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Workshop Syllabus

Seven lecture modules
Information about teaching the course
Technical info about Google tools & Hadoop
Example course lectures

Four lab exercises
Assigned to students in UW course 
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Overview

University of Washington Curriculum
Teaching Methods
Reflections
Student Background
Course Staff Requirements

Introductory Lecture Material
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UW: Course Summary

Course title: “Problem Solving on Large 
Scale Clusters”
Primary purpose: developing large-scale 
problem solving skills
Format: 6 weeks of lectures + labs, 4 
week project
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UW: Course Goals

Think creatively about large-scale 
problems in a parallel fashion; design 
parallel solutions
Manage large data sets under memory, 
bandwidth limitations
Develop a foundation in parallel 
algorithms for large-scale data
Identify and understand engineering 
trade-offs in real systems
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Lectures

2 hours, once per week
Half formal lecture, half discussion
Mostly covered systems & background
Included group activities for reinforcement
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Classroom Activities

Worksheets included pseudo-code 
programming, working through examples

Performed in groups of 2—3 
Small-group discussions about 
engineering and systems design

Groups of ~10
Course staff facilitated, but mostly open-
ended
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Readings

No textbook
One academic paper per week

E.g., “Simplified Data Processing on Large 
Clusters”
Short homework covered comprehension

Formed basis for discussion



© Spinnaker Labs, Inc.

Lecture Schedule

Introduction to Distributed Computing
MapReduce: Theory and Implementation
Networks and Distributed Reliability
Real-World Distributed Systems
Distributed File Systems
Other Distributed Systems
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Intro to Distributed Computing

What is distributed computing?
Flynn’s Taxonomy
Brief history of distributed computing
Some background on synchronization 
and memory sharing
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MapReduce

Brief refresher on functional programming
MapReduce slides 

More detailed version of module I
Discussion on MapReduce
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Networking and Reliability

Crash course in networking
Distributed systems reliability

What is reliability?
How do distributed systems fail?
ACID, other metrics

Discussion: Does MapReduce provide 
reliability?
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Real Systems

Design and implementation of Nutch
Tech talk from Googler on Google Maps
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Distributed File Systems

Introduced GFS
Discussed implementation of NFS and 
AndrewFS (AFS) for comparison
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Other Distributed Systems

BOINC: Another platform
Broader definition of distributed systems

DNS
One Laptop per Child project
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Labs

Also 2 hours, once per week
Focused on applications of distributed 
systems
Four lab projects over six weeks
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Lab Schedule

Introduction to Hadoop, Eclipse Setup, 
Word Count
Inverted Index
PageRank on Wikipedia
Clustering on Netflix Prize Data
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Design Projects

Final four weeks of quarter
Teams of 1—3 students
Students proposed topic, gathered data, 
developed software, and presented 
solution
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Example: Geozette

Image © Julia Schwartz
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Example: Galaxy Simulation

Image © Slava Chernyak, 
Mike Hoak
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Other Projects

Bayesian Wikipedia spam filter
Unsupervised synonym extraction
Video collage rendering
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Common Features

Hadoop!
Used publicly-available web APIs for data
Many involved reading papers for 
algorithms and translating into 
MapReduce framework
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Course Staff

Instructor (me!)
Two undergrad teaching assistants

Helped facilitate discussions, directed labs
One student sys admin

Worked only about three hours/week
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Preparation

Teaching assistants had taken previous 
iteration of course in winter
Lectures retooled based on feedback 
from that quarter

Added reasonably large amount of 
background material

Ran & solved all labs in advance
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The Course: What Worked

Discussions
Often covered broad range of subjects

Hands-on lab projects
“Active learning” in classroom
Independent design projects
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Things to Improve: Coverage

Algorithms were not reinforced during 
lecture

Students requested much more time be 
spent on “how to parallelize an iterative 
algorithm”

Background material was very fast-paced
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Things to Improve: Projects

Labs could have used a 
moderated/scripted discussion 
component

Just “jumping in” to the code proved difficult
No time was devoted to Hadoop itself in 
lecture
Clustering lab should be split in two

Design projects could have used more 
time
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Conclusions

Solid basis for future coursework
Needs additional background (e.g., 
algorithms)
Full semester requires additional material (e.
g., distributed systems, web systems course)

Hadoop-based systems exciting to 
students & can teach important CS
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Introductory Distributed Systems 
Material
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Overview

Introduction
Models of computation
A brief history lesson
Connecting distributed modules
Failure & reliability
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Computer Speedup

Moore’s Law: “The density of transistors on a chip doubles every 18 months, 
for the same cost” (1965)

Image: Tom’s Hardware
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Scope of Problems

What can you do with 1 computer?
What can you do with 100 computers?
What can you do with an entire data 
center?



© Spinnaker Labs, Inc.

