

UAA Concepts and Overview

25 Feb 2013

introduction

● too many passwords are making us crazy:
http://www.youtube.com/watch?v=2tJ-NSPES9Y

● how many passwords vs bank/credit accounts
do you have and why?

● password managers are single point of failure:
http://www.miamiherald.com/2012/09/13/3000801/miami-federal-jury-convicts-man.html

● more importantly, we need to control
authorization not just reduce passwords:
http://www.schneier.com/blog/archives/2008/07/disgruntled_emp.html

● the uaa aims to conveniently manage proof of
authorization: http://xkcd.com/149/

http://www.youtube.com/watch?v=2tJ-NSPES9Y
http://www.miamiherald.com/2012/09/13/3000801/miami-federal-jury-convicts-man.html
http://www.schneier.com/blog/archives/2008/07/disgruntled_emp.html
http://xkcd.com/149/

illustration: selling a car

Bank

Sam

Joe,
used car

broker

Me, selling
a rusty 2000

nissan pathfinder*

1. Sam tells Joe he'll
take the pathfinder.
Joe replies that he'll
need a cashiers check
for the purchase price.

2. Sam authenticates
and gets a cashier's
check.

3. Sam gives the
check to Joe, but it's
signed by the bank.

4. Joe gives the check to me in
exchange for the car. I don't really
care who Joe and Sam are, the
check authorizes the transaction
and it's guaranteed by the bank.

* the pathfinder is actually for sale.

cashier's check

● issuing bank
● check number
● account and name
● authorized amount

● issued at date
● expiration date
● recipient
● authorized signature

illustration in oauth2 terms

authorization
server
(bank)

resource
owner
(user)

client
application
(joe broker)

resource server
(me with pathfinder)

1. user accesses application
but is not authorized. Application
redirects user to the authorization
server with instructions of
what authorization to request

2. user authenticates
and approves release of
token containing proof
of authorization.

3. user is redirected
back to the client app
which gets the token.

4. client app presents token to
resource server to authorize access.

json web token – jwt (uaa cashier's check)

● iss: issuer
● jti: token id
● sub: user id
● scope:

authorization

● iat: issued at
● exp: expiration
● aud: audience
● others: user name,

email, client id

● jwt is an ietf standard, pronounced jot
● base64 encoded parts separated by periods
● header.content.signature
● header indicates signature algorithm
● contents:

illustration in cloud foundry terms

authorization
server
(uaa)

resource
owner
(user)

client
application

(portal, vmc,
cloudbees,

etc)

resource server
(cloud controller)

1. user accesses application
but is not authorized. application
redirects user to the authorization
server to request authorization.

2. user authenticates
and approves (explicitly
or automatically)
release of token
containing proof of
authorization.

3. user is redirected
back to the client app
which gets the token.

4. client app presents token to
resource server to authorize access.

implicit grant

authorization
server
(uaa)

resource
owner

via user
agent

(browser)

client
application

resource server
(cloud controller)

1. user accesses application
but is not authorized.
application redirects user to
the authorization server to
request authorization.

2. user authenticates
and approves release of
token containing proof
of authorization.

3. user is redirected
back to the client app
with an access token
in location fragment

5. client app presents access token
to resource server to authorize
access. client app can use access
token until it expires.

● access token is exposed
to user's agent.

● access token lifetime is
longest interval user
cannot revoke access.

● client id, redirect urls
must be registered – no
secret

● generally a less secure
and less convenient
grant – avoid if possible

authorization code grant (and refresh token grant)

authorization
server
(uaa)

resource
owner

via user
agent

(browser)

client
application

(portal,
cloudbees,

etc)

resource server
(cloud controller)

1. user accesses application
but is not authorized.
application redirects user to
the authorization server to
request authorization.

2. user authenticates
and approves release of
token containing proof
of authorization.

3. user is redirected
back to the client app
with an authorization
code.

5. client app presents access token
to resource server to authorize
access. client app can use refresh
token to request new access token
on expiration.

4. client redeems
auth code for access
and refresh tokens.

● access and refresh
tokens aren't exposed to
user's agent.

● access token lifetime is
longest interval user
cannot revoke access.

● refresh token lifetime is
interval before user has
to re-authenticate.

● client id, secret, redirect
urls must be registered

implicit grant with credentials (deprecated)

authorization
server
(uaa)

resource
owner

via native
app (vmc)

resource server
(cloud controller)

1. user accesses cloud
controller but is not authorized.
application gets prompts for
required credentials from
authorization server and
collects credentials

2. app posts user
credentials to
authenticate user and
autoapprove release
of token containing
proof of authorization,
requests implicit
grant.

3. authorization server
returns a redirect with
access token in the
location fragment

4. app presents access token to
resource server to authorize access.
client app can use access token until
it expires.

