
© Spinnaker Labs, Inc.

Google Cluster Computing
Faculty Training Workshop

Module I: Introduction to
MapReduce

This presentation includes course content © University of Washington

Redistributed under the Creative Commons Attribution 3.0 license.

All other contents:

© Spinnaker Labs, Inc.

Workshop Syllabus

Seven lecture modules
Information about teaching the course
Technical info about Google tools & Hadoop
Example course lectures

Four lab exercises
Assigned to students in UW course

© Spinnaker Labs, Inc.

Overview

University of Washington Curriculum
Teaching Methods
Reflections
Student Background
Course Staff Requirements

Introductory Lecture Material

© Spinnaker Labs, Inc.

UW: Course Summary

Course title: “Problem Solving on Large
Scale Clusters”
Primary purpose: developing large-scale
problem solving skills
Format: 6 weeks of lectures + labs, 4
week project

© Spinnaker Labs, Inc.

UW: Course Goals

Think creatively about large-scale
problems in a parallel fashion; design
parallel solutions
Manage large data sets under memory,
bandwidth limitations
Develop a foundation in parallel
algorithms for large-scale data
Identify and understand engineering
trade-offs in real systems

© Spinnaker Labs, Inc.

Lectures

2 hours, once per week
Half formal lecture, half discussion
Mostly covered systems & background
Included group activities for reinforcement

© Spinnaker Labs, Inc.

Classroom Activities

Worksheets included pseudo-code
programming, working through examples

Performed in groups of 2—3
Small-group discussions about
engineering and systems design

Groups of ~10
Course staff facilitated, but mostly open-
ended

© Spinnaker Labs, Inc.

Readings

No textbook
One academic paper per week

E.g., “Simplified Data Processing on Large
Clusters”
Short homework covered comprehension

Formed basis for discussion

© Spinnaker Labs, Inc.

Lecture Schedule

Introduction to Distributed Computing
MapReduce: Theory and Implementation
Networks and Distributed Reliability
Real-World Distributed Systems
Distributed File Systems
Other Distributed Systems

© Spinnaker Labs, Inc.

Intro to Distributed Computing

What is distributed computing?
Flynn’s Taxonomy
Brief history of distributed computing
Some background on synchronization
and memory sharing

© Spinnaker Labs, Inc.

MapReduce

Brief refresher on functional programming
MapReduce slides

More detailed version of module I
Discussion on MapReduce

© Spinnaker Labs, Inc.

Networking and Reliability

Crash course in networking
Distributed systems reliability

What is reliability?
How do distributed systems fail?
ACID, other metrics

Discussion: Does MapReduce provide
reliability?

© Spinnaker Labs, Inc.

Real Systems

Design and implementation of Nutch
Tech talk from Googler on Google Maps

© Spinnaker Labs, Inc.

Distributed File Systems

Introduced GFS
Discussed implementation of NFS and
AndrewFS (AFS) for comparison

© Spinnaker Labs, Inc.

Other Distributed Systems

BOINC: Another platform
Broader definition of distributed systems

DNS
One Laptop per Child project

© Spinnaker Labs, Inc.

Labs

Also 2 hours, once per week
Focused on applications of distributed
systems
Four lab projects over six weeks

© Spinnaker Labs, Inc.

Lab Schedule

Introduction to Hadoop, Eclipse Setup,
Word Count
Inverted Index
PageRank on Wikipedia
Clustering on Netflix Prize Data

© Spinnaker Labs, Inc.

Design Projects

Final four weeks of quarter
Teams of 1—3 students
Students proposed topic, gathered data,
developed software, and presented
solution

© Spinnaker Labs, Inc.

Example: Geozette

Image © Julia Schwartz

© Spinnaker Labs, Inc.

Example: Galaxy Simulation

Image © Slava Chernyak,
Mike Hoak

© Spinnaker Labs, Inc.

Other Projects

Bayesian Wikipedia spam filter
Unsupervised synonym extraction
Video collage rendering

© Spinnaker Labs, Inc.

Common Features

Hadoop!
Used publicly-available web APIs for data
Many involved reading papers for
algorithms and translating into
MapReduce framework

© Spinnaker Labs, Inc.

Course Staff

Instructor (me!)
Two undergrad teaching assistants

Helped facilitate discussions, directed labs
One student sys admin

Worked only about three hours/week

© Spinnaker Labs, Inc.

Preparation

Teaching assistants had taken previous
iteration of course in winter
Lectures retooled based on feedback
from that quarter

Added reasonably large amount of
background material

Ran & solved all labs in advance

© Spinnaker Labs, Inc.

