Compass

Reference Documentation

2.0.2

Copyright © 2004-2008 Shay Banon (kimchy), Alan Hardy

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

(1=, =0 2SSO PPERPR
O I 1 oo [ot A o PP PPERR
L1, OVEIVIEBIW ..ottt ettt e+ttt e e e ekt e e e e a b bt oo ekttt e e e en bt e e e e e nbb e e e e e nnbe e e e e nnbneeeeann 1
0 T U1 RSOSSN 2
LL2. 0. o LUCEIE e 2
2 T 0 =1 1 1Y/ e o = O RPERR 4
G T q 4 11 I 1Y/ oo = PSPPSRSO 4
02 [0 1, o (= U RPPRR 4
1.25. ... ORM FrameWorKcocueuiiiiiiiie it e e e e e e e e e e e e e 4
1.2.6. ... SPriNG FramMeWOrKc.uviiiiiiie e e e e e e r e e e e e e e e aanes 5
[, COMPESS COMEeiiieiiieee e ettt e e e e s e e e e e e s e e e e e e e e e e s e R e e e e e e e e e s s e s R e e ee e e e e e e e s s nnnnneee e e e e e s nnnnnrnnes
P22 I ¢ 1 oo [1 Tox o o PRSP
pZ B O YL YT SRS 7
2.2. SESSION LITECYCIE .o, 8
2.3. Template and CallDaCKcccueiiiiiiiiie e 8
G T @ g1 o 8= 4 o] o USSR
3.1, Programmatic ConfiguIationeeeiiieiiiiiiiiiei e e 9
3.2, XML CONFIQUIELTON ...eiiiiiiiie ettt e e e e st e e e e e e 11
3.2.1. SchemaBased Configurationcoeeeoiiiiiiiiiiiiie e 11
3.2.2. DTD Based Configurationoccueeeeeiiirieeiiiieee e e et e s essnneee s 13
3.3. Obtaining a ComMPasS FEfEIENCEccovvviiiiiiiiiee e 14
3.4. Configuring Callback BEVENLScccuiiiiiiiiiii e 14
v @ g T o o] ISR
A1, File SYSIEM SIOME ...ttt e e e e e e e e e e a e e e e e e e s s eanrernreeaeeas 15
4.2, RAM SEOTE ..ot 16
G TN o ool (o] = PSPPSR 16
4.3.1. Managed ENVIFONMENTcooiiuiiiieiiiiiie ettt e s snnnee s 16
4.3.2. Data SOUICE PrOVIAESooiiiiiiiiiiiiiee et e e e e e e e e e 17
4.3.3. FIIEENrY HANGIENcoiiiiiieiiiie et 18
3 I | RSP ERSRRR 19
A oo [= o (o Y SRR 19
4.5. LOCaA DIr€CtOry CaCHEeeiieiiiiie et 20
4.6. LUCENE DIreCtOry WIBPPEScco ittt e e et e e e e e e st e e e e e e e e s s anbrreeeeaaeas 20
4.6.1. SyncMemoryMirrorDirectoryWrapperProvidercccccoceveeiiiiieeniiiiee e 21
4.6.2. AsyncMemoryMirrorDirectoryWrapperProviderccccccvvvvvvviiieeeee, 21
IS == o = T T 1= P ESRRP
o300 I g 1 oo U Tox £ o o SR 23
5.2. Alias, Resource and PrOPErtYueeeiiieiiiiiiiie et 23
5.2.1. USING RESOUICE/PTOPENTYeveeieeiiiiiee e ettt ettt e st 23
5.3, ANAIYZENS oot a e e e e s e ———aa e e e e e aabrrrraaaaaaas 23
5.3.1. Configuring ANBIYZEN'Scccuiiiieiiiiiee ettt 24
5.3.2. Analyzer FIITEr oo, 25
5.3.3. Handling SYNONYIMScooiiiiiiiiieie ettt e e e e e e e e e ennraaes 25
5.4, QUENY PalSEY ...oooiiiiitiei ettt e e e e e e e e e e e e e e e 26
5.5, INAEX SITUCLUIE ...ttt ettt e e et e e e et e e e s antn e e e e s nnneeeeas 26
oI I =01 o 1o o PSSR 27
5.6.0. LOCKING rreeeiiieiiiiiiiiiiee ettt e e e ettt e e e e e e e e s et e e e e e e e e s s nntbbaeeeeaeeeeanannrnnes 27
I A F'o - (oo PSR 28
Compass - Java Search Engine ii

Compass - Java Search Engine Framework

5.6.3. TranSaCtiON LOGeeeiiiiieieiiiiie ettt e 29
I A LS U o oo o A USRS 30
5.8. SUD INAEX HASNING ...eeiiiiiiiieiiitie ettt e st e e e as 31
5.8.1. Constant Sub Index Hashingccccooi i, 31
5.8.2. Modulo SUD INAEX HASNINGceeiiiiiiiiiiiiiie e 32
5.8.3. Custom SUb INAEX HASINGeveeiiieeiiiiiiiiiie e 34
e I @ o 1] 0= = SRRSO 35
5.9.1. Scheduled OPLIMIZENSccoiiiiiieeiiiiie et 35
5.9.2. AQOressiVe OPLIMIZErcooiiiiiiieiii e e e st e e e e e e e e eanreaes 35
5.9.3. Adaptive OPLIMIZENooiiiiiiiie et s 35
5.94. NUIl OPLIMIZEr ..o, 36
5.0, MEIGE ..ttt e e r et e e e e e e e e e e e e e e e e eeeaae s 36
5.10.1. MEGEPOIICY ...t e e e e e 36
5.10.2. Merge SChEAUIEScoeviee i e e e e 36
5.11. INdEX DEELION POIICYoiiiiiiiiieiiiiiiee it 36
5.12. Spell Check / Did YOU MEANuvvieiiieiiiicciiieeee ettt e e 37
5121, SPEITNOEX oottt 38
EoTN0C T I = ot I o= o SR 39
B 03 L, WV A S i ———— 39
5.13.2. Searcher And INAEXREATEScoiiiiiiiiiiiiie et 39
6. OSEM - Object/Search ENGINEMaAPPINGuvvviiiieieiiiiiieee et
200 I g 1 oo U Tox £ o o RSP 41
6.2. SEAChADIE CIBSSES ...ooiiiiiiie ettt e e e e e e e et e e s e e e e nnnree s 41
B.2. 1. ALIBS .oeeeeiiiiiie et — e e e e e arraaan 42
I oo | SRR 43
B.2.3. SUD INAEX ...veeeeeiiieiee ettt ettt e e st e e e s 43
6.3. Searchable ClassS MaPPINGSueuiiiiiiieeiiiiie e e e e eas 43
6.3.1. Searchable Id and Searchable MetaDataccovvieieiiiiiiiee e 43
6.3.2. Searchable Id COMPONENTccoiiiiiieiiiiiee e 44
6.3.3. SearChabl@ Parentcoieiiiiiie e 45
6.3.4. Searchable Property and Searchable MetaDataccccccveeeiiiiiiiiieeee e, 45
6.3.5. SearchabDl@ CONSLANTooiiiiiiiiiiei e e e 46
6.3.6. Searchable DynamiC MetaDataccccvvveiieiee e 47
6.3.7. SearchabDIE@ REFEIENCEocoe e 47
6.3.8. Searchable COMPONENTc.uiiiiiiie e e e e e e 48
6.3.9. SearchabDI@ CasCatlccooecuiiiiiiie e e e e e e e e e e nnnraaees 49
6.3.10. Searchable ANAIYZErccoooiiiii i, 49
6.3.11. SearChabl@ BOOSEcoiieeiiiiiiiiiii ittt e e e e e e e e e e 50
S0 xS 50
6.4.1. Handling ColleCtion TYPESuuviiiiie i e e e 50
6.4.2. MANAQEA 1A ...ttt naraa s 50
6.4.3. Handling INNENTANCEcccuuiiiiiiii e 51
6.4.4. Polymorphic REIEIIONSNIPScveeiiiiiieiiiiiee e 52
6.4.5. Cyclic REEONSNIPScccoeeeieieiee e, 53
6.4.6. Annotationsand Xml COMbINEdccccvuiiiiiiieeiiicec e 53
6.4.7. SUPPOrt Unmarshallooooeiiiiiiiee e 54
6.4.8. Configuration ANNOLALIONSeeviieeiiiiiiiiieiie e e e e e e e 54
6.5. Searchable ANNOtatioNS REFEIENCEcceiiiiiiieiiee e a e 54
6.6. Searchable Xml REFEIENCEoviiiiiiie e 54
6.6.1. COMPASS-CONE-MEPPING ..eeeeruurrieerirrreeeairreeesatrreeeaabereesaasbneeeaanreeeessbereeeasnnneeens 54
LA o = =PRSS 55
B.6.3. CONMIACT ..o 56

Compass - Java Search Engine

Compass - Java Search Engine Framework

G370 S o OSSPSR 57
Lo G T o (0 o= 1 P 58
B.6.6. BNAIYZEN ...eeiiiiie e 59
L A oo o = PR 60
B.6.8. MELATAIAccoeeeieeeeeeee e, 60
6.6.9. dyNamMIC-MELA-AEIAcooeeeiiiiieiiiiiie e 61
6.6.10. COMPONENT ...ceeiiiei e 63
0 N 1= = 1= 0 o PR 64
B.6.12. PAIENL ..uueiii i ettt 65
OO T0 C T o] 1 r= | 65

7. XSEM - Xml to Search ENgine Mappingccoooeeiiiiii
7.1 INEFOAUCTION ... 67
72 11O o= ot RSP RR 67
7.3. XMl Content HaNAIiNG ...ccoeeoeiiiiiiieiee e e e e e e st re e e e e e 67
7.4, RAW XM ODJECEeeiieiiiiie ettt e e e e e s e e s nnneee s 69
7.5. Mapping DEfINITIONoveiiii i e e e e e e e s reeeeaeeas 69
T.5. 10 XIMI-0DJECE ...eeieiieiee et e et e e as 70
45323 | o SRS 71
R T {1] T o (0] = Y PR 72
T.5.4. XIMI-BNAIYZEN ..o 73
755, XIMI-BOOSEeeiiiiiiiie e 74
7.5.6. XIMI-CONTENT ..o e e e e e e e s r e e e e e e e s st e e e e e e e e e e nnnneenees 74

