMENT params (param+)>
<!-- For each param we need to define it with the param tag-->
<!ELEMENT param EMPTY>
<!-- This tag take for parameters the name of the parameter and it value-->
<!ATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED
>
<!-- Now let's define the load part, this part is used to define the ramps, each ramps represent
the load for a behavior-->
<!-- We can define some ramps together in a group element, this element is used to launch
several behaviors in the same time-->
<!ELEMENT loadprofile (group*)>
<!-- A group is a composition of 'ramp' elements-->
<!ELEMENT group (ramp+)>
<!-- We need define the behavior id of the group and optionally -->
<!-- the force stop mode, default is true -->
<!IATTLIST group
behavior CDATA #REQUIRED
forceStop (truelfalse) "true"

42

February 27th 2008

>
<!-- each ramp could take some parameters-->
<!ELEMENT ramp (points)>
<!-- For a ramp we must define the style of the ramp, which will be used-->
<!IATTLIST ramp
style CDATA #REQUIRED
>
<!ELEMENT points (point,point)>
<!ELEMENT point EMPTY>
<!-- For a ramp we must define the style of the ramp and the reference of the behavior, which
will be used-->
<!ATTLIST point
x CDATA #REQUIRED
y CDATA #REQUIRED
>

ISAC plug-ins declaration (org/objectweb/clif/scenario/isac/dtd/plugin.dtd)

<!-- A plugin definition begin with the plugin tag, and may contain: -->
<!-- samples, timers, tests and a session object-->
<!ELEMENT plugin (object,(sample|timer|control|test)*,help?)>
<!-- We must define the name of the plugin -->
<!IATTLIST plugin
name CDATA #REQUIRED
>
<!-- We could define an object session -->
<!-- The session object could need some parameters to be initialized-->
<!ELEMENT object (params?,help?)>
<!-- We must define the id of the object and the class of the object-->
<!ATTLIST object
class CDATA #REQUIRED
>
<!-- We can define some samples -->
<!-- The sample could need some params-->
<!ELEMENT sample (params?,help?)>
<!-- We now define the sample name, the sample class,-->
<!IATTLIST sample
name CDATA #REQUIRED
number CDATA #REQUIRED
>
<!-- We could define some tests-->
<!ELEMENT test (params?,help?)>
<!-- We have the name of the test,-->
<!-- and the number of the test stored in the session object -->
<!ATTLIST test
name CDATA #REQUIRED
number CDATA #REQUIRED
>
<!-- A timer have a same functioning as a test element -->
<!-- takes a name to be referenced in a behavior, and must define the number of the timer to be
used -->
<!ELEMENT timer (params?,help?)>
<!ATTLIST timer
name CDATA #REQUIRED
number CDATA #REQUIRED
>
<!ELEMENT control (params?,help?)>
<!IATTLIST control

43

CLIF user manual and programmer's guide

name CDATA #REQUIRED

number CDATA #REQUIRED
>
<!-- Definition of the parameters element, contains several param-->
<!ELEMENT params (param+)>
<!ELEMENT param EMPTY>
<!-- For each param we define the name and the type of the parameter, -->
<!-- that will be asked when the user will used the parent element in a behavior-->
<!ATTLIST param

name CDATA #REQUIRED

type CDATA #REQUIRED
>
<!-- We can define an help for the plugin, or for a sample or an object... -->
<!ELEMENT help (#PCDATA)>

ISAC plug-ins GUI aspects (org/objectweb/clif/scenario/isac/dtd/gui.dtd)

<!ELEMENT gui (object,(sample|test|timer|control)*)>
<!ELEMENT object (params)>
<!ATTLIST object

name CDATA #REQUIRED
>
<!ELEMENT sample (params)>
<!ATTLIST sample

name CDATA #REQUIRED
>
<!ELEMENT test (params)>
<!ATTLIST test

name CDATA #REQUIRED
>
<!ELEMENT timer (params)>
<!IATTLIST timer

name CDATA #REQUIRED
>
<!ELEMENT control (params)>
<!IATTLIST control

name CDATA #REQUIRED
>
<!ELEMENT params (param|group)*>
<!ELEMENT param (radiobutton|field|checkbox|nfield|combo)>
<!IATTLIST param