● access token is exposed
to the user's machine.

● access token lifetime is
longest interval user
cannot revoke access.

● client registration and
hardcoded, unnecessary
redirect urls were problem

● our extension to oauth
that is now deprecated.

resource owner password grant (& refresh token grant)

authorization
server
(uaa)

resource
owner

via native
app (vmc)

resource server
(cloud controller)

1. user accesses cloud
controller but is not authorized.
application gets username
and password

2. app posts user
credentials to
authenticate user and
autoapprove release
of token containing
proof of authorization,
requests password
grant.

3. returns to the app
with an access token
and a refresh token

4. app presents access token to
resource server to authorize access.
app can use access token until it
expires, but can get a new access
token with the refresh token

● access and refresh
tokens are exposed to
the user's machine.

● access token lifetime is
longest interval user
cannot revoke access.

● limited to user name and
password.

● for vmc, requires public
client (no client secret).

client credentials grant

authorization
server
(uaa)

client
application

(portal,
cloudbees,

etc)

resource server
(cloud controller)

2. client app presents access token
to resource server to authorize
access.

1. client authenticates and
gets an access token with all
its registered authorizations.

● access token lifetime is
longest interval uaa
cannot revoke access.

● client id, secret must be
registered

client registration contents

● client id: name, e.g. vmc or portal

● client secret: can be empty for a public client

● authorized grant types

● authorities: authority as the client, token scope for
client credentials grant – think 'client scope'

● scope: authority that can be requested for a user via
all other grant types – think 'maximum user scope'

● redirect uris

● access token validity

● refresh token validity

● autoapprove scope

calculating client token scope

● authenticate client id and secret via basic auth
● validate request is client credentials grant
● read client authorities
● put it in the scope field of the token

calculating user token scope

● if no scope is requested, the default is the
scope registered for the requesting client

● for each scope: if the user is in the group and
the scope is either autoapprove or the user
explicitly approves it, put it in the token.

calculating user token scope: details

● given a list of scopes, a user, and a client

● return error if the list of scopes includes a scope not in the client registration

● if the list is empty, fill it with the scopes from the client registration

● remove all scopes for which the user is not a member of the corresponding
group – this is the possiblescopes list.

● make a list of all remaining scopes that are not autoapproved (approvable)

● get the stored approved and denied lists for this user and client

● make a list of all scopes from the approvable list that are not on the
approved or denied lists (unapproved)

● if it's a refresh token and unapproved list is not empty, return error (the client
must send the user through a new grant).

● ask the user for approvals for all approved or denied scopes (with
appropriate defaults), AND the unapproved scopes (as "new").

● make a list of the possiblescopes that are now approved or autoapproved --
that's what goes in the token.

extensible authentication with a login server

uaa

resource
owner

via user
agent

(browser)

client
application

(portal,
cloudbees,

etc)

1. user accesses application
but is not authorized.
application redirects user to
the authorization server to
request authorization.

2. user authenticates
and approves release of
token containing proof
of authorization.

3. user is redirected
back to the client app
with an authorization
code.

4. client redeems
auth code for access
and refresh tokens.

● allows authentication to be
other than user name and
password in uaa db.

● supports graphics and
branding for cloudfoundry
rather than generic interface
in uaa

● login server may support
saml, ldap, openid2 (google),
oauth 1.1a (twitter), facebook,
etc.

● some login servers proxy the
oauth2 token endpoint to the
uaa.

● we are working on making
endpoints available from the
/info endpoint on the login
server: oauth2 token &
authorize, scim users &
groups, openid connect
userinfo, etc.

login
server

openid connect

authorization
server
(uaa)

resource
owner

via user
agent

(browser)

client
application

(portal,
cloudbees,

etc)

client can use access
token to authorize
access to a resource
server, including the
uaa's /userinfo
endpoint.

● openid connect also specifies another
token type called an id_token which is
not yet implemented.

● the id_token represents the
authentication event and its audience is
the client, not the resource server.

● it essentially contains information about
the user's session with the uaa

/userinfo endpoint
requires access
token with openid
scope

simple cloud identity management - scim

● ietf draft changed name to system for cross-
domain identity management.

● rest apis for managing user accounts, groups,
and client registrations

● supports read, create, delete, full update, query
● partial update not yet implemented
● primarily designed for provisioning, but provides

enough directory-like capabilities for what we
need.

using uaac

● based on cf-uaa-lib, which is available from
rubygems with damn fine documentation

● targets a uaa or login server similar to how vmc
targets a cloud controller

● saves state in ~/.uaac.yml
● a context is relative to a target and contains an

access token (and possibly a refresh token) for
a specific user or client

● supports multiple targets, each with multiple
contexts

demo uaac

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