8. RSEM - Resource/Search ENGINE MapPiNg ...veeeeeioiiiiiiiiiiee et
8.1, INLFOAUCLION ... 76
8.2. Mapping DECIaralioncoooiiiiii i 76
B.2. 1. TESDUICE ...eiiieieieitt ettt ettt e e e ettt et e e e e e e e e bbbt e e e e e e e e s nnbb b e e e e e e e e e e e nnnrenes 77
8.2.2. TESOUICE-CONLIACT ...coeeeeieeee e 78
ST R == o 1 (o o [P P TP PR PP 78
8.2.4. IESOUICE-PIOPEITY ...vveeeiieeeeiiiiirrreeeeee e s s s e e e e e e e s s e e e e e e s s s snnrrrneeeeeeessasnnnrnnes 79
8.2.5. IESOUICE-ANAIYZENveieiiie e it e e e e st e e e e e e e 80
8.2.6. rESOUICE-B0O0SEviiiiiiiie e e e e a e e 81

9. CoMMON MELADALAcoeieieeeeeeee e
S0 I 1 oo (8ot (o) o TP PP PP 82
9.2. Commnon Meta Data DefiNitioncooiiiiiiiiiiiee e 82
9.3. USING the DEfINITIONcveiiiiiiiiiieee e e e e 83
9.4. CommNON Meta Data ANE TASKuuueiiieeiiiiiiiiieiiie e e e s e e e e e e e e s s st e e e e e e s s s snnreaeeeeeeeas 84

O N = T == Vo 1 o) o PR
0 I OO 1 g1 oo [F T 1 85
10.2. SESSION LITECYCIE .. 85
10.3. LOCA TTaNSACHION ...cueviieeiiiiiie ettt ettt e et e e s st e e e s e e e et e e e e e nnbneeeeann 85
10.4. JTA Synchronization TranSACtIONeeeeiiiirieeiiiieee e st e e st e e e e snree e 85
O N I 0= o (o PP PPPR ST 86

11, WOrKing With ODJECESeeiiiiiiiieiiiiie et e e e e e e e e aae
0 T g oo [T 1 o T TP PPPRP 87
11.2. Making Object/Resource SEarchableoocueiiiiiiiiieeiieie e 87
11.3. Loading an ObjEC/RESOUICEcoiieiiiiiiieiieie e e e ettt e e e e e e et eee e e e e e e e ennneaeeeeaeeeeaannes 87
11.4. Deleting an ObJECH/RESOUICEceieeeiiiiciiieieeiee e e s s ettt et e e e e e e asir e e e e e e e s s santraereeaaeesannnes 87
TS = o 0] oo TP PP P UPPPPPRPPPPRP 88
11.5.1. QUENY SEHNQ SYNEBX ..ccceceiiiiieieeee e e s et e e e e e e e s et e e e e e e e e st a e e e e e e e s s sanrrreeeeaeeas 88
11.5.2. Query String - Range QUESieS EXIENSIONSccooiuvriieiiiirieeiiiiee e essineee e 89
11.5.3. CompassHits, CompassDetachedHits & CompassHitsOperations.................cc...... 89
11.5.4. CompassQuery and CompassQUENYBUITTErcc.eeveiiiiiiiiiiiiine e 89

Compass - Java Search Engine

Compass - Java Search Engine Framework

1155, Termsand FreQUENCIESccoiiuiiiiiiiiiiieeiiie et e e 91
11.5.6. CompassSearCHHEIPESvviiiiiee e 91
11.5.7. CompassHIGhIIGNTEr ... 91

[1. COMPBSS VOCADUIGIYvvvvuririeireneeennnrusneeuesennnnnnenesseesenesssenrereessererereseessseeesesessnsssssnnsnnsnnssnsnssnnsnsnnnnnns

22 1 g1 4 oo [T o o PSR P

G T B TU] o 1 I o) = RS

I 0 4T 0 7= S oL

7 o1 4 oo [o 1 o] o RSP
LA L. OVEIVIBIW eeeeieiiiiiie ettt ettt e e e ettt e e e mb bt e e s st e e e e enba e e e e estn e e e e ansbeeeeennbaeeeeanns 97
14.2. COMPEBSSGIS ...uuutvreeeeteeeeaaainrrreeeaeeesaaant b bee et e aaeesaassbrreeeeeeeesaanbbbseeeeaeessaasnrrnneeeeeesaannnes 97
I TS T e 1= @0 0] 7= S o1 97
14.2.2. DUBICOMPESSGPSvveeeeiitieeeiiiieieeasiteeeesasiseeeesasbeee e s ssbeeeesanbseeesssbneeessnbneeeeane 98
14.3. COmMPASSGPSDEVICEceeiiieiieii ettt e e e e e e e e e e e e e e e e aannes 98
14.3.1. MirrorDataChangesGPSDEVICEccuvvveiieeeeiiiiiiieeie e 98
14.4. ProgrammatiC CONFIGQUIALIONuevieiiiieieeiiiieie e et e e e et e e e e e e snre e e e 99
145, Palall€l DEVICEcoieiiieiei ettt e e e et e e e e e e e e e nbee e e e ansneeeeann 99
14.6. BUIlAING @GPSDEVICE ...ttt et 101

IS TN |5 T RSOSSN
G0 O 1 0o [0 ot i o o H PP PP UPPPPPPOPPRP 103
ST (VK= o o] oo PSP PTPP P PPPPPPPPPPRP 103
15.2.1. ReSUILSEL MAPPING ...ccooiiiiieieee e e e e e e e et e e e e e s s santrr e e e eaee s 103
15.2.2. TADI@MBPPING .eeeiiiiiieeiiiiie et e s s e e e e e aae 104
15.3. Mapping - MirrorDataChangesSooociviieiieee et e e et e e e e e e e 105
15.3.1. ReSUILSEL MADPING ..evveieiiiiiieiiiiiie e et e e sttt ettt e st e e e s s e e e s snnneeeeanes 105
ST 72 = o [N 1V =T o o o 105
15.3.3. JADC SNAPSNOLveeeeieee e e e aaaeas 105
15.4. RESOUICE MEPIINGuvveeeeeuiieeeeeaiieee e e et e e e ettt e e e e e e s e e e s e e e e e e snn e e e e e nnr e e e e annneeeeann 106
15.5. PUtting it All TOQEINEr ... e e e 106

16. Embedded HIDErNAte ...t e e e e et e e e e e e s e nnnrenes
G300 O 1 oo [0 o) o PSPPSRSO 107
16.2. CONFIQUIBLIONeeeeieiiieiee ettt ettt et e e e sttt e e s et b e e e e s e e e e e nbe e e e e anbneeeeann 108
16.3. Transaction ManagEMENLcccceeeiiiiiiiii e es e e e e e 108

A o 11 o= g 0= = PP OUPPPPOPUPRR
50 R g 11T [o1 oo OO RPERR 109
A @00 ¢ 1o 0= (o o U PPPRP 109
17.2.1. Deprecated HIDEMEE DEVICEScoccuviiiiiiiiiieeeiiiie et 109
G T 1 g0 (= @ o= 1 o o 110
17.4. Real Time Dat@a MiTTONNGccoeiiuiieeeiiieiee et ee ettt e et e et e e e e e e snbe e e e s sbneeeeanes 110
17.5. HibernaleSyNCTIaNSaCtiONccccoeeiiiiiii e 110
17.6. Hibernate Transaction INTErCEPLOrc..vviviiiiee e e e e e e e 111

18. JPA (JAVA PEr SISLENCE API) oottt e e
S 30 O 1 oo [0 ot T o PP PPPROPPRR 112
18.2. CONFIQUIBLIONeeeieieiiie ettt e e e e e e s e b et e e e s e e e e e nbe e e e e anbneeeeane 112
ST T oo (=T @] o= =1 o o 112
18.4. Real Time Data MiITONNGcceiiuieieeiiieieeeaiieie e sttt e e ettt e st e e s e e e e s e e s sbeeeeeane 113

19. Embedded OpendPA ... e e e e
S0 O 1 oo [0 ot o) o PP PPPP PRI 114
19.2. CONFIQUIBLION ...ttt ettt e e st e e e st e e e e s e e e e nbe e e e e annneeeeann 114
19.3. INAEX OPEIALION ..uvviiiiieeeiiiiiiiei e e e e e e e e e e e e s s et re e e e e e e e s as st b e e e e e eaeesssnsntraeeeeaaeesaanes 114
19.4. Real Time Daa MiTTONNGcoeiiueeieeiiieiee et ee ettt e e st e s e et e e e e e e e s sbneeeeanes 115
19.5. OPENIPA HEIPEN oottt et e e et e e e e st e e e e s e e e e enteeeeennsneeeeanns 115

20. Embedded TOPLINK ESSENTIAIS ...coivveiiiiiiiiie ettt

Framework (2.0.2)

Compass - Java Search Engine Framework

P22 I N 1 1 L 1 o o SR 116
20.2. CONFIGUIBLION ... e e e e e e e e e s et e e e e e e e e s se st b beeeeaeeeesesanbereeeeaeeas 116
20.3. TranSaCtion MaNBQEIMENLcoeoiurrieeiiiiiee et e e et e et e e s e e e e anb e e e s sbe e e e s nnnreees 117

21. Embedded EClipSelink ...,
P24 0 I 1 1 L1 o o o SRR 118
P2 I ©Ce 1 To 101 (o) o SR 118
21.3. Transaction ManaQEMENTcc.uvveiiiiee et ee e e e e e e e e e s e st e e e e e e e s e sanrarereeaeeas 119

22. JDO (JAVA DAta ODJECLS) ...coiueveeieiiiiiie ettt e e e e
P25 W [1o L1 Tox 1 o o I PRSPPI 120
22.2. CONFIGUIBLION ..ttt e e e e e e e e e et e e e e anbb e e e e e nnnreee s 120
22.3. INAEX OPEIALIONccooeeeee e ————— 120
22.4. Real TIMEDEAMITTONNG ..ouveiieiiiiiie ettt e nnree s 120

23. OJB (Object RE@LioNal BrOKEI) ...coiieeeiiiiiiiiieee et e e e e e s st e e e e e e e e s ennneeeeas
P22 50 T [1o [F Tox 1 o o [PO PP PP 121
23.2. IN0EX OPEIBLIONeeeeiiiiiie ettt e ettt e et e e e e e ettt e e e et e e e e e b e e e e e s e e e e e anbn e e e e s nnnneeeas 121
23.3. Real TIMeDat@aMIlTOriNgcccuvviieeiie e e e e s e e e e e e e e eaab e e e eaeeas 121
234, CONFIGUIBLIONeitiiee ittt ettt e e et e e e et e e e e anbb e e e e e nnnreeeas 121

B | = - PSS
P T [Lo [F ox 1 o o [P PPPOPP PP PP 123
24.2. IN0EX OPEIBLIONeeieiiiiiieeiiteee e et e et e e s e e e e e e e e st e e e e e e e s e nr e e e e s annn e e e e e nnnreeens 123
PG R ©e 1 1To 101 7 (o] [SRS 123