The Course: What Worked

Discussions
Often covered broad range of subjects

Hands-on lab projects
“Active learning” in classroom
Independent design projects

© Spinnaker Labs, Inc.

Things to Improve: Coverage

Algorithms were not reinforced during
lecture

Students requested much more time be
spent on “how to parallelize an iterative
algorithm”

Background material was very fast-paced

© Spinnaker Labs, Inc.

Things to Improve: Projects

Labs could have used a
moderated/scripted discussion
component

Just “jumping in” to the code proved difficult
No time was devoted to Hadoop itself in
lecture
Clustering lab should be split in two

Design projects could have used more
time

© Spinnaker Labs, Inc.

Conclusions

Solid basis for future coursework
Needs additional background (e.g.,
algorithms)
Full semester requires additional material (e.
g., distributed systems, web systems course)

Hadoop-based systems exciting to
students & can teach important CS

© Spinnaker Labs, Inc.

Introductory Distributed Systems
Material

© Spinnaker Labs, Inc.

Overview

Introduction
Models of computation
A brief history lesson
Connecting distributed modules
Failure & reliability

© Spinnaker Labs, Inc.

Computer Speedup

Moore’s Law: “The density of transistors on a chip doubles every 18 months,
for the same cost” (1965)

Image: Tom’s Hardware

© Spinnaker Labs, Inc.

Scope of Problems

What can you do with 1 computer?
What can you do with 100 computers?
What can you do with an entire data
center?

© Spinnaker Labs, Inc.

Distributed Problems

Rendering multiple frames of high-quality
animation

Image: DreamWorks
Animation

© Spinnaker Labs, Inc.

Distributed Problems

Simulating several hundred or thousand
characters

Happy Feet © Kingdom Feature Productions; Lord of the Rings © New Line Cinema

© Spinnaker Labs, Inc.

Distributed Problems

Indexing the web (Google)
Simulating an Internet-sized network for
networking experiments (PlanetLab)
Speeding up content delivery (Akamai)

What is the key attribute that all these examples have in common?

© Spinnaker Labs, Inc.

Distributed Problems

All involve separable computation
Many involve data that necessarily must
be stored in multiple locations.

For a problem to be distributable, different
components of the problem should be
able to be handled independently.

© Spinnaker Labs, Inc.

Taking A Step Back

Before we talk more about distributed
computing… what does it mean to design
“a computer?”

How would a distributed or parallel
system look different from a single-CPU
machine?

© Spinnaker Labs, Inc.

Flynn’s Taxonomy
Four categories of computer
architectures
Broke down serial/parallel in terms of
instructions and data

© Spinnaker Labs, Inc.

SISD

Single instruction, single data element

© Spinnaker Labs, Inc.

MIMD
Multiple instructions, multiple data elements

© Spinnaker Labs, Inc.

Models of Computing

The Von Neumann architecture a.k.a. RAM model

… How do we extend this to parallel computing?

© Spinnaker Labs, Inc.

A First Try: PRAM

Parallel Random Access Machine model:

N processors connected to shared memory

All memory addresses reachable in unit time by any CPU

All processors execute one instruction per tick in “lock step”

© Spinnaker Labs, Inc.

… Does not even cover Core2Duo

Although there were some early attempts…

© Spinnaker Labs, Inc.

Early Parallel Computing

CDC 6600: Out-of-order execution (1964)
CDC 7600: Pipelining
CDC 8600: Multi-core! 4 7600’s in one
box

Provided lock-step execution of CPUs
NB: Memory speed at the time exceeded
CPU speed
… Also never actually made it to production

© Spinnaker Labs, Inc.

Vector Processing
Cray 1 (1976)
allowed
programmers to
apply operations to
large chunks of data
at a time

SIMD architecture:

Single instruction, multiple data

© Spinnaker Labs, Inc.

Loop Compilation
for (i = 0; i < N; i++) {
a[i] = b[i] + c[i];
}

top:
compare i, N
jge exit
load_offset $1, b, i
load_offset $2, c, i
add $3, $1, $2
store_offset $3, a, i
inc i
j top
exit:

© Spinnaker Labs, Inc.

Vector Compilation
for (i = 0; i < N; i++) {
a[i] = b[i] + c[i];
}

load_vector $1, b, N
load_vector $2, c, N
add $3, $1, $2
store_vector $3, a, N

© Spinnaker Labs, Inc.

Vector Memory Operations

© Spinnaker Labs, Inc.

