Identlty@CF

unt and Authenticatio

Agenda

Who we are

What we build

Why it's important

How to use it

CloudFoundry

Open Source PaaS (Platform as a service)
= Multiple framework support - Java, Ruby, Node, Scala

L Klullotliople application services — MySQL, Postgres, Mongo, Redis,
abbit

Cloudfoundry.org

https://github.com/cloudfoundry

Cloudfoundry.com — Cloudfoundry service hosted by
Vmware

Other cloudfoundry instances are hosted by AppFog,
ActiveState and Tier3

Who we are

= |dentity team
= Dale Olds
= Dave Syer
= Luke Taylor
= Joel D’'sa

= Vidya Valmikinathan

vcap-dev@cloudfoundry.org

What we build

UAA — User authentication and authorization server

Spring Security Oauth2 — Spring project that supports
UAA features

uaac — Command line api client for the UAA

Authentication servers to support

= External authentication sources (google, yahoo, github, linkedin),
= Enterprise identity - SAML2

Why is it important
= Higher degree of trust — Credentials are accepted only by
a trusted source

= Standards based — Consistent, proven API, process and
interactions that users are comfortable with

= Trustworthy interactions between the user and the
platform

= Trustworthy interactions between components

= Simple third party participation to extend the platform

Traditional approach to
authentication

Provides credentials ’
> ’ < §
'-' < Ok / Not Ok [’ Checks user database

User Server

Oauth2 authorization code flow

Who is this user

’ ’ What is he/she requesting

Do | have the necessary authorization

\ Present token with granted
Client scopes to access resource

Relying Party

Accesses a client

Redirect user to
client with authcode Exchange authcode
for an access token

Authenticate me
Approve scope of

User authorization Resource Server
Resource Owner | Authenticates user O€TVice Provider (SP)
User-Agent (UA) \J Issues authorization code

Issue access token with
l user authorized scopes

|dentity Provider (IDP)
Authentication Server

Oauth2 for Cloud Foundry

Who is this user
’ What is he/she requesting
’ Do | have the necessary authorization

Present token containing
CF Portal

Accesses the portal cloud_controller.apps.read

Redirect user along
with the authcode Exchange authcode
for an access token

Authenticate me

Assert - Portal can only
i ol Cloud controller

Authenticates user
\) Issues authorization code

Issue access token scoped
| to cloud_controller.apps.read

UAA

Oauth2 for Cloud Foundry
(

CF Portal

vmc
STS
Wavemaker Cloud controller

31 parties (Appsecute etc.)

Dashboard Collector
Service Gateways Dashboard
Health Manager Director

Oauth2 authentication

User
Resource Owner
User-Agent (UA)

Request containing
auth code

F i <
’ Requests access token

Client |dentity Provider (IDP)

Resource Server Authentication Server
Service Provider (SP)

Authenticates user

Redirects to the client
Front channel

Back channel

Oauth2 authentication

User
Resource Owner
User-Agent (UA)

Request containing
auth code

Authenticates user

Redirects to the client
Front channel

Back channel P
Authentication Servers

| UAA username and password
A A Google identity
1
1
1
1

1’1
e
’ <) ’4____» A SAML2
Requests access token
Token Server
Client |dentity Provider (IDP)
Resource Server Authentication Server

Service Provider (SP)

UAA Features

Authenticates users from multiple sources

Presents a single standard protocol for consumers

OpenlID Connect and Oauth2 — delegated authorization

SCIM — user management

Oauth2 with the UAA

Clients
= Scopes

= Authorities
= Client credentials
= Redirect URI

Users

User Authentication

Authorization

Tokens
= Signatures

Oauth2 with the UAA

= Clients
Scopes

Authorities

Client credentials
Redirect URI

Users

User Authentication

Authorization

Tokens
= Signatures

Consumer of the user’s identity

Provides a service or needs access to a
resource

Can act by itself or on behalf of users

Clients are registered with the UAA
client id and secret

authorized grant type
authorization_code
client_credentials

implicit, owner_password
scopes and authorities
redirect uri

= token expiry

Oauth2 with the UAA

Clients

Scopes

Set of strings

Each string represents a permission
that client can request on behalf of a
user

Examples:

= cloud_controller.admin
= password.write

= openid

Requestable scopes configured
during client registration

Subset of the scopes granted to the
client must be authorized by a user
(authorization code flow)

Oauth2 with the UAA

= Clients - Set of strings
= Scopes = Represents a permission that a
. client can be granted when it acts
= Authorities on it's own
= Client credentials - Examples:
= Redirect URI - scim.write

= portal.users.read

Users
Configured during client registration

User Authentication

Authorization

Tokens
= Signatures

Oauth2 with the UAA

= Clients = Client credentials - client id and
secret
= Scopes
W = Client id is added to authorization
= Authorities requests
- Client credentials - Credentials are used to
. Redirect URI authenticate token requests
= Users

User Authentication

Authorization

Tokens
= Signatures

Oauth2 with the UAA

. ' = The user agent is redirected from
Clients the UAA to%he client along with
. authorization codes or credentials
. = Redirect URI for a client are
registered with the UAA to prevent
. fraudulent redirections
* Redirect URI = Request URI must match the

registration

Oauth2 with the UAA

Clients

= Scopes

= Authorities

= Client credentials
= Redirect URI

Users
User Authentication
Authorization

Tokens
= Signatures

ternal users are stored in the
AA database

In

U
User e provisioned using the
SCIM API

UAA has the ability to consume
external identities

Clients can also be users

Oauth2 with the UAA

User Authentication

UAA users are authenticated using
username (email address) and
password

Authentication is represented by an
“access token” (bearer token) that
contains the set of the user’s
scopes

Flexibility to support any form of
authentication

= External user databases like LDAP

= External authentication protocols,
Incoming OpenlD, SAML

Goal is to fully implement OpenlD
Connect

Oauth2 with the UAA

. = Authorization information is
contained in an Oauth2 bearer
. token
. = Client acting as itself
. = Uses a client credentials grant to

request authorization

= Scopes granted are the same as the
registered “authorities”

= Client acting on behalf of the user

= Uses an authorization code grant to
request authorization

Authorization = Scopes granted

Oauth2 with the UAA

Tokens

= Token is a standard JWT (JSON
web token)

= Three parts separated by periods
= header.content.signature

= Production UAA tokens are signed
using a shared secret. This is
changing to use public key signing.

"exp":1349467969,
"user_name":"jdsa@vmware.com",
"scope": [
"cloud_controller.read",
"cloud_controller.write",
"openid"
] ’
"email":"jdsa@vmware.com",
"aud": [
"openid",
"cloud_controller"

] ’

"jti":"9d82clc2-94cd-4433-a8e5-19549dccaed2",
"user_id":"cf9d5fdb-6433-4c41-b61c-cc9fda937620",
"client_id":"vmc"

}

Oauth2 with the UAA

= Clients = All tokens are signed using
a shared secret.
= Scopes
» Authorities = Public key signing is

_ _ currently available.
= Client credentials

= Redirect URI

Users

User Authentication

Authorization

Tokens
= Signatures

SCIM

= JSON API for user management

= Simple cloud identity management (now system for inter-
domain identity management)

The future

= Full support for ID tokens (OpenID Connect)
= Expanded SCIM support
= |ldaaS

Addidional topics

= password strength (aaS)