[V . COMPESS SPITNQ -.teeeeiitieeeeaiteee e et e et e e et e e e e st e e e aa b e et e e e kb e et e e aas b et e e e sk ee e e e e nne e e e e annnreeeaanbeneeeann

P22 T 1 1 [Tox 1 o o R
P2 T I @ = oV = SRS 125
25.2. Compass Definition in Application CONtEXEccooeeeeiiiii 125

26. DAO SUPPOIT oiiieiei i ————
26.1. Da0 @ TEMPIBEEcoueieeeeiiiiie et e e e e e e s e e 127

A o] T aTo BN I = T "= (o1 o] o PRSP
P22 5 N 1 1 [o 1 o o SR 128
P W o I = 0 o) o PSRRI 128
27.3. JTASYNCTTANSACHIONviiiieiiiiiie et ee ettt ettt e et e e et e e e e et e e e e anbb e e e e s nnneeeeas 128
27.4. SPringSYNCTTANSACHIONcceieei e 128
27.5. CompassTranSaCtioNMENA0ESceiieeeiiiiiiiieiie e e e e e cecee e e e e e e s s s e e e e e e e s s sanraaereeaeeas 128

28. Hibernate 3 GPS DEVICE SUPPOITviiiiiiiiieeeiiie et e e e e nnnneee s
28.1. DEPrECaioN NOLEuviiiiieiei it e et e e e e e e e e e e s e st re e e e e e e e s e sanbereaeeaeeas 129
P22 T2 1 1o L1 1 o o SR 129
28.3. SpringHibernate3GPSDEVICEcoooeie i 129

29. OJB GPS DEVICE SUPPOIT .eeiuieiiieeiiiii e e ettt e sttt e ettt e et e e s st e e e e e e e et e e e e s snbbe e e e s nnnneee s
P22 I N 1 1 [o 1 o o SR 130
29.2. SPriNGOJDGPSDEVICE ...ceeveeeiiiiiieiie et e e e e s e e e e e e e e s e ra e aaaaeeas 130
29.3. SpringOjbGPSDEVICEINIErCEPLONcciiiiiiieeiiiie e 130

30. JADC GPS DEVICE SUPPOIT oiiieeiiictitiet it e e e e et e e e e e e e e et e e e e e e e s s seanbrrereeaeeeeannnes
1005 O 1 011 0o [o o SRR 131
GO o (=S W S 1Y = o o1 o PSP 131
(ORI I o [=3 (Y K=o o] oo PP OPPPPPPPII 133

3 o | T 1N O L USRS
1 I R 11 0 (1 o1 o PSP PPPRP 135
031 002 N 0 1Y R 135
N G T B = o 0 o o [PSP TPPRR 135
31.4. Transactional SErVCE SAMPIEcoii i 136

32, SPriNg MV C SUPPOIT oeeiiiiiiiiieieiee e
G228 I 1 1 L1 o o o RSO PRR 138

Framework (2.0.2)

Compass - Java Search Engine Framework

32.2. SUPPOIT ClIASSESeeeieiiiiiiee ittt ettt e e e e e e e e et e e e e e e nnees 138
A T 1o (= o o 1= PSP PPPRR 138
32.4. SEAICH CONLIOIEreeiiiiiiie e et e e s e e e e e e e e e s et e e e e e e e s e asnranneeeaaeas 138
R 0 070 7= 1o | = S
33, GHOASPACES ...veeeeiitiiie ettt e e ettt ettt e ettt e e e R e et E e e et e e et et e e e e bae e e e e areee s
G I TR O Y= = SRR 140
33.2. LUCENE DITECIONY ...uiiiiieeie e e e ettt e e e e e e et e e e e e e e e et bt e r e e e e e e e s s annteaneeeaeeas 140
33.3. COMPESS SEOTE ...t e e e et e e e st e e e e s e s e e e e e e e e e s nn b e e e e e e e e e s s annrrneeeeeeeas 140
33.4. SEarChabl@ SPACEuviieiiie e 141
R O] = = o[USRS
R TR O 1Y = V= PP 142
34.2. LUCENE DIFECIONY ...eeieiiiiiee ettt ettt et ettt e e ettt e e e et e e s anbb e e e e e nnnneee s 142
34.3. COMPESS SLOMEceeiiieiiiee ettt 142
35, TEITACOMA .oeeiiiiiiiiiie et
10T I V= V= SR 144
35.2. LUCENE DITECIONYeiiiiiieiie ettt e e et e e e e e e s et bt e e e e e e e e e e s sanbrreeeeaaeas 144
35.3. COMPESS SEOMEiieeiieiee e e e ettt e e e e e st e e e e e e s s e bbb e e e e e e e e e s st b be e et e e e e e s s annbrreeeeeeeas 144
R B O] 111072 S 11 o] ==t
36. Library SAMPIE ... e e aa e e
1130 I 1 011 0o L1 o o PR 147
36.2. RUNNING ThE SAMPIE ...eviiiiiiei e e e e s reaaeeas 147
37. PELCIINIC SAMPIE ...t e e e e
40 TR g1 0 (8 o 1 o I SRR 148
37.2. RUNNING TNE SAMPIE ... 148
37.3. DataModel INPELCHNIC ..oooiiiiiee e e e s 148
37.3.1. Common Meta-data (Optional)ccccvviiiiiiee e 148
37.3.2. RESOUICE MEPPING .coeeveeeeiiieee et e ettt et e e s e e e e e e e s abee e e e s annneeeas 149
37.3.3. OSEM .ottt e et e e rae e s 150
37.4. DaAaACCESS INPEICIINIC .ovvveeiiieiiieiie et e e e e e e e as 150
R T o T o 1= 1 0 (PSRRI 150
37.4.2. APCHE OBoeiiiiiiiiie et 150
0 T] = RSP 150
37.5. Web (MVC) INPEICHNIC ..oooeeiiiiiiiieeee ettt e e 151
VI APPENGIXES ...ttt e e et e e ekt e e e e et e e e e b et e e e s b e e e e e e b nn e e e e e b e e e e e e e e e e
A. Configuration SELINGSvviiiiiiie e e e e e e e e s e st e e e e ae e s e e nanrraeeeeaeeas
A.1. Compass Configuration SEITINGScuvrieiiirriee et e e e e s e e nnees 153
A.1.1l. cOmMpPass.engiNE.CONNECLIONuuuuuuuruereuernnnnnnnennennnnnnsnnnnsnnnnnnrnnnrsrnnnnnrnnnnnrnnnnnes 153
N N | N 5 PRSP 153
N G R . (0] o = 4 TP T PP PP PP PPPPPPPPRPPRPTN 154
A.LA TransaCtioN LEVELcooiiiiiiiiiiiii e 154
A.LS5. TranSaCtion SITAEJYeeeeeiiurreeeiiiieie e et e e et e e e et e e s s e e e s e e e neees 155
ALLG. PrOPErtY ACCESSON ...coiiieiiiuiiiteeeteteetttaas s e e e teeeeets s s e e eaeeeeeasraaeaeeeaeeessrnnaaeeaeaeeees 156
N I 0041V = (= £ 157
A.L8. SEAICH ENQINEuvviviiiiiiiieieiuieueeeieuerseenneennneneeeneeemererrrererrrrrer 160
A.1.9. SearCh ENGINE JADCcooiiiiiiiiiieiee ettt 163
A.1.10. Search ENgGINE ANBIYZEIScoooiiiiiieeeeee et e e e e 166
A.111. Search Engine ANalyzer FIITErSovvvieiieeee e 167
A.1.12. Search ENgine HighlIghterscoooiiiiiiiiiiee e 167
G T @1 0= S 1] Vo SRR 169
B. LUCENE JAIDC DITECIOMYveiiiiiiiiee ettt ettt e e e e et e e s e e e e e e e s e e e e e aae
2 30 T O Y= = S PPRPSOPRR 170
B.2. PerformanCeNOLESccoiiiiiiiiiiie et e e e s e r e e e e e s e s an e e e e e e e e annnes 172

Compass - Java Search Engine Vii

Compass - Java Search Engine Framework

B.3. Transaction Man@QEMENTcooiuiiiioiiiiee ettt e e et e e e e s e e snreeeeaaes 172
B.3.1. AUtO COMMIt MOUEooiiiiiiiiiieiie e 172
B.3.2. DataSource Transaction ManagemMentcc.eeeerurreeeriiireeeiiieeeessiieee e sineee e 173
B.3.3. Using External TransaCtion Managerccccoveeiiiiiiiii e 173
B.3.4. DIreCtoryTEMPIAEcoeiiiiiiie it 174

B.4. FIIEENIrY HanNGIErcoooiiii et e e e e e e e e e e e ennes 174
B.4. L INAEXINPUL TYPES ooiiieeieiiiiieeee ettt e e e e e e e r e e e e e e s s eanrareeeeaeeas 175
B.4.2. INAEXOULPUL TYPES ...eeeieiiiiiiieeeitiee e ettt e ettt ettt e s e e e s s e e e e e e e aaes 176

Compass - Java Search Engine viii

Preface

Compass Goal
"Smplify the integration of Search Engine into any application”

As you will see, Compass is geared towards integrating Search Engine functionality into any type of
application (web app, rich client, middle-ware, ...). We ask you, the user, to give feedback on how complex it
was to integrate Compass into your application, and places where Compass can be enhanced to make things
even simpler.

Compass is a powerful, transactional Java Search Engine framework. Compass allows you to declaratively map
your Object domain model to the underlying Search Engine, synchronizing data changes between search engine
index and different datasources. Compass provides a high level abstraction on top of the Lucene low level API.
Compass aso implements fast index operations and optimization and introduces transaction capabilities to the
Search Engine.

Compass aim is to provide the following:

e Thesimplest solution for enabling search capabilities within your application stack.
« Promote the use of Search Engine as a lightweight application datasource.

¢ Providerich Search Engine semantics to find application data.

» Synchronize data changes between Search Engine and different datasources.

« Writeless code, find data quicker.

This document provides a reference guide to Compass's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on Compass forum, or
Compass JIRA (issue tracking).

Before we continue, the Compass team would like to thank the Hibernate and Spring Framework teams, for
providing the template DocBook definition and configuration, which help us create this reference guide.

Compass - Java Search Engine iX

http://www.hibernate.org
http://www.springframework.org

Chapter 1. Introduction

History

Shay Banon (kimchy), the creator of Compass, decided to write a ssimple Java based recipe management
software for his wife (who happens to be a chef). Main requirement for the tool, since it was going to hold
substantial cooking knowledge, was to be able to get to the relevant information fast. Using Spring Framework,
Hibernate, and al the other tools out there that makes a devel oper life simple, he was surprised to find nothing
similar in the search engine department. Now, don't get him wrong, Lucene is an amazing search engine (or IR
library), but developers want simplicity, and Lucene comes with an added complexity that caused Shay to start
Compass.