name CDATA #REQUIRED

label CDATA #IMPLIED
>
<!ELEMENT group (param|group)*>
<!IATTLIST group

name CDATA #REQUIRED
>
<!ELEMENT radiobutton (choice*)>
<!ELEMENT choice EMPTY>
<!IATTLIST choice

value CDATA #REQUIRED

default (true|false) "false"
>
<!ELEMENT checkbox (choice*)>
<!ELEMENT field EMPTY>
<!ATTLIST field

size CDATA #REQUIRED

44

text CDATA
>
<!ELEMENT nfield EMPTY>
<!ELEMENT table EMPTY>
<!ATTLIST table

cols CDATA #REQUIRED
>
<!ELEMENT combo (choice*)>

45

February 27th 2008

CLIF user manual and programmer's guide

Appendix B: injector and probe (aka blade)'s life cycle

init() fail stop()

- deployed

successful init()

start() faillirg; .:

successful start()

resume() failure successful resu
suspended

stop({)

stop()

running
successful suspend()

>
failure 'completion

+| aborted | |completed | | stopped |+

$ init() fail#mccessful init()

46

February 27th 2008

Appendix C: system properties

A number of Java system properties are set in file etc/clif.props of CLIF runtime environment. This
file is used by the helper ant targets provided in file build.xml located at the root of CLIF runtime
environment. Should you need to use CLIF without ant, don't forget to set all these system
properties when launching the appropriate class in your Java Virtual Machine.

System properties used by CLIF are listed in the table hereafter:

system property comment default value in ~ default
file etc/clif.props value in
binary
code
java.security.policy set Java security policy file etc/java.policy none
fractal.provider set Fractal implementation org.objectweb.frac none

tal.julia.Julia

fractal.registry.host set hostname running localhost
FractalRMI registry. The registry
is now integrated to the console
(so the host is the console's host)

fractal.registry.port set port number for the 1234
FractalRMI registry launched by
the console.

julia.config using Julia as Fractal etc/julia.cfg none
implementation, set Julia
configuration file

julia.loader using Julia as Fractal org.objectweb. none
implementation, set class loader fractal.julia.loader
.DynamicLoader
clif.codeserver.port set port number for class and 1357 none
resource server embedded in the
console
clif.codeserver.host set host name for class and localhost none
resource server embedded in the
console

47

CLIF user manual and programmer's guide

clif.codeserver.path ordered set of directories where examples/classes/ none
the codeserver may look for (just to make
classes and resources it is asked examples run)
for, separated by ; character.
Note that, whatever the value of
this property, classes and
resources are first looked for in
the jar files in lib/ext/ directory,
and in the console's current
directory. Absolute paths are
used as is, while relative paths
are interpreted from the root of
CLIF's runtime environment.

clif.datacollector.delay_s Sets the delay (in seconds) before 10 10
writing an event to the storage
system. Typical value should be
greater than the variation of
response times to get events
stored in chronological order.

clif filestorage.dir Sets the file system directory to report report
be created (if necessary) and
used to store the generated
measures. An absolute path is
used as is, while a relative path
is interpreted from the root of
CLIF's runtime environment.

clif.isac.threads Size of ISAC execution engine's 10 10
pool of thread. The optimal value
depends on the average requests
throughput and the average
response time.

clif.isac.groupperiod update period (in ms) of active 100 100
virtual users populations to
match the specified load profiles

clif.isac.schedulerperiod polling period (in ms) for the 1 1
threads of the thread pool asking
for something to do

clif.isac.jobdelay When positive, gives the delay -1 -1
threshold (in ms) before an alarm
is generated when a think time is
longer than specified. -1 disables
this feature.