1975-85
Parallel computing was
favored in the early
years
Primarily vector-based
at first
Gradually more thread-
based parallelism was
introduced

Cray 2 supercomputer (Wikipedia)

© Spinnaker Labs, Inc.

System Organization

Having one big memory would make it a
huge bottleneck

Eliminates all of the parallelism
The PRAM model does not work

Lock-step execution too restrictive
Does not accurately model memory

© Spinnaker Labs, Inc.

CTA: Memory is Distributed

© Spinnaker Labs, Inc.

Interconnect Networks

Bottleneck in the CTA is transferring
values from one local memory to another
Interconnect network design very
important; several options are available
Design constraint: How to minimize
interconnect network usage?

© Spinnaker Labs, Inc.

“Massively parallel architectures” start
rising in prominence
Message Passing Interface (MPI) and
other libraries developed
Bandwidth was a big problem

For external interconnect networks in
particular

A Brief History… 1985-95

© Spinnaker Labs, Inc.

A Brief History… 1995-Today

Cluster/grid architecture increasingly
dominant
Special node machines eschewed in
favor of COTS technologies
Web-wide cluster software
Companies like Google take this to the
extreme (10,000 node clusters)

© Spinnaker Labs, Inc.

More About Interconnects

Several types of interconnect possible
Bus
Crossbar
Torus
Tree

© Spinnaker Labs, Inc.

Interconnect Bus

Simplest possible layout

Not realistically practical

Too much contention

Little better than “one big memory”

© Spinnaker Labs, Inc.

Crossbar

All processors have “input” and “output” lines

Crossbar connects any input to any output

Allows for very low contention, but lots of wires,
complexity

Will not scale to many nodes

© Spinnaker Labs, Inc.

Toroidal networks
Nodes are connected
to their logical
neighbors
Node-node transfer
may include
intermediaries
Reasonable trade-off
for space/scalability

© Spinnaker Labs, Inc.

Tree

Switch nodes transfer data “up” or “down” the tree

Hierarchical design keeps “short” transfers fast,
incremental cost to longer transfers

Aggregate bandwidth demands often very large at top

Most natural layout for most cluster networks today

© Spinnaker Labs, Inc.

Parallel vs. Distributed

Parallel computing can mean:
Vector processing of data (SIMD)
Multiple CPUs in a single computer (MIMD)

Distributed computing is multiple CPUs
across many computers (MIMD)

© Spinnaker Labs, Inc.

What is Different in Distributed?

Higher inter-CPU communication latency
Individual nodes need to act more
autonomously

Different nodes can be heterogeneous
(by function, location…)
System reliability is much harder to
maintain

© Spinnaker Labs, Inc.

“A distributed system is one in which the
failure of a computer you didn't even know
existed can render your own computer
unusable”

-- Leslie Lamport

© Spinnaker Labs, Inc.

Reliability Demands

Support partial failure
Total system must support graceful decline
in application performance rather than a full
halt

© Spinnaker Labs, Inc.

Reliability Demands

Data Recoverability
If components fail, their workload must be
picked up by still-functioning units

© Spinnaker Labs, Inc.

Reliability Demands

Individual Recoverability
Nodes that fail and restart must be able to
rejoin the group activity without a full group
restart

© Spinnaker Labs, Inc.

Reliability Demands

Consistency
Concurrent operations or partial internal
failures should not cause externally visible
nondeterminism

© Spinnaker Labs, Inc.

Reliability Demands

Scalability
Adding increased load to a system should
not cause outright failure, but a graceful
decline
Increasing resources should support a
proportional increase in load capacity

© Spinnaker Labs, Inc.

Reliability Demands

Security
The entire system should be impervious to
unauthorized access
Requires considering many more attack
vectors than single-machine systems

© Spinnaker Labs, Inc.

Ken Arnold, CORBA designer:

“Failure is the defining difference between
distributed and local programming”

© Spinnaker Labs, Inc.

Component Failure

Individual nodes simply stop

© Spinnaker Labs, Inc.

Data Failure

Packets omitted by overtaxed router
Or dropped by full receive-buffer in kernel
Corrupt data retrieved from disk or net

© Spinnaker Labs, Inc.

Network Failure

External & internal links can die
Some can be routed around in ring or mesh
topology
Star topology may cause individual nodes to
appear to halt
Tree topology may cause “split”
Messages may be sent multiple times or not
at all or in corrupted form…

© Spinnaker Labs, Inc.

Timing Failure

Temporal properties may be violated
Lack of “heartbeat” message may be
interpreted as component halt
Clock skew between nodes may confuse
version-aware data readers

© Spinnaker Labs, Inc.