In todays applications, search is becoming a "must have" requirement. Users expect applications (rich clients,
web based, sever side, ...) to provide snappy and relevant search results the same way Google does for the web.
Let it be a recipe management software, a trading application, or a content management driven web site, users
expect search results across the whole app business domain model.

Java developers on the other hand, need to implement it. As Java developers are getting used to simplified
development model, with Hibernate, Spring Framework, and EJB3 to name a few, up until now there was a
lack in asimple to use Java Search Engine solution. Compass aim isto fill this gap.

Many applications, once starting to use a search engine in order to implement that illusive search box, find that
the search engine can then be used for many data extraction related operations. Once a search engine holds a
valid representation of the application business model, many times it just makes sense to execute simple queries
againgt it instead of going to the actual data store (usually a database). Two prime examples are Jira and
Confluence, which perform many of the reporting and search (naturally) operations using a search engine
instead of the usual database operations.

1.1. Overview

Compass provides a breadth of features geared towards integrating search engine functionality. The next
diagram shows the different Compass modules, followed by a short description of each one.

Compass - Java Search Engine 1

http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/confluence/

Introduction

Compass Gps Compass Spring
Hibernate, JPA, JDO, OJB, DAO, Transaction, MVC,
Jdbe AQOP
————————————— S —————————————————————

Compass Core
Transactional Index, Mapping (OSEM/XSEM/RSEM),
Search Engine APl & Abstraction,
Lucena extensions and helpers

—

Overview of Compass

Compass Core is the most fundamental part of Compass. It holds Lucene extensions for transactional index,
search engine abstraction, ORM like API, transaction management integration, different mappings technologies
(OSEM, XSEM and RSEM), and more. The aim of Compass core is to be usable within different scenarios and
environments, and simplify the core operations done with a search engine.

Compass Gps am is to integrate with different content sources. The prime feature is the integration with
different ORM frameworks (Hibernate, JPA, JDO, OJB), alowing for amost transparent integration between a
search engine and an ORM view of content that resides in a database. Other features include a Jdbc integration,
which alows to index database content using configurable SQL expression responsible for extracting the
content.

Compass Spring integrate Compass with the Spring Framework. Spring, being an easy to use application
framework, provides a smpler development model (based on dependency injection and much more). Compass
integrates with Spring in the same manner ORM Frameworks integration is done within the Spring Framework
code-base. It also integrates with Spring transaction abstraction layer, AOP support, and MV C library.

1.2. luse ...

The following sections are aimed to be a brief introduction and a navigation map for people who are familiar or
use this different technologies:

1.2.1. ... Lucene

Direct Lucene

Compass tries to be a good Lucene citizen, allowing to use most of Lucene classes directly within Compass. If
your application has a specialized Query, Analyzer, or Filter, you can use them directly with Compass.
Compass does have its own index structure, divided into sub indexes, but each sub index is a fully functional

Compass - Java Search Engine 2

http://www.springframework.org

Introduction

Lucene index.

Search Engine Abstraction

Compass created a search engine abstraction, with its main (and only) implementation using Lucene. Luceneis
an amazing, fast, and stable search engine (or IR library), yet the main problem with integrating L ucene with
our application isitslow-level usage and API.

For people who use or know Lucene, it is important to explain new terms that are introduced by Compass.
Resour ce IS Compass abstraction on top of a Lucene Docurent , and Pr oper ty is Compass abstraction on top of
LuceneFi el d. Both do not add much on top of the actual Lucene implementations, except for Resour ce, which
is associated with an Alias. For more information, please read Chapter 5, Search Engine.

RSEM - Resource/Search Engine Mapping

Resour ce is the lowest level data object used in Compass, with all different mapping technologies are geared
towards generating it. Compass comes with a low level mapping technology called RSEM (Resource/Search
Engine Mapping), which allows to declaratively define resource mapping definitions. RSEM can be used when
an existing system already uses Lucene (upgrade to Compass should be minimal), or when an application does
not have arich domain model (Object or XML).

An additional feature built on top of Compass converter framework, is that a Property value does not have to
be a String (as in Lucene Fi el d). Objects can be used as values, with specific or default converters applied to
them. For more information, please read Chapter 8, RSEM - Resour ce/Search Engine Mapping.

Smple API

Compass exposes a very simple API. If you have experience with an ORM tool (Hibernate, JPA, ...), you
should feel very comfortable with Compass API. Also, Lucene has three main classes, | ndexReader , Sear cher
and I ndexWiter. It is difficult, especially for developers unfamiliar with Lucene, to understand how to
perform operations against the index (while till having a performant system). Compass has a single interface,
with all operations available through it. Compass aso abstract the user from the gory details of opening and
closing readers/searchers/writers, as well as caching and invalidating them. For more information, please read
Chapter 2, Introduction, and Chapter 11, Working with objects.

Transactional Index and Integration

Lucene is not transactional. This causes problems when trying to integrate Lucene with other transactional
resources (like database or messaging). Compass provides support for two phase commits transactions
(read_committed and serializable), implemented on top of Lucene index segmentations. The implementation
provides fast commits (faster than Lucene), though they do require the concept of Optimizers that will keep the
index at bay. For more information, please read Section 5.6, “ Transaction”, and Section 5.9, “Optimizers’.

On top of providing support for a transactional index, Compass provides integration with different transaction
managers (like JTA), and provides alocal one. For more information, please read Chapter 10, Transaction.

Fast Updates

In Lucene, in order to perform an update, you must first delete the old Docurent and then create a new
Docunent . This is not trivial, especially because of the usage of two different interfaces to perform the delete
(IndexReader) and create (IndexWriter) operations, it is also very delicate in terms of performance. Thanks to
Compass support for transactional index, and the fact that each saved Resource in Compass must be
identifiable (through the use of mapping definition), makes executing an update using Compass both simple

Compass - Java Search Engine 3

http://lucene.apache.org

Introduction

(the operation is called save), and fast.
All Support

When working with Lucene, there is no way to search on al the fields stored in a Document. One must
programmatically create synthetic fields that aggregate all the other fields in order to provide an "all" field, as
well as providing it when querying the index. Compass does it all for you, by default Compass creates that "all"
field and it acts as the default search field. Of course, in the spirit of being as configurable as possible, the "all"
property can be enabled or disabled, have a different name, or not act as the default search property. One can
also exclude certain mappings from participating in the al property.

Index Fragmentation

When building a Lucene enabled application, sometimes (for performance reasons) the index actually consists
of severa indexes. Compass will automatically fragment the index into several sub indexes using a
configurable sub index hashing function, allowing to hash different searchable objects (Resour ce, mapped
object, or an xm bj ect) into a sub index (or several of them). For more information, please read Section 5.5,
“Index Structure”.

1.2.2. ... Domain Model

One of Compass main features is OSEM (Object/Search Engine Mapping). Using either annotations or xml
definitions (or a combination), mapping definitions from a rich domain model into a search engine can be
defined. For more information, please read Chapter 6, OSEM - Object/Search Engine Mapping.

1.2.3. ... Xml| Model

One of Compass main features is XSEM (Xml/Search Engine Mapping). If your application is built around
Xml data, you can map it directly to the search engine using simple xml based mapping definitions based on
Xpath expressions. For more information, please read Chapter 7, XSEM - Xml to Search Engine Mapping.

1.2.4. ... No Model

If no specific domain model is defined for the application (for example, in a messaging system based on
properties), RSEM (Resource/Search Engine Mapping) can be used. A Resour ce can be considered as a fancy
hash map, allowing for completely open data that can be saved in Compass. A resource mapping definition
needs to be defined for "types' of resources, with at least one resource id definition (a resource must be
identifiable). Additional resource properties mapping can be defined, with declarative definition of its
characteristics (search engine, converter, ...). For more information, please read Chapter 8, RSEM -
Resour ce/Search Engine Mapping.

1.2.5. ... ORM Framework

Built on top of Compass Core, Compass Gps (which is aimed at integrating Compass with other datasources)
integrates with most popular ORM frameworks. The integration consists of two main features:

Index Operation

Automatically index data from the database using the ORM framework into the search engine using Compass
(and OSEM). Objects that have both OSEM and ORM definitions will be indexed, with the ability to provide
custom filters.

Framework (2.0.2)

Introduction

Mirror Operation

For ORM frameworks that support event registration (most do), Compass will automatically register its own
event listeners to reflect any changes made to the database using the ORM API into the search engine.

For more information, please read Chapter 14, Introduction. Some of the ORM frameworks supports are:
Chapter 16, Embedded Hibernate, Chapter 18, JPA (Java Persistence API), Chapter 19, Embedded OpenJPA,
Chapter 22, JDO (Java Data Objects), Chapter 23, OJB (Object Relational Broker) and Chapter 24, iBatis.

1.2.6. ... Spring Framework

The aim of Compass::Spring module is to provide seamless integration with the Spring Framework (as if a
Spring developer wroteiit :)).

First level of integration is very similar to Spring provided ORM integration, with a Local ConpassBean which
allows to configure Compass within a Spring context, and a ConpassDaoSupport class. For more information,
please read Chapter 25, Introduction and Chapter 26, DAO Support.

Spring AOP integration, providing simple advices which helps to mirror data changes done within a Spring
powered application. For applications with a data source or a tool with no Gps device that works with it (or it
does not have mirroring capabilities - like iBatis), the mirror advices can make synchronizing changes made to
the data source and Compass index simpler. For more information, please read Chapter 31, Spring AOP.

Spring Pl at f or nilr ansact i onManager abstraction integration, using its SpringSyncTransacti onFactory tO
register synchronization with Spring on going transaction. This allows Compass to work in environments where
Spring specific transactions managers are used, like Hi ber nat eTr ansact i onManager . For more information,
please read Chapter 27, Spring Transaction.

For web applications that use Spring MVC, Compass provides a search and index controllers. The index
controller can automatically perform the index operation on a ConpassGps, only the initiator view and result
view need to be written. The search controller can automatically perform the search operation (With
pagination), requiring only the search initiator and search results view (usually the same one). For more
information, please read Chapter 32, Soring MVC Support.

Last, Local ConpassBean can be configured using Spring 2 new schema based configuration.

Framework (2.0.2)

Part |. Compass Core

Compass Core provides the core of Compass simplification of search engine integration into an application.
Compeass is very simple to use, and you can start/enable a searchable application in a matter of hours, many
times without knowing about Compass advance features and extendibility.