48

February 27th 2008

clif filestorage.host sets a local IP address or a subnet commented out random
number to be elected by the choice
filestorage component when among
collecting events through TCP/IP locally
sockets available

jonathan.connectionfactory.host sets a local IP address or a subnet commented out random

number to be used by the choice

FractalRMI remote object among

references locally
available

Other system properties may be useful for a variety of use cases (they are given in comments in file
etc/clif.props.template):

for remote Java debugging:
—agentlib:jdwp=transport=dt_socket, address=8000, server=y, suspend=n
for SSL certificates (for example for HTTPS support):
-Djavax.net.ssl.trustStore=/path/to/keystore
-Djavax.net.ssl.trustStorePassword=the_keystore_password

49

CLIF user manual and programmer's guide

Appendix D: Class and resource files (remote) loading
Principle

When components are deployed in a CLIF server (probe, injector), the corresponding classes are
automatically downloaded from the console if they are locally missing. Moreover, those components
may require resource files (see webtest.urls file in webtest example, or helloworld.xis
file in isac-helloworld example), which the user would rather not have to copy on every CLIF
server. The content of these resource files can be remotely read via the console too.

This feature relies on a specific Java class loader and its associated system property
clif.codeserver.path on the one hand, and on a so-called "code server" embedded in the
console on the other hand.

Where classes and resource files are looked for?

The code server embedded in the console looks for the requested classes and resources successively
in the following places:

- jar files in CLIF distribution's lib/ext/ directory where the console is running. Note: since the
code server indexes the contents of all jar files in lib/ext/ at console start-up, all necessary jar
files must be present before running the console;

- the console's current directory (which should be CLIF's root directory);

- the directories declared by clif.codeserver.path property, relative to the console's
current directory.

See appendix on system properties page 47 for details on how to set the c1if.codeserver.path
property, and how to set the port number for the code server.

50

February 27th 2008

Appendix E: ISAC plug-ins
[TODO]

51

CLIF user manual and programmer's guide

Appendix F: ISAC execution engine

The ISAC execution engine is the interpreter class for ISAC scenarios. When editing a test plan, just
select the “injector” role and type IsacRunner in the “class” field. Then, fill the “arguments” field
with the file name of the ISAC scenario you want to run. As a general advice, don't set the full path
name but simply the file name, and add the directory where the scenario file resides to the code
server path (see appendix p. 50). When using the Eclipse console, the file typically resides in the
project directory.

The ISAC thread pool

The ISAC execution engine uses a pool of threads to run virtual users (aka behavior instances).
When a virtual user is engaged in a think time, its execution thread is used to activate another
virtual user. This way, the size of the thread pool is typically far smaller than the maximum of
simultaneously running virtual users that is specified by the load profile. This pool has a default size
that may be changed:

« before runtime:

—either by setting system property clif.isac.threads

—or by adding option threads=my_custom_pool_size in the “arguments” field;
- at runtime, by changing the value of parameter “threads”.

Millions of virtual users per execution engine can easily be reached. The issue is that the think times
must be much greater than the response times in order to really support such a number of virtual
users without violating the specified behaviors. The theoretical optimal thread pool size is:

maximum number of virtual users=average response time

optimal pool size=
(average think time+average response time)
The actual optimal pool size shall be a little greater to face possible transient variations of the global
activity (when many virtual users simultaneously exit from a think time) and the overhead of
context switching between virtual users. The default size is 10, but should be adjusted to your
particular test case. Of course, setting an over-sized pool of threads will waste computing resources
and result in performance degradation.

Deadline violation alarms (Job delay)

When the execution engine becomes overloaded, a consequence is that virtual users' think times
become longer than specified. In other words, the deadline for performing the action next to the
think time is violated. It is possible to get an alarm event when a given tolerance threshold is
reached. This feature is enabled as soon as a positive value is set for this threshold, expressed in
milliseconds. To set the threshold:

+ before runtime:

—either set system property c1if.isac.jobdelay

—or add option jobdelay=my_custom_threshold_in_ms to the “arguments” field;
« at runtime, by changing the value of parameter “jobdelay”.

Note that enabling this alarm results in a slight overhead in the execution engine functioning.
Moreover, setting a small threshold value may result in a profusion of meaningless alarms: a small
deadline violation from time to time does not necessarily mean the engine is overloaded. The
relevant threshold value depends a lot on your use case, but a 100ms to 1000ms delay is probably a

52

February 27th 2008

good order of magnitude. However, when analyzing the meaning of such an alarm, be careful also
about the Java garbage collector that blocks the JVM and may cause deadline violations.