Byzantine Failure

Difficult-to-reason-about circumstances
arise

Commands sent to foreign node are not
confirmed: What can we reason about the
state of the system?

© Spinnaker Labs, Inc.

Malicious Failure

Malicious (or maybe naïve) operator
injects invalid or harmful commands into
system

© Spinnaker Labs, Inc.

Correlated Failures

Multiple CPUs/hard drives from same
manufacturer lot may fail together
Power outage at one data center may
cause demand overload at failover center

© Spinnaker Labs, Inc.

Preparing for Failure

Distributed systems must be robust to
these failure conditions
But there are lots of pitfalls…

© Spinnaker Labs, Inc.

The Eight Design Fallacies
The network is reliable.
Latency is zero.
Bandwidth is infinite.
The network is secure.
Topology doesn't change.
There is one administrator.
Transport cost is zero.
The network is homogeneous.

-- Peter Deutsch and James Gosling, Sun Microsystems

© Spinnaker Labs, Inc.

Dealing With Component Failure

Use heartbeats to monitor component
availability
“Buddy” or “Parent” node is aware of
desired computation and can restart it
elsewhere if needed
Individual storage nodes should not be
the sole owner of data

Pitfall: How do you keep replicas consistent?

© Spinnaker Labs, Inc.

Dealing With Data Failure

Data should be check-summed and
verified at several points

Never trust another machine to do your data
validation!

Sequence identifiers can be used to
ensure commands, packets are not lost

© Spinnaker Labs, Inc.

Dealing With Network Failure

Have well-defined split policy
Networks should routinely self-discover
topology
Well-defined arbitration/leader election
protocols determine authoritative
components

Inactive components should gracefully clean up
and wait for network rejoin

© Spinnaker Labs, Inc.

Dealing With Other Failures

Individual application-specific problems
can be difficult to envision
Make as few assumptions about foreign
machines as possible
Design for security at each step

© Spinnaker Labs, Inc.

TPS: Definition

A system that handles transactions
coming from several sources concurrently

Transactions are “events that generate
and modify data stored in an information
system for later retrieval”*

* http://en.wikipedia.org/wiki/Transaction_Processing_System

© Spinnaker Labs, Inc.

Key Features of TPS: ACID
“ACID” is the acronym for the features a TPS must
support:

Atomicity – A set of changes must all succeed or all fail
Consistency – Changes to data must leave the data in
a valid state when the full change set is applied
Isolation – The effects of a transaction must not be
visible until the entire transaction is complete
Durability – After a transaction has been committed
successfully, the state change must be permanent.

© Spinnaker Labs, Inc.

Atomicity & Durability

What happens if we write half of a
transaction to disk and the power goes out?

© Spinnaker Labs, Inc.

Logging: The Undo Buffer

1. Database writes to log the current values
of all cells it is going to overwrite

2. Database overwrites cells with new
values

3. Database marks log entry as committed

If db crashes during (2), we use the log to
roll back the tables to prior state

© Spinnaker Labs, Inc.

Consistency: Data Types

Data entered in databases have rigorous
data types associated with them, and
explicit ranges
Does not protect against all errors
(entering a date in the past is still a valid
date, etc), but eliminates tedious
programmer concerns

© Spinnaker Labs, Inc.

Consistency: Foreign Keys

Database designers declare that fields are
indices into the keys of another table
Database ensures that target key exists before
allowing value in source field

© Spinnaker Labs, Inc.

Isolation

Using mutual-exclusion locks, we can
prevent other processes from reading
data we are in the process of writing
When a database is prepared to commit a
set of changes, it locks any records it is
going to update before making the
changes

© Spinnaker Labs, Inc.

Faulty Locking
Locking alone does
not ensure isolation!

Changes to table A
are visible before
changes to table B –
this is not an isolated
transaction

Two-Phase Locking
After a transaction
has released any
locks, it may not
acquire any new
locks
Effect: The lock set
owned by a
transaction has a
“growing” phase and
a “shrinking” phase

© Spinnaker Labs, Inc.

Relationship to Distributed Comp

At the heart of a TPS is usually a large
database server
Several distributed clients may connect to
this server at points in time
Database may be spread across multiple
servers, but must still maintain ACID

© Spinnaker Labs, Inc.

Conclusions

Parallel systems evolved toward current
distributed systems usage
Hard to avoid failure

Determine what is reasonable to plan for
Keep protocols as simple as possible
Be mindful of common pitfalls