Distributed Problems

Rendering multiple frames of high-quality 
animation

Image: DreamWorks 
Animation
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Distributed Problems

Simulating several hundred or thousand 
characters 

Happy Feet © Kingdom Feature Productions; Lord of the Rings © New Line Cinema 
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Distributed Problems

Indexing the web (Google)
Simulating an Internet-sized network for 
networking experiments (PlanetLab)
Speeding up content delivery (Akamai)

What is the key attribute that all these examples have in common?
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Distributed Problems

All involve separable computation
Many involve data that necessarily must 
be stored in multiple locations.

For a problem to be distributable, different 
components of the problem should be 
able to be handled independently.
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Taking A Step Back

Before we talk more about distributed 
computing… what does it mean to design 
“a computer?”

How would a distributed or parallel 
system look different from a single-CPU 
machine?
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Flynn’s Taxonomy
Four categories of computer 
architectures
Broke down serial/parallel in terms of 
instructions and data
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SISD

Single instruction, single data element
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MIMD
Multiple instructions, multiple data elements
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Models of Computing

The Von Neumann architecture a.k.a. RAM model

… How do we extend this to parallel computing?
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A First Try: PRAM

Parallel Random Access Machine model:

N processors connected to shared memory

All memory addresses reachable in unit time by any CPU

All processors execute one instruction per tick in “lock step”
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… Does not even cover Core2Duo

Although there were some early attempts…
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Early Parallel Computing

CDC 6600: Out-of-order execution (1964)
CDC 7600: Pipelining
CDC 8600: Multi-core! 4 7600’s in one 
box

Provided lock-step execution of CPUs
NB: Memory speed at the time exceeded 
CPU speed
… Also never actually made it to production
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Vector Processing
Cray 1 (1976) 
allowed 
programmers to 
apply operations to 
large chunks of data 
at a time

SIMD architecture:

Single instruction, multiple data
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Loop Compilation
for (i = 0; i < N; i++) {
a[i] = b[i] + c[i];
}

top: 
compare i, N
jge exit
load_offset $1, b, i
load_offset $2, c, i
add $3, $1, $2
store_offset $3, a, i
inc i
j top
exit:
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Vector Compilation
for (i = 0; i < N; i++) {
a[i] = b[i] + c[i];
}

load_vector $1, b, N
load_vector $2, c, N
add $3, $1, $2
store_vector $3, a, N
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Vector Memory Operations
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1975-85
Parallel computing was 
favored in the early 
years
Primarily vector-based 
at first
Gradually more thread-
based parallelism was 
introduced

Cray 2 supercomputer (Wikipedia)
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System Organization

Having one big memory would make it a 
huge bottleneck 

Eliminates all of the parallelism
The PRAM model does not work

Lock-step execution too restrictive
Does not accurately model memory
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CTA: Memory is Distributed
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Interconnect Networks

Bottleneck in the CTA is transferring 
values from one local memory to another
Interconnect network design very 
important; several options are available
Design constraint: How to minimize 
interconnect network usage?
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“Massively parallel architectures” start 
rising in prominence
Message Passing Interface (MPI) and 
other libraries developed
Bandwidth was a big problem

For external interconnect networks in 
particular

A Brief History… 1985-95
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A Brief History… 1995-Today

Cluster/grid architecture increasingly 
dominant
Special node machines eschewed in 
favor of COTS technologies
Web-wide cluster software
Companies like Google take this to the 
extreme (10,000 node clusters)
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More About Interconnects

Several types of interconnect possible
Bus
Crossbar
Torus
Tree
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Interconnect Bus

Simplest possible layout

Not realistically practical

Too much contention

Little better than “one big memory”
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Crossbar

All processors have “input” and “output” lines

Crossbar connects any input to any output

Allows for very low contention, but lots of wires, 
complexity

Will not scale to many nodes
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Toroidal networks
Nodes are connected 
to their logical 
neighbors
Node-node transfer 
may include 
intermediaries
Reasonable trade-off 
for space/scalability
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Tree

Switch nodes transfer data “up” or “down” the tree

Hierarchical design keeps “short” transfers fast, 
incremental cost to longer transfers

Aggregate bandwidth demands often very large at top

Most natural layout for most cluster networks today
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Parallel vs. Distributed

Parallel computing can mean:
Vector processing of data (SIMD)
Multiple CPUs in a single computer (MIMD)

Distributed computing is multiple CPUs 
across many computers (MIMD)
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What is Different in Distributed?