The default value is -1 (disabled).
Group period

The execution engine periodically checks if the current number of virtual users matches the
specified load profile: in case some virtual users are missing, new ones are instantiated; in case
virtual users are too numerous, some of them are stopped once their current action is complete.
Stopping virtual users before the normal completion of their behaviors is performed only if the
“force stop” option has been enabled in the load profile definition. Otherwise, the execution engine
will just wait for the population to naturally decrease as behaviors complete.

The population checking period is set in milliseconds:

« before runtime:
—by setting system property c1lif.isac.groupperiod
—or by adding option groupperiod=my_custom_group_period_ms to the “arguments”
field;
- at runtime, by changing the value of parameter “groupperiod”.
The good period value is a trade-off between performance and accuracy of the engine: a short
period will increase the engine overhead but the virtual users' population will be closer to the load
profile specification. The default 100ms period is probably a good order of magnitude for common
test cases.

Scheduler period

When a thread from the pool has just completed an action for a virtual user which is entering a think
time period, it asks the engine for an action to do for another virtual user. If there is nothing to do at
this time, the thread makes a small sleep before asking again, and so on until it gets something to
do. The small sleep duration is given in milliseconds by the scheduler period parameter. This
parameter may be changed:

« before runtime:
—by setting system property c1if.isac.schedulerperiod
—or by adding option groupperiod=my_custom_scheduler_period_ms to the
“arguments” field;
- at runtime, by changing the value of parameter “schedulerperiod”.

The good period value is a trade-off between engine reactiveness and performance. A zero value
should be avoided since the threads waiting for something to do would enter a frenetic polling loop
on interrogating the engine, which typically wastes all processing power. A big value should be
avoided too for the sake of think times accuracy. The formula below gives the possible variation
range of think times:

specified think time<actual think time <specified think time + scheduler period + context switching overhead

The default 1ms value seems to be a good value for common test cases. In the general case, you
should ensure that: (1) the scheduler period is significantly less than the think times, and (2) the
scheduler period is significantly less than the job delay setting (when positive/enabled).

53

CLIF user manual and programmer's guide

Storage options
As a CLIF load injector, the ISAC execution engine produces a number of events:

- one lifecycle event is produced each time the engine state changes: initializing, initialized,
starting, running, suspended, etc. (see appendix p.46 for details about the life-cycle
specification);

+ one action event is produced for each request (aka sample) on the SUT;

- one alarm event may be generated each time a think time is actually longer than specified,
according to the given tolerance threshold (see Job delay parameter described above).

These events are stored unless you specify not to do so, through the following parameters:

« store-lifecycle—-events
e store—-action—-events
e store—-alarm-events

Acceptable enabling values are: on yes true
Acceptable disabling values are: off no false

Disabling storage for an event type has the following advantages: increased ISAC engine power,
reduced time for final data collection, reduced storage space. As a matter of fact, some test cases
may generate gigabytes of data that may be too heavy to analyze. Moreover, high events throughputs
(thousands of events per second) may overwhelm the disk transfer rate. The drawback of disabling
event storage is that you won't keep any data for this event type on this injector.

A possible smart use of this feature is to disable action events storage for some massive load
injectors (heavy background load), but to store and analyze the results from a couple of load
injectors generating a light load. This way, you get a reduced amount of data, and data is quite
accurate because the corresponding load injectors were far from saturating.

Note that disabling storage of life-cycle events and alarm events is possible but not recommended in
common test cases:

- life-cycle events give an interesting and very lightweight trace of the injector's activity steps,
whatever the test duration, with no noticeable impact on the engine performance;

« the occurrence of alarm events shows that something did wrong during the test, which is key to
the test analysis, while no alarm event is generated when everything goes well.

As a conclusion, storage of life-cycle and alarm events is commonly always useful and never
disturbing.

Dynamic load profile change

In case your scenario defines no load profile, or when you want to dynamically change the
predefined load profile while a test is running, you can change parameter "population" of the ISAC
execution engine. This parameter has the following form: b;=n;;b,=n,;... where b, is the name of a
behavior in the ISAC scenario and 7, is the number of instances (aka virtual users) of this behavior.