The two most important chapters are Chapter 2, Introduction, which explains the high level Compass API's
(similar to your usual ORM framework), and Chapter 3, Configuration which explains how to configure a
Compass instance. Chapter 5, Search Engine dives into details of Compass search engine abstraction,
explaining concepts, index structure, and Lucene extensions (both Compass extensions and Compass enabling
Lucene features simply). In order to start using Compass, reading this chapter is not required, though it does
provide a good overview of how Compass abstracts Lucene, and explains how to configure advance search
engine related features (Analyzers, Optimizers, Sub Index Hashing, and so on).

The following chapters dive into details of Compass different mapping technologies. Chapter 6, OSEM -
Object/Search Engine Mapping explain how to use Compass OSEM (Object/Search Engine Mapping),
Chapter 7, XSEM - Xml to Search Engine Mapping goes into details of how to use Compass XSEM
(Xml/Search Engine Mapping), and Chapter 8, RSEM - Resource/Search Engine Mapping dives into Compass
RSEM (Resource/Search Engine Mapping), which isalow level, Lucene like, mapping support.

Chapter 9, Common Meta Data explains Compass support for creating a semantic model defined outside of the
mapping definitions. Using it is, in the spirit of Compass, completely optional, and depends on the devel opers if
they wish to use it within their Compass enabled application.

Chapter 10, Transaction goes into details of the different ways to integrate Compass transaction support within
different transaction managers. It explains both local (Compass managed) transaction, and JTA integration.

Compass - Java Search Engine 6

Chapter 2. Introduction

2.1. Overview

Compass API

As you will learn in this chapter, Compass high level API looks strangely familiar. If you used an ORM
framework (Hibernate, JDO or JPA), you should feel right at home. Thisis of-course, intentional. Theaim is to
let the developer learn as less as possible in terms of interaction with Compass. Also, there are so many design
patterns of integrating this type of API with different applications models, that it is a shame that they won't be
used with Compass as well.

For Hibernate users, Conpass Maps t0 SessionFactory, ConpassSession Maps to Session, and
ConpassTransacti on mapsto Tr ansact i on.

Compassis built using a layered architecture. Applications interacts with the underlying Search Engine through
three main Compass interfaces. Conpass, ConpassSessi on and ConpassTr ansact i on. These interfaces hide the
implementation details of Compass Search Engine abstraction layer.

Compass provide access to search engine management functionality and ConpassSessi on's for managing data
within the Search Engine. It is created using ConpassConfi gur ati on (loads configuration and mappings files).
When conpass iscreated, it will either join an existing index or create a new oneif noneis available. After this,
an application will use Conpass to obtain a ConpassSessi on in order to start managing the data with the Search
Engine. Conpass is aheavyweight object, usually created at application startup and shared within an application
for ConpassSessi on creation.

CompassSession as the name suggests, represents a working lightweight session within Compass (it is non
thread safe). With a ConpassSessi on, applications can save and retrieve any searchable data (declared in
Compass mapping files) from the Search Engine. Applications work with ConpassSessi on at either the Object
level or Compass Resource level to save and retrieve data. In order to work with Objects within Compass, they
must be specified using either OSEM or XSEM (with XSEM Xm Qbj ect). In order to work with Resources,
they must be specified using RSEM (Resource can till be used with OSEM/RSEM to display search results,
since ObjectXml end up being converted to Resources). Compass will then retrieve the declared searchable
data from the Object automatically when saving Objects within Compass. When querying the Search Engine,
Compass provides a ConpassHi t s interface which one can use to work with the search engine results (getting
scores, resources and mapped objects).

CompassTransaction, retrieved from the ConpassSessi on and is used to manage transactions within Compass.
You can configure Compass Core to use either local transactions or JTA synchronization. Note, that unlike
JDBC, automatic transaction registration will not happen, so we strongly recommend using the
ConpassTransact i on abstraction for easy (configuration based) replacement of the transaction strategy.

After so many words, lets see a code snippet that shows the usage of the main compass interfaces:

ConpassConfiguration conf =
new ConpassConfi guration().configure().addd ass(Aut hor. cl ass);
Conpass conpass = conf. bui | dConpass();
ConpassSessi on sessi on = conpass. openSessi on();
ConpassTransaction tx = null

try {
tx = session. begi nTransaction();

sessi on. save(aut hor);

Compass - Java Search Engine 7

Introduction

ConpassHits hits = session.find("jack |ondon");
Aut hor a = (Author) hits.data(0);
Resource r = hits.resource(0);
tx.commit();
} catch (ConpassException ce) {
if (tx !'= null) tx.rollback();

} finally {
session. cl ose();
}

2.2. Session Lifecycle

Compass::Core Conpass interface manages the creation of ConpassSessi on using the openSessi on() method.
When begi nTransaction() is caled on the ConpassTransaction, the session is bound to the created
transaction (JTA, Spring or Local) and used throughout the life-cycle of the transaction. It means that if an
additional session is opened within the current transaction, the originating session will be returned by the
openSessi on() method.

When using the openSessi on method, Compass will automatically try and join an aready running outer
transaction. An outer transaction can be an already running local Compass transaction, a JTA transaction, or a
Spring managed transaction. If Compass manages to join an existing outer transaction, the application does not
need to call ConpassSessi on#begi nTransaction() OF USe ConpassTransaction t0 manage the transaction
(since it is already managed). This allows to simplify the usage of Compass within managed environments
(CMT or Spring) where atransaction is already in progress by not requiring explicit Compass code to manage a
Compass transaction.

2.3. Template and Callback

Compass also provides a simple implementation of the template design pattern, using the ConpassTenpl at e and
the ConpasscCal | back classes. Using it, one does not have to worry about the Compass session or transaction
handling. The ConpassTenpl at e provides al the session operations, except that they are transactional (a new
session is opened and a new transaction is created and committed when calling them). It also provides the
execut e method, which accepts a callback class (usually an anonymous inner class), to execute within it
operations that are wrapped within the same transaction.

An example of using the template is provided:

ConpassConfiguration conf =
new ConpassConfi guration().configure().addd ass(Aut hor. cl ass);
Conpass conpass = conf. bui | dConpass();
ConpassTenpl ate tenpl ate = new ConpassTenpl at e(conpass) ;
tenpl at e. save(author); // open a session, transaction, and cl oses both
Aut hor a = (Author) tenpl ate. execute(new ConpassCal | back() {
public Ooject dol nConpass(ConpassSessi on session) {
/1 all the actions here are within the sane session
// and transaction
sessi on. save(aut hor);
ConpassHi ts hits = session.find("london");

return session.load(id);

1)

Compass - Java Search Engine 8

Chapter 3. Configuration

Configuration Samples

Throughout this manual, we will use the schema based configuration file to show examples of how to configure
certain features. This does not mean that they can not be expressed in a settings based configuration (either
programmatic or DTD based configuration file). For a complete list of al the different settings in compass,
please refer to Appendix A, Configuration Settings.

Compass must be configured to work with a specific applications domain model. There are a large number of
configuration parameters available (with default settings), which controls how Compass works internally and
with the underlying Search Engine. This section describes the configuration API.

In order to create a Conpass instance, it first must be configured. ConpassConfi gurati on can be used in order
to configure a Conpass instance, by having the ability to add different mapping definitions, configure Compass
based on xml configuration files, and expose a programmatic configuration options.

For Java 5 based applications (mainly ones that use OSEM annotations), ConpassAnnot at i onsConf i gur ati on
can be wused (which extends ConpassConfiguration). For simplicity, Compass comes with
ConpassConfi gur at i onFact ory, which tries to be smart and detect based on the VM version and the included
compass modules, which configuration to create. Here is an example of the preferred way to obtain a
ConpassConf i gur at i on instance:

ConpassConfiguration conf =
ConpassConfi gurati onFact ory. newConfi guration();

3.1. Programmatic Configuration

A conpass instance can be programatically configured using ConpassConf i gur ati on. Two main configuration
aspects are adding mapping definitions, and setting different settings.

ConpassConfi guration provides several API's for adding mapping definitions (xml mapping files suffixed
.cpm xnmi or annotated classes), as well as Common Meta Data definition (xml mapping files suffixed
.cnd. xm). The following table summarizes the most important API's:

Table 3.1. Configuration Mapping API

API Description

addFi | e(String) Loads the mapping file (cpm or cnd) according to the
specified file path string.

addFi | e(Fil e) Loads the mapping file (cpm or cnd) according to the
specified file object reference.

addd ass(d ass) Loads the mapping file (cpm) according to the specified
class. test. Aut hor. cl ass will map to
test/ Aut hor. cpm xm within the class path. Can aso add
annotated classes if using Compass annotations support.

Compass - Java Search Engine 9

Configuration

API Description

addURL(URL) Loads the mapping file (cpm or cnd) according to the
specified URL.

addResour ce(Stri ng) Loads the mapping file (cpm or cnd) according to the

specified resource path from the class path.

addl nput St rean(| nput St r ean) Loads the mapping file (cpm or cnd) according to the
specified input stream.

addDirectory(String) Loads dl the files named *. cpm xmi or *. cnd. xni from
within the specified directory.

addJar (Fi | e) Loads dl the files named *. cpm xmi or *. crd. xni from
within the specified Jar file.

addScan(String basePackage, string Scans for al the mappings that exist wihtin the base

pat t ern) backage recursively. An optioa ant style pattern can be
provided as well. The mappings detected are all the xml
based mappings. Annotation based mappings will be
detected automatically if either ASM or Javassist exists
within the classpath.

addMappi ngResol ver (Mappi ngResol ver) Uses a class that implements the Mappi ngResol ver 10 get an
I nput St r eamfor xml mapping definitions.

Other than mapping file configuration API, Compass can be configured through the ConpassSettings
interface. ConpassSettings is similar to Java Properties class and is accessble via the
ConpassConfiguration.getSettings() Or the CopnassConfiguration.setSetting(String setting,
String value) methods. Compasss many different settings are explained in Appendix A, Configuration
Settings.

Compass setting can aso be defined programmatically using the
or g. conpass. cor e. confi g. ConpassEnvi ronment and or g. conpass. cor e. | ucene. LuceneEnvi ronnment classes
(hold programmatic manifestation of all the different settings names).

In terms of required settings, Conpass only requires the conpass. engi ne. connection (which maps to
ConpassEnvi r onmrent . CONNECTI ON) parameter defined.

Global Converters (classes that implement Compass Convert er) can also be registered with the configuration
to be used by the created compass instances. The converters are registered under a logical name, and can be
referenced in the mapping definitions. The method to register aglobal converter isregi st er Converter.