Higher inter-CPU communication latency
Individual nodes need to act more 
autonomously

Different nodes can be heterogeneous 
(by function, location…)
System reliability is much harder to 
maintain
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“A distributed system is one in which the 
failure of a computer you didn't even know 
existed can render your own computer 
unusable”

-- Leslie Lamport
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Reliability Demands

Support partial failure
Total system must support graceful decline 
in application performance rather than a full 
halt
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Reliability Demands

Data Recoverability
If components fail, their workload must be 
picked up by still-functioning units
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Reliability Demands

Individual Recoverability
Nodes that fail and restart must be able to 
rejoin the group activity without a full group 
restart
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Reliability Demands

Consistency
Concurrent operations or partial internal 
failures should not cause externally visible 
nondeterminism
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Reliability Demands

Scalability
Adding increased load to a system should 
not cause outright failure, but a graceful 
decline
Increasing resources should support a 
proportional increase in load capacity
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Reliability Demands

Security
The entire system should be impervious to 
unauthorized access
Requires considering many more attack 
vectors than single-machine systems
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Ken Arnold, CORBA designer:

“Failure is the defining difference between 
distributed and local programming”
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Component Failure

Individual nodes simply stop
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Data Failure

Packets omitted by overtaxed router
Or dropped by full receive-buffer in kernel
Corrupt data retrieved from disk or net
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Network Failure

External & internal links can die
Some can be routed around in ring or mesh 
topology
Star topology may cause individual nodes to 
appear to halt
Tree topology may cause “split”
Messages may be sent multiple times or not 
at all or in corrupted form…
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Timing Failure

Temporal properties may be violated
Lack of “heartbeat” message may be 
interpreted as component halt
Clock skew between nodes may confuse 
version-aware data readers
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Byzantine Failure

Difficult-to-reason-about circumstances 
arise

Commands sent to foreign node are not 
confirmed: What can we reason about the 
state of the system?
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Malicious Failure

Malicious (or maybe naïve) operator 
injects invalid or harmful commands into 
system
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Correlated Failures

Multiple CPUs/hard drives from same 
manufacturer lot may fail together
Power outage at one data center may 
cause demand overload at failover center
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Preparing for Failure

Distributed systems must be robust to 
these failure conditions
But there are lots of pitfalls…
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The Eight Design Fallacies
The network is reliable. 
Latency is zero. 
Bandwidth is infinite. 
The network is secure. 
Topology doesn't change. 
There is one administrator. 
Transport cost is zero. 
The network is homogeneous. 

-- Peter Deutsch and James Gosling, Sun Microsystems
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Dealing With Component Failure

Use heartbeats to monitor component 
availability
“Buddy” or “Parent” node is aware of 
desired computation and can restart it 
elsewhere if needed
Individual storage nodes should not be 
the sole owner of data

Pitfall: How do you keep replicas consistent?
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Dealing With Data Failure

Data should be check-summed and 
verified at several points

Never trust another machine to do your data 
validation!

Sequence identifiers can be used to 
ensure commands, packets are not lost
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Dealing With Network Failure

Have well-defined split policy
Networks should routinely self-discover 
topology
Well-defined arbitration/leader election 
protocols determine authoritative 
components

Inactive components should gracefully clean up 
and wait for network rejoin
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Dealing With Other Failures

Individual application-specific problems 
can be difficult to envision
Make as few assumptions about foreign 
machines as possible
Design for security at each step
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TPS: Definition

A system that handles transactions 
coming from several sources concurrently

Transactions are “events that generate 
and modify data stored in an information 
system for later retrieval”*

* http://en.wikipedia.org/wiki/Transaction_Processing_System
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Key Features of TPS: ACID
“ACID” is the acronym for the features a TPS must 
support:

Atomicity – A set of changes must all succeed or all fail
Consistency – Changes to data must leave the data in 
a valid state when the full change set is applied
Isolation – The effects of a transaction must not be 
visible until the entire transaction is complete
Durability – After a transaction has been committed 
successfully, the state change must be permanent.
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Atomicity & Durability

What happens if we write half of a 
transaction to disk and the power goes out?
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Logging: The Undo Buffer

1. Database writes to log the current values 
of all cells it is going to overwrite

2. Database overwrites cells with new 
values

3. Database marks log entry as committed

If db crashes during (2), we use the log to 
roll back the tables to prior state
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Consistency: Data Types

Data entered in databases have rigorous 
data types associated with them, and 
explicit ranges
Does not protect against all errors 
(entering a date in the past is still a valid 
date, etc), but eliminates tedious 
programmer concerns
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Consistency: Foreign Keys

Database designers declare that fields are 
indices into the keys of another table
Database ensures that target key exists before 
allowing value in source field
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Isolation

Using mutual-exclusion locks, we can 
prevent other processes from reading 
data we are in the process of writing
When a database is prepared to commit a 
set of changes, it locks any records it is 
going to update before making the 
changes
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Faulty Locking
Locking alone does 
not ensure isolation!

Changes to table A 
are visible before 
changes to table B – 
this is not an isolated 
transaction



Two-Phase Locking
After a transaction 
has released any 
locks, it may not 
acquire any new 
locks
Effect: The lock set 
owned by a 
transaction has a 
“growing” phase and 
a “shrinking” phase
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Relationship to Distributed Comp

At the heart of a TPS is usually a large 
database server
Several distributed clients may connect to 
this server at points in time
Database may be spread across multiple 
servers, but must still maintain ACID 
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Conclusions

Parallel systems evolved toward current 
distributed systems usage
Hard to avoid failure

Determine what is reasonable to plan for
Keep protocols as simple as possible
Be mindful of common pitfalls 