When getting the current value of "population" parameter, if the current population is ruled by a
specified load profile, you will get empty values: b;=;b,=,... Since the population may change
accordingly to the load profile, no value is given. Once a population is set for a behavior, the
population for this behavior becomes constant and the load profile for this behavior is definitively

54

February 27th 2008

lost. As a result, the test will never complete by itself: you will have to stop it by yourself, at the
moment that seems relevant for you.

Note that increasing a behavior's population through the setting of "population" parameter should be
made carefully: all necessary new virtual users are created at once, and may result in a brutal load
increase on your injector and SUT. Depending on the desired effect, it might be wise to add a
linearly distributed random think time at the beginning of your behavior definition so that virtual
users don't simultaneously start their actual load activity even though their are created at the same
time. Of course, you must anticipate on this when writing the scenario.

55

	1. Introduction
	2. Key concepts
	3. How to get CLIF working?
	3.1. Technical requirements
	3.2. Ready-to-use distributions
	3.3. Generating a runtime environment (optional)
	3.4. Configuring CLIF
	3.5. Checking Clif version and execution environment

	4. CLIF servers and the Registry
	4.1. Rationale
	4.2. Running a Registry
	4.3. Running CLIF servers

	5. Probes
	5.1. Rationale
	5.2. Available probes
	5.2.1. cpu probe
	5.2.2. disk probe
	5.2.3. memory probe
	5.2.4. network probe
	5.2.5. jvm probe

	5.3. Defining your own probes
	5.3.1. Relying on the provided probe framework
	5.3.2. Implementing a Blade component

	6. Load injectors and ISAC
	6.1. Rationale
	6.2. ISAC is a Scenario Architecture for CLIF
	6.2.1. behaviors
	6.2.2. load profiles
	6.2.3. ISAC plug-ins
	6.2.4. Writing an ISAC scenario
	6.2.5. Recording an ISAC scenario for Http
	6.2.6. Deploying and executing an ISAC scenario

	6.3. Defining your own load injectors (Java programmers)
	6.3.1. Using MTScenario utility class
	6.3.2. Writing your own ISAC plug-ins
	Principle
	The ISAC plug-in creation Wizard for Eclipse
	XML descriptor files
	Session object instantiation
	Load injection primitives
	Timer primitives
	Condition primitives
	Control primitives
	External data provisioning

	6.3.3. Implementing a Blade component

	7. Eclipse-based graphical user interface
	7.1. Introduction
	7.2. Getting started
	7.2.1. From an Eclipse-RCP based standalone CLIF distribution
	7.2.2. From the Eclipse plug-ins
	Dependencies
	Installation
	Execution

	7.3. Test plan edition
	7.4. ISAC scenario edition
	7.5. test deployment and execution
	7.6. ISAC plug-in creation Wizard

	8. Java Swing-based graphical user interface
	8.1. Introduction
	8.2. Getting started
	8.3. Test plan edition table
	8.4. Performance and resource usage monitoring
	8.5. File Menu
	8.6. Test plan menu
	8.7. Tools menu
	8.7.1. Basic analyzer
	8.7.2. Quick graphical analyzer

	8.8. ? (help) menu

	9. Command line user interface
	9.1. Introduction
	9.2. Run CLIF Registry
	9.3. Test plan deployment: deploy
	9.4. Test initialization: init
	9.5. Test execution start: start
	9.6. Suspend test execution: suspend
	9.7. Resume test execution: resume
	9.8. Stop test execution: stop
	9.9. Wait for a test execution to terminate: join
	9.10. Collect test results (measurements): collect
	9.11. Shortcut for full test execution process: run
	9.12. Shortcut for full deployment and execution process: launch
	9.13. Get specific runtime parameters of a probe or injector: params
	9.14. Change a runtime parameter of a probe or injector: change

	10. Test results and measurements
	11. Licenses
	Principle
	Where classes and resource files are looked for?
	The ISAC thread pool
	Deadline violation alarms (Job delay)
	Group period
	Scheduler period
	Storage options
	Dynamic load profile change

