
Identity@CF
User Account and Authentication

Agenda

▪  Who we are

▪  What we build

▪  Why it’s important

▪  How to use it

CloudFoundry

▪  Open Source PaaS (Platform as a service)
▪  Multiple framework support - Java, Ruby, Node, Scala
▪  Multiple application services – MySQL, Postgres, Mongo, Redis,

Rabbit

▪  Cloudfoundry.org

▪  https://github.com/cloudfoundry

▪  Cloudfoundry.com – Cloudfoundry service hosted by
Vmware

▪  Other cloudfoundry instances are hosted by AppFog,
ActiveState and Tier3

Who we are
▪  Identity team
▪  Dale Olds

▪  Dave Syer

▪  Luke Taylor

▪  Joel D’sa

▪  Vidya Valmikinathan

vcap-dev@cloudfoundry.org

What we build

▪  UAA – User authentication and authorization server

▪  Spring Security Oauth2 – Spring project that supports
UAA features

▪  uaac – Command line api client for the UAA

▪  Authentication servers to support
▪  External authentication sources (google, yahoo, github, linkedin),

▪  Enterprise identity - SAML2

Why is it important

▪  Higher degree of trust – Credentials are accepted only by
a trusted source

▪  Standards based – Consistent, proven API, process and
interactions that users are comfortable with

▪  Trustworthy interactions between the user and the
platform

▪  Trustworthy interactions between components

▪  Simple third party participation to extend the platform

Traditional approach to
authentication

Provides credentials

Checks user database Ok / Not Ok

User Server

Oauth2 authorization code flow

User
Resource Owner
User-Agent (UA)

Identity Provider (IDP)
Authentication Server

Client
Relying Party

Resource Server
Service Provider (SP)

Accesses a client

Who is this user
What is he/she requesting
Do I have the necessary authorization

Authenticate me
Approve scope of
authorization

Authenticates user
Issues authorization code

Exchange authcode
for an access token

Present token with granted
scopes to access resource

Issue access token with
user authorized scopes

Redirect user to
client with authcode

Oauth2 for Cloud Foundry

User
Resource owner

UAA
Identity provider

CF Portal
Client

Cloud controller
Resource server

Accesses the portal

Who is this user
What is he/she requesting
Do I have the necessary authorization

Authenticate me
Assert - Portal can only
read my apps

Authenticates user
Issues authorization code

Exchange authcode
for an access token

Present token containing
cloud_controller.apps.read

Issue access token scoped
to cloud_controller.apps.read

Redirect user along
with the authcode

Oauth2 for Cloud Foundry

CF Portal
Client

Cloud controller
Resource server

vmc
STS
Wavemaker
3rd parties (Appsecute etc.)

Dashboard
Service Gateways
Health Manager

Collector
Dashboard
Director

Oauth2 authentication

User
Resource Owner
User-Agent (UA)

Identity Provider (IDP)
Authentication Server

Client
Resource Server
Service Provider (SP)

Front channel

Back channel

Request containing
auth code

Authenticates user
Redirects to the client

Requests access token

Oauth2 authentication

User
Resource Owner
User-Agent (UA)

Identity Provider (IDP)
Authentication Server

Client
Resource Server
Service Provider (SP)

Front channel

Back channel

Authenticates user
Redirects to the client

Requests access token
Token Server

Authentication Servers
UAA username and password

Google identity

SAML2

Request containing
auth code

UAA Features

▪  Authenticates users from multiple sources

▪  Presents a single standard protocol for consumers

▪  OpenID Connect and Oauth2 – delegated authorization

▪  SCIM – user management

Demo

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  Consumer of the user’s identity

▪  Provides a service or needs access to a
resource

▪  Can act by itself or on behalf of users

▪  Clients are registered with the UAA

▪  client id and secret

▪  authorized grant type

▪  authorization_code

▪  client_credentials

▪  implicit, owner_password

▪  scopes and authorities

▪  redirect uri

▪  token expiry

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  Set of strings

▪  Each string represents a permission
that client can request on behalf of a
user

▪  Examples:

▪  cloud_controller.admin

▪  password.write

▪  openid

▪  Requestable scopes configured
during client registration

▪  Subset of the scopes granted to the
client must be authorized by a user
(authorization code flow)

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  Set of strings

▪  Represents a permission that a
client can be granted when it acts
on it’s own

▪  Examples:
▪  scim.write

▪  portal.users.read

▪  Configured during client registration

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  Client credentials - client id and
secret

▪  Client id is added to authorization
requests

▪  Credentials are used to
authenticate token requests

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  The user agent is redirected from
the UAA to the client along with
authorization codes or credentials

▪  Redirect URI for a client are
registered with the UAA to prevent
fraudulent redirections

▪  Request URI must match the
registration

Oauth2 with the UAA
▪  Internal users are stored in the

UAA database

▪  Users are provisioned using the
SCIM API

▪  UAA has the ability to consume
external identities

▪  Clients can also be users

▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  UAA users are authenticated using
username (email address) and
password

▪  Authentication is represented by an
“access token” (bearer token) that
contains the set of the user’s
scopes

▪  Flexibility to support any form of
authentication
▪  External user databases like LDAP

▪  External authentication protocols,
Incoming OpenID, SAML

▪  Goal is to fully implement OpenID
Connect

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  Authorization information is
contained in an Oauth2 bearer
token

▪  Client acting as itself
▪  Uses a client credentials grant to

request authorization

▪  Scopes granted are the same as the
registered “authorities”

▪  Client acting on behalf of the user
▪  Uses an authorization code grant to

request authorization

▪  Scopes granted

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  Token is a standard JWT (JSON
web token)

▪  Three parts separated by periods

▪  header.content.signature

▪  Production UAA tokens are signed
using a shared secret. This is
changing to use public key signing.

{
 "exp":1349467969,
 "user_name":"jdsa@vmware.com",
 "scope":[
 "cloud_controller.read",
 "cloud_controller.write",
 "openid"
],
 "email":"jdsa@vmware.com",
 "aud":[
 "openid",
 "cloud_controller"
],
 "jti":"9d82c1c2-94cd-4433-a8e5-19549dccaed2",
 "user_id":"cf9d5fdb-6433-4c41-b61c-cc9fda937620",
 "client_id":"vmc"
}

Oauth2 with the UAA
▪  Clients
▪  Scopes
▪  Authorities
▪  Client credentials
▪  Redirect URI

▪  Users

▪  User Authentication

▪  Authorization

▪  Tokens
▪  Signatures

▪  All tokens are signed using
a shared secret.

▪  Public key signing is
currently available.

SCIM

▪  JSON API for user management

▪  Simple cloud identity management (now system for inter-
domain identity management)

The future

▪  Full support for ID tokens (OpenID Connect)

▪  Expanded SCIM support

▪  IdaaS

Q&A

Addidional topics

▪  password strength (aaS)