Again, many words and so little code.. . The following code example shows the minimal
ConpassConf i gur ati on with programmatic control:

ConpassConfiguration conf = new ConpassConfiguration()
.set Setting(ConpassEnvi ronnment. CONNECTI ON, "ny/index/dir")
. addResour ce(Dubl i nCore. cnd. xm)
. addd ass(Aut hor . cl ass);

An important aspect of settings (properties like) configuration is the notion of group settings. Similar to the way
log4j properties configuration file works, different aspects of Compass need to be configured in a grouped
nature. If we take Compass converter configuration as an example, here is an example of a set of settings to
configure a custom converter caledt est :

Compass - Java Search Engine 10

http://logging.apache.org/log4j/

Configuration

or g. conpass. converter.test.type=eg. Test Converter
or g. conpass. converter.test. paranil=val uel
or g. conpass. converter.test. paran2=val ue2

Compass defined prefix for all converter configuration is or g. conpass. converter. The segment that comes
afterwards (up until the next '.") is the converter (group) name, which is set to t est . This will be the converter
name that the converter will be registered under (and referenced by in different mapping definitions). Within
the group, the following settings are defined: t ype, par ant, and par an®. t ype is one of the required settings for
a custom Compass converter, and has the value of the fully qualified class name of the converter
implementation. par ami and par an2 are custom settings, that can be used by the custom converter (it should
implement ConpassConf i gur abl e).

3.2. XML Configuration

All of Compass's operational configuration (apart from mapping definitions) can be defined in a single xml
configuration file, with the default name conpass. cfg. xni . You can define the environmental settings and
mapping file locations within this file. The following table shows the different ConpassConfi gurati on API's
for locating the main configuration file:

Table 3.2. Compass Configuration API

API Description

configure() Loads a configuration file called conpass. cf g. xmi from the root of
the class path.

configure(String) Loads a configuration file from the specified path

3.2.1. Schema Based Configuration

Schema and Settings

Compass uses the schema based configuration as a different view on top of its support for settings based
configuration (properties like). Compass trandates all the different, more expressive, xml structure into their
equivalent settings as described in Appendix A, Configuration Settings.

The preferred way to configure Compass (and the ssimplest way) is to use an Xml configuration file, which
validates against a Schema. It allows for richer and more descriptive (and less erroneous) configuration of
Compass. The schemais fully annotated, with each element and attribute documented within the schema. Note,
that some additional information is explained in the Configuration Settings appendix, even if it does not apply
in terms of the name of the setting to be used, it is advisable to read the appropriate section for more fuller
explanation (such as converters, highlighters, analyzers, and so on).

Here are a few sample configuration files, just to get a feeling of the structure and nature of the configuration
file. Thefirst isasimple file based index with the OSEM definitions for the Author class.

<conpass-core-config xm ns="http://ww. conpass- proj ect. org/ schema/ cor e-confi g"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. conpass- proj ect. or g/ schema/ core-confi g
http://ww. conpass- proj ect. org/ schema/ conpass-core-config-2.0.xsd">

Compass - Java Search Engine 11

Configuration

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index"/>
</ connecti on>

<mappi ngs>
<cl ass nanme="test.Author" />
</ mappi ngs>

</ conpass>
</ conpass- cor e- confi g>

The next sample configures a jdbc based index, with abigger buffer size for default file entries:

<conpass- core-config xm ns="http://ww. conpass- proj ect.org/schena/ core-config"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"

xsi : schemaLocati on="htt p://ww. conpass- proj ect. org/ schema/ core-confi g
http://ww. conpass- proj ect. or g/ schema/ conpass- cor e-confi g-2. 0. xsd" >

<conpass nanme="defaul t">

<connecti on>
<j dbc di al ect ="org. apache. | ucene. store. jdbc. di al ect. HSQLDi al ect" >
<dat aSour cePr ovi der >
<driver Manager url ="jdbc: hsql db: remtest" usernanme="sa" password=""
driverC ass="org. hsql db. j dbcDriver" />
</ dat aSour cePr ovi der >
<fileEntries>
<fileEntry name="__defaul t__">
<i ndex| nput bufferSi ze="4096" />
<i ndexQut put bufferSi ze="4096" />
</fileEntry>
</fileEntries>
</ j dbc>
</ connecti on>
</ conpass>
</ conpass- cor e- confi g>

The next sample configures a jdbc based index, with a JTA transaction (note the managed="true" and
commitBeforeCompletion="true"):

<conpass-core-config xm ns="http://ww. conpass- proj ect.org/schena/ core-config"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocati on="htt p://ww. conpass- proj ect. org/ schema/ core-config
http://ww. conpass- proj ect. or g/ schema/ conpass- cor e-confi g-2. 0. xsd" >

<conpass nanme="defaul t">

<connecti on>
<j dbc di al ect ="org. apache. | ucene. store.jdbc. di al ect. HSQLDi al ect" managed="true">
<dat aSour cePr ovi der >
<driver Manager url ="jdbc: hsqgl db: remtest" usernane="sa" password=""
driverd ass="org. hsql db. j dbcDriver" />
</ dat aSour cePr ovi der >
</ j dbc>
</ connecti on>
<transaction factory="org. conpass. core.transacti on. JTASyncTransacti onFactory" conm tBef oreConpl eti on="tr ue"
</transaction>
</ conpass>
</ conpass- cor e- confi g>

Here is another sample, that configures another analyzer, a specialized Converter, and changed the default date
format for all Java Dates (date is an internal name that maps to Compass default date Converter).

<conpass-core-config xm ns="http://ww. conpass- proj ect.org/schena/ core-config"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocat i on="htt p://ww. conpass- proj ect . or g/ schema/ core-confi g
http://ww. conpass- proj ect. or g/ schema/ conpass- cor e-confi g-2. 0. xsd">

<conpass nanme="defaul t">

Framework (2.0.2)

Configuration

<connecti on>
<file path="target/test-index"/>
</ connecti on>

<converters>
<converter nanme="date" type="org.conpass.core.converter.basic. DateConverter">
<setting nane="format" val ue="yyyy- Mt dd" />
</ converter>
<converter nane="nyConverter" type="test.Mconverter" />
</ converters>

<sear chEngi ne>
<anal yzer nanme="test" type="Snowbal |" snowbal | Type="Lovi ns">
<st opWor ds>
<stopWord val ue="test" />
</ st opWor ds>
</ anal yzer>
</ sear chEngi ne>
</ conpass>
</ conpass- cor e- confi g>

The next configuration uses batch_insert transaction, with a higher max buffered documents for faster batch
indexing.

<conpass-core-config xm ns="http://ww. conpass- proj ect. org/ schema/ cor e-confi g"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="htt p: //ww. conpass- proj ect . or g/ schema/ core-confi g
http://ww. conpass- proj ect. org/ schema/ conpass-core-confi g-2. 0. xsd">

<conpass nane="defaul t">

<connecti on>
<file path="target/test-index"/>
</ connecti on>

<transaction isol ati on="batch_insert">
<bat chl nsert Setti ngs maxBufferedDocs="100" />
</transaction>
</ conpass>
</ conpass- cor e- confi g>

3.2.2. DTD Based Configuration

Compass can be configured using a DTD based xml configuration. The DTD configuration is less expressive
than the schema based one, allowing to configure mappings and Compass settings. The Configuration Settings
areexplained in Appendix A, Configuration Settings.

And here is an example of the xml configuration file:

<! DOCTYPE conpass-core-configurati on PUBLIC
"-// Conpass/ Conpass Core Configuration DTD 2.0//EN'
"http://ww. compass- proj ect. org/dtd/ conpass-core-configuration-2.0.dtd">

<conpass- cor e- confi gurati on>

<conpass>
<setting nanme="conpass. engi ne. connecti on">ny/index/dir</setting>

<met a- dat a resour ce="vocabul ary/ Dubl i nCore. cnd. xm " />
<mappi ng resource="test/Author.cpmxm" />

</ conpass>
</ conpass- cor e- confi gurati on>

Framework (2.0.2)

Configuration

3.3. Obtaining a Compass reference

After ConpassConfi gurati on has been set (either programmatic or using the XML configuration file), you can
now build a conpass instance. Conpass is intended to be shared among different application threads. The
following simple code example shows how to obtain a Conpass reference.

Conpass conpass = cfg. bui | dConpass();

Note: It is possible to have multiple conpass instances within the same application, each with a different
configuration.

3.4. Configuring Callback Events

Compass allows to configure events that will be fired once certain operations occur in using Compass, for
example, save operation.

Configuring event listener can be done settings. For example, to configure a pre save event listener, the
following setting should be used: conpass. event . preSave. nyl i stener. t ype and its value can be the actua
class name of the listener.

More information for each listener can be found in the javadoc under the or g. conpass. event s package. An
important note with regards to pre listener isthe fact that they can filter out certain operations.

Compass - Java Search Engine 14

Chapter 4. Connection

L ucene Directory

Lucene comes with a bi rect ory abstraction on top of the actual index storage. Compass uses Lucene built in
different directories implementations, as well as have custom implementations built on top of it.

The only required configuration for a Conpass instance (using the ConpassConfi gurati on) is its connection.
The connection controls where the index will be saved, or in other words, the storage location of the index. This
chapter will review the different options of index storage that comes with Compass, and try to expand on some
of important aspects when using a certain storage (like clustering support).

4.1. File System Store

By far the most popular and simple of al storage options is storing the index on the file system. Here is an
example of asimple file system based connection configuration that storestheindex inthet ar get / t est - i ndex
path:

<conpass nanme="defaul t">
<connecti on>
<file path="target/test-index"/>
</ connecti on>
</ conpass>

Another option for file system based configuration is using Java 1.4 NIO feature. The NIO should perform
better under certain environment/load then the default file based one. We recommend performing some
performance tests (preferable as close to your production system configuration as possible), and check which
one performs better. Here is an example of a simple file system based connection configuration that stores the
index inthet ar get/ t est - i ndex path:

<conpass nane="defaul t">
<connecti on>
<mrap path="target/test-index"/>
</ connecti on>
</ conpass>

When using file system based index storage, locking (for transaction support) is done using lock files. The
existence of the file means a certain sub index is locked. The default lock file directory isj ava. i o. t mp System

property.

Clustering support for file system based storage usually means sharing the file system between different
machines (running different Compass instances). Current locking mechanism will require to set the locking
directory on the shared file system, hereis an example of how to set it:

<conpass nanme="defaul t">
<connecti on>
<mrap pat h="/shared/i ndex-data"/>
</ connecti on>

<transaction | ockDi r="/shared/index-|ock" />
</ conpass>

Another important note regarding using a shared file system based index storage is not to use NFS. For best

Compass - Java Search Engine 15

Connection

performance, a SAN based solution is recommended.

4.2. RAM Store

Using the RAM based index store, the index data can be stored in memory. Thisis usable for fast indexing and
searching, on the expense of no long lived storage. Here is an example of how it can be configured:

<conpass nanme="defaul t">
<connecti on>
<ram pat h="/i ndex"/ >
</ connecti on>
</ conpass>

4.3. Jdbc Store

The Jdbc store connection type allows the index data to be stored within a database. The schema used for
storing the index actually simulates a file system based tree, with each row in a sub index table representing a
"file" with its binary data.

Compass implementation, JdbcDi r ect ory, which is built on top of Lucene Di r ect ory abstraction is completely
decoupled from the rest of Compass, and can be used with pure Lucene applications. For more information,
please read Appendix B, Lucene Jdbc Directory. Naturally, when using it within Compass it allows for simpler
configuration, especially in terms of transaction management and Jdbc Dat aSour ce management.

Here is a simple example of using Jdbc to store the index. The example configuration assumes a standalone
configuration, with no data source pooling.

<conpass nanme="defaul t">
<connecti on>
<j dbc>
<dat aSour cePr ovi der >
<driver Manager url ="jdbc: hsql db: remtest"
user nane="sa" password=""
driverd ass="org. hsqgl db. j dbcDriver" />
</ dat aSour cePr ovi der >
</j dbc>
</ connecti on>
</ conpass>

The above configuration does not define a diaect attribute on the jdbc element. Compass will try to auto-detect
the database dialect based on the database meta-data. If it fails to find one, a dialect can be set, in our case it
should be di al ect =" or g. apache. | ucene. store. j dbc. di al ect. HSQLDi al ect "

4.3.1. Managed Environment

It isimportant to understand if Compass is working within a "managed” environment or not when it comesto a
Jdbc index storage. A managed environment is an environment where Compass is not in control of the
transaction management (in case of configuring Compass with JTA or Spring transaction management). If
Compass is in control of the transaction, i.e. using Local transaction factory, it is not considered a managed
environment.

When working in a non managed environment, Compass will wrap the data source with a
Transact i onAwar eDat aSour cePr oxy, and will commit/rollback the Jdbc connection. When working within a
managed environment, no wrapping will be performed, and Compass will let the external transaction manager

Compass - Java Search Engine 16

http://en.wikipedia.org/wiki/Storage_area_network

Connection

to commit/rollback the connection.

Usually, but not always, when working in a managed environment, the Jdbc data source used will be from an
external system/configuration. Most of the times it will either be INDI or external data source provider (like
Spring). For more information about different data source providers, read the next section.

By default, Compass works as if within a non managed environment. The managed attribute on the j dbc
element should be set to t r ue otherwise.

4.3.2. Data Source Provider

Compass alows for different Jdbc DataSource providers. A Dat aSour ceProvi der implementation is
responsible for configuring and providing a Jdbc Dat aSour ce instance. A data source implementation is very
important when it comes to performance, especialy in terms of pooling features.

All different data source supported by Compass allow to configure the autoCommit flag. There are three values
alowed for autoCommit: fal se, true and external (don't set the autoCommit explicitly, assume it is
configured elsewhere). The autoCommit mode defaultsto f al se and it is the recommended value (external can
also be used, but make sure to set the actual data source to false).

4.3.2.1. Driver Manager

The simplest of all providers. Does not requires any external libraries or systems. Main drawback is
performance, since it performs no pooling of any kind. The first sasmple of a Jdbc configuration earlier in this
chapter used the driver manager as a data source provider.

4.3.2.2. Jakarta Commons DBCP

Compass can be configured to use Jakarta Commons DBCP as a data source provider. It is the preferred option
than the driver manager provider for performance reasons (it is up to you if you want to use it or c3p0
explained later in this section). Here is an example of using it:

<conpass nane="defaul t">
<connecti on>
<j dbc>
<dat aSour cePr ovi der >
<dbcp url ="jdbc: hsql db: mrem test"
user name="sa" password=""
driverC ass="org. hsql db. j dbcDri ver"
maxActi ve="10" maxWait="5" maxldle="2" initial Size="3" mnldle="4"
pool Prepar edSt at enent s="true" />
</ dat aSour cePr ovi der >
</ j dbc>
</ connecti on>
</ conpass>

The configuration shows the different settings that can be used on the dbcp data source provider. They are, by
no means, the recommended values for a typical system. For more information, please consult Jakarta
Commons DBCP documentation.

4.3.2.3. ¢3p0

Compass can be configured using c3p0 as a data source provider. It is the preferred option than the driver
manager provider for performance reasons (it is up to you if you want to use it or Jakarta Commons DBCP
explained previoudly in this section). Here is an example of using it:

<conpass nanme="defaul t">
<connecti on>

Compass - Java Search Engine 17

http://jakarta.apache.org/commons/dbcp/
http://sourceforge.net/projects/c3p0
http://jakarta.apache.org/commons/dbcp/
http://jakarta.apache.org/commons/dbcp/
http://sourceforge.net/projects/c3p0
http://jakarta.apache.org/commons/dbcp/

Connection

<j dbc>
<dat aSour cePr ovi der >
<c3p0 url ="jdbc: hsqgl db: nemtest"
user name="t est user nane" passwor d="t est passwor d"
driverC ass="org. hsqgl db. j dbcDriver" />
</ dat aSour cePr ovi der >
</j dbc>
</ connecti on>
</ conpass>

The ¢c3p0 data source provider will use c3p0 ComboPool edDat aSour ce, With additional settings can be set by
using c3p0.properties stored as atop-level resource in the same CLASSPATH / classloader that loads c3p0's jar
file. Please consult the c3p0 documentation for additional settings.

4.3.2.4. INDI

Compass can be configured to look up the data source using JNDI. Here is an example of using it:

<conpass nanme="defaul t">
<connecti on>
<j dbc>
<dat aSour cePr ovi der >
<j ndi | ookup="testds" usernanme="testusernane" password="testpassword" />
</ dat aSour cePr ovi der >
</j dbc>
</ connecti on>
</ conpass>

The jndi lookup environment, including the j ava. nami ng. factory.initial andjava. nani ng. provider. url
JNDI settings, can be configured in the other :) j ndi element, directly under the conpass element. Note, the
user nanme and passwor d are used for the bat aSour ce, and are completely optional.

4.3.2.5. External

Compass can be configured to use an external data source using the Ext er anl Dat aSour cePr ovi der. |t uUses
Javathread local to store the Dat aSour ce for later use by the data source provider. Setting the data source uses
the static method set Dat aSour ce(Dat aSour ce dat aSour ce) ON Ext er anl Dat aSour ceProvi der. Here is an
example of how it can be configured:

<conpass nane="defaul t">
<connecti on>
<j dbc>
<dat aSour cePr ovi der >
<external usernane="testusernanme" password="testpassword"/>
</ dat aSour cePr ovi der >
</ j dbc>
</ connecti on>
</ conpass>

Note, the user name and passwor d are used for the Dat aSour ce, and are completely optional .#

4.3.3. File Entry Handler

Configuring the Jdbc store with Compass also allows defining Fi | eEnt ryHandl er settings for different file
entries in the database. FileEntryHandlers are explained in Appendix B, Lucene Jdbc Directory (and require
some Lucene knowledge). The Lucene Jdbc Directory implementation already comes with sensible defaults,
but they can be changed using Compass configuration.

One of the things that comes free with Compass is automatically using the more performant

Framework (2.0.2)

Connection

Fet chPer Tr ansact oi nJdbcl ndexI nput if possible (based on the dialect). Specia care need to be taken when
using the mentioned index input, and it is done automatically by Compass.

File entries configuration are associated with a name. The name can be either __def aul t __ which isused for all
unmapped files, it can be the full name of the file stored, or the suffix of the file (the last 3 characters).

Here is an example of the most common configuration of file entries, changing their buffer size for both index
input (used for reading data) and index output (used for writing data):

<conpass nanme="defaul t">
<connecti on>
<j dbc>
<dat aSour cePr ovi der >
<ext ernal usernane="testusernane" password="testpassword"/>
</ dat aSour cePr ovi der >

<fileEntries>
<fileEntry name="__default__">
<i ndex| nput bufferSi ze="4096" />
<i ndexQut put bufferSi ze="4096" />
</fileEntry>
</fileEntries>
</j dbc>
</ connecti on>
</ conpass>

4.3.4. DDL

Compass by default can create the database schema, and has defaults for the column names, types, sizes and so
on. The schema definition is configurable as well, here is an example of how to configure it:

<conpass nanme="defaul t">
<connecti on>
<j dbc>
<dat aSour cePr ovi der >
<external usernanme="testusernanme" password="testpassword"/>
</ dat aSour cePr ovi der >

<ddl >
<naneCol um nane="nynane" | engt h="70" />
<si zeCol um nane="nysi ze" />
</ ddl >
</ j dbc>
</ connecti on>
</ conpass>

Compass by default will drop the tables when deleting the index, and create them when creating the index. If
performing schema based operations is not alowed, the di sabl eSchemaOper at i ons flag can be set to true.
Thiswill cause Compass not to perform any schema based operations.

4.4. Lock Factory

Lucene alows to use different LockFact ory implementation controlling how locks are performed. By default,
each directory comes with its own default lock, but overriding the lock factory can be done within Compass
configuration. Here is an example of how this can be done:

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index" />
<l ockFactory type="nativefs" path="test/#subi ndex#" />
</ connecti on>
</ conpass>

Framework (2.0.2)

Connection

The lock factory type can have the following values. si npl ef s, nativefs (both file system based locks),
nol ock, and singleinstance. A fully qualified class name of LockFactory implementation or
LockFact oryProvi der can aso be provided.

The path alows to provide path parameter to the file system based locks. This is an optional parameter and
defaults to the sub index location. The specialized keyword #subi ndex# can be used to be replaced with the
actual sub index.

4.5. Local Directory Cache

Compass supports local directory cache implementation allowing to have a local cache per sub index or
globally for al sub indexes (that do not have alocal cache already specifically defined for them). Local cache
can be really useful where a certain sub index is heavily accessed and a local in memory cache is required to
improve its performance. Another example is using alocal file system based cache when working with a Jdbc
directory.

Local Cache fully supports severa Compass instances running against the same directory (unlike the directory
wrappers explained in the next section) and keeps its local cache state synchronized with external changes
periodically.

Here is an example configuring a memory based local cache for sub index called a

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index" />
<l ocal Cache subl ndex="a" connection="ram//" />
</ connecti on>
</ conpass>

And here is an example of how it can be configured to use local file system cache for al different sub indexes
(using the specia __def aul t __ keyword):

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index" />
<l ocal Cache subl ndex="__default__" connection="file://tnp/cache" />
</ connecti on>
</ conpass>

Other than using a faster local cache directory implementation, Compass also improve compound file structure
performance by performing the compound operation on the local cache and only flushing the already
compound index structure.

4.6. Lucene Directory Wrapper

All the different connection options end up as an instance of a Lucene Di rectory per sub index. Compass
provides the ability to wrap the actual Di rect ory (think of it as a Di rect ory aspect). In order to configure a
wrapper, DirectoryW apper Provi der implementation must be provided. The Direct or yW apper Provi der
implementation must implement Directory wap(String sublndex, Directory dir), which accepts the
actual directory and the sub index it is associated with, and return awrapped Di r ect or y implementation.

Compass comes with several built in directory wrappers:

Compass - Java Search Engine 20

Connection

4.6.1. SyncMemoryMirrorDirectoryWrapperProvider

Wraps the given Lucene directory with SyncMenoryM rror Di rect oryW apper (which is also provided by
Compass). The wrapper wraps the directory with an in memory directory which mirrorsit synchronously.

The original directory is read into memory when the wrapper is constructed. All read related operations are
performed against the in memory directory. All write related operations are performed both against the in
memory directory and the original directory. Locking is performed using the in memory directory.

The wrapper will alow for the performance gains that comes with an in memory index (for read/search
operations), while still maintaining a synchronized actual directory which usually uses a more persistent store
than memory (i.e. file system).

This wrapper will only work in cases when either the index is read only (i.e. only search operations are
performed against it), or when there is a single instance which updates the directory.

Here is an example of how to configure a directory wrapper:

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index"/>
<di rect or yW apper Provi der name="test"
t ype="org. conpass. core. | ucene. engi ne. st ore. w apper . SyncMenor yM rror Di r ect or yW apper Provi der" >
</ directoryW apper Provi der >
</ connecti on>
</ conpass>

4.6.2. AsyncMemoryMirrorDirectoryWrapperProvider

Wraps the given Lucene directory with AsyncMeroryM rror Di rect oryW apper (which is also provided by
Compass). The wrapper wraps the directory with an in memory directory which mirrorsit asynchronously.

The original directory is read into memory when the wrapper is constructed. All read related operations are
performed against the in memory directory. All write related operations are performed against the in memory
directory and are scheduled to be performed against the original directory (in a separate thread). Locking is
performed using the in memory directory.

The wrapper will adlow for the performance gains that comes with an in memory index (for read/search
operations), while still maintaining an asynchronous actual directory which usually uses a more persistent store
than memory (i.e. file system).

This wrapper will only work in cases when either the index is read only (i.e. only search operations are
performed against it), or when there is a single instance which updates the directory.

Here is an example of how to configure a directory wrapper:

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index"/>
<di rect or yW apper Provi der name="test"
t ype="org. conpass. core. | ucene. engi ne. st ore. w apper . AsyncMenor yM rror Di r ect or yW apper Provi der" >
<setting name="await Term nati on">10</setti ng>
<setting name="sharedThread">true</setting>
</ directoryW apper Provi der >
</ connecti on>
</ conpass>

awai t Ter i nati on controls how long the wrapper will wait for the async write tasks to finish. When closing

Compass - Java Search Engine 21

Connection

Compass, there might be still async tasks pending to be written to the actual directory, and the setting control
how long (in seconds) Compass will wait for tasks to be executed against the actual directory. shar edThr ead
set to fal se controls if each sub index will have its own thread to perform pending "write" operations. If it is
settotrue, asingle thread will be shared among all the sub indexes.

Framework (2.0.2)

Chapter 5. Search Engine

5.1. Introduction

Compass Core provides an abstraction layer on top of the wonderful Lucene Search Engine. Compass aso
provides several additional features on top of Lucene, like two phase transaction management, fast updates, and
optimizers. When trying to explain how Compass works with the Search Engine, first we need to understand
the Search Engine domain model.

5.2. Alias, Resource and Property

Resour ce represents a collection of properties. You can think about it as a virtual document - a chunk of data,
such as aweb page, an e-mail message, or a serialization of the Author object. A Resour ce iSaways associated
with asingle Alias and several Resour ces can have the same Alias. The alias acts as the connection between a
Resour ce and its mapping definitions (OSEM/XSEM/RSEM). A property isjust a place holder for aname and
value (both strings). A Property within a Resour ce represents some kind of meta-data that is associated with
the Resour ce like the author name.

Every Resource is associated with one or more id properties. They are required for Compass to manage
Resour ce loading based on ids and Resour ce updates (awell known difficulty when using Lucene directly). Id
properties are defined either explicitly in RSEM definitions or implicitly in OSEM/XSEM definitions.

For Lucene users, Compass Resource maps to Lucene Document and Compass Property maps to Lucene
Fi el d.

5.2.1. Using Resource/Property

When working with RSEM, resources acts as your prime data model. They are used to construct searchable
content, as well as manipulate it. When performing a search, resources be used to display the search results.

Another important place where resources can be used, which is often ignored, is with OSEM/XSEM. When
manipulating search content through the use of the application domain mode! (in case of OSEM), or through
the use of xml data structures (in case of XSEM), resources are rarely used. They can be used when performing
search operations. Based on your mapping definition, the semantic model could be accessed in a uniformed
way through resources and properties.

Lets simplify this statement by using an example. If our application has two object types, Recipe and
Ingredient, we can map both recipe title and ingredient title into the same semantic meta-data name, title
(Resource Property name). This will allow us when searching to display the search results (hits) only on the
Resource level, presenting the value of the property title from the list of resources returned.

5.3. Analyzers

Anal yzer S are components that pre-process input text. They are also used when searching (the search string has
to be processed the same way that the indexed text was processed). Therefore, it is usually important to use the
same Anal yzer for both indexing and searching.

Anal yzer is a Lucene class (which qualifies to or g. apache. | ucene. anal ysi s. Anal yzer class). Lucene core

Compass - Java Search Engine 23

http://lucene.apache.org

Search Engine

itself comes with several Anal yzer s and you can configure Compass to work with either one of them. If we
take the following sentence: "The quick brown fox jumped over the lazy dogs', we can see how the different
Anal yzer Shandleit:

whi t espace (org.apache. | ucene. anal ysi s. Wi t espaceAnal yzer):
[The] [quick] [brown] [fox] [junped] [over] [the] [|azy] [dogs]

sinmpl e (org. apache. | ucene. anal ysi s. Si npl eAnal yzer):
[the] [quick] [brown] [fox] [junped] [over] [the] [|azy] [dogs]

stop (org.apache. | ucene. anal ysi s. St opAnal yzer):
[quick] [brown] [fox] [junped] [over] [|azy] [dogs]

standard (org. apache. | ucene. anal ysi s. st andar d. St andar dAnal yzer):
[quick] [brown] [fox] [junped] [over] [|azy] [dogs]

Lucene also comes with an extension library, holding many more analyzer implementations (including
language specific analyzers). Compass can be configured to work with al of them aswell.

5.3.1. Configuring Analyzers

A Compass instance acts as aregistry of analyzers, with each analyzer bound to a lookup name. Two internal
analyzer names within Compass are: def aul t and sear ch. def aul t isthe default analyzer that is used when no
other analyzer is configured (configuration of using different analyzer is usually done in the mapping definition
by referencing a different analyzer lookup name). sear ch is the analyzer used on a search query string when no
other analyzer is configured (configuring a different analyzer when executing a search based on a query string
is done through the query builder API). By default, when nothing is configured, Compass will use Lucene
standard analyzer asthe def aul t analyzer.

The following is an example of configuring two analyzers, one that will replace the def aul t analyzer, and
another one registered against nyAnal yzer (it will probably later be referenced from within the different
mapping definitions).

<conpass nanme="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<sear chEngi ne>
<anal yzer nane="deaul t" type="Snowbal |" snowbal | Type="Lovi ns">
<st opWor ds>
<st opWord val ue="no" />
</ st opWor ds>
</ anal yzer>
<anal yzer nanme="nyAnal yzer" type="Standard" />
</ sear chEngi ne>
</ conpass>

Compass also supports custom implementations of Lucene Anal yzer class (note, the same goal might be
achieved by implementing an anayzer filter, described later). If the implementation also implements
ConpassConf i gur abl e, additional settings (parameters) can be injected to it using the configuration file. Hereis
an example configuration that registers a custom anayzer implementation that accepts a parameter named
threshold:
<conpass nane="defaul t">
<connecti on>
<file path="target/test-index" />

</ connecti on>

<sear chEngi ne>

Compass - Java Search Engine 24

Search Engine

<anal yzer nanme="deaul t" type="CustomAnal yzer" anal yzer Cl ass="eg. MyAnal yzer">
<setting name="t hreshol d">5</setting>
</ anal yzer>
</ sear chEngi ne>
</ conpass>

5.3.2. Analyzer Filter

Filters are provided for smpler support for additional filtering (or enrichment) of analyzed streams, without the
hassle of creating your own analyzer. Also, filters, can be shared across different analyzers, potentially having
different analyzer types.

A custom filter implementation need to implement Compass LuceneAnal yzer TokenFi | t er Provi der, which
single method creates a Lucene TokenFi | t er. Filters are registered against a name as well, which can then be
used in the analyzer configuration to reference them. The next example configured two analyzer filters, which
are applied on to the def aul t analyzer:

<conpass nane="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<sear chEngi ne>
<anal yzer name="deafult" type="Standard" filters="testl, test2" />

<anal yzerFilter name="test1" type="eg. Anal yzer TokenFi |t er Provi der1">
<setting name="paraml" val ue="val uel" />

</ anal yzerFilter>

<anal yzerFilter name="test2" type="eg. Anal yzer TokenFi |t er Provi der 2" >
<setting nanme="paranX' val ue="val ueY" />

</ anal yzerFilter>

</ sear chEngi ne>
</ conpass>

5.3.3. Handling Synonyms

Since synonyms are a common regquirement with a search application, Compass comes with a simple synonym
analyzer filter: Synonymanal yzer TokenFi | t er Provi der . The implementation requires as a parameter (setting)
an implementation of a SynonyniookupProvi der, which can return all the synonyms for a given value. No
implementation is provided, though one that goes to a public synonym database, or a file input structure is
simple to implement. Here is an example of how to configure it:

<conpass nane="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<sear chEngi ne>
<anal yzer name="deafult" type="Standard" filters="synonynFilter" />

<anal yzerFilter name="synonynFilter" type="synonyni>
<setting nanme="| ookup" val ue="eg. MySynonynlLookupProvi der" />
</anal yzerFilter>
</ sear chEngi ne>
</ conpass>

Note the fact that we did not set the fully qualified class name for the type, and used synonym This is a
simplification that comes with Compass (naturally, you can still use the fully qualified class name of the
synonym token filter provider).

Compass - Java Search Engine 25

Search Engine

5.4. Query Parser

By default, Compass uses its own query parser based on Lucene query parser. Compass alows to configure
several query parsers (registered under a lookup name), as well as override the default Compass query parser
(registered under the name def aul t). Custom query parsers can be used to extend the default query language
support, to add parsed query caching, and so on. A custom query parser must implement the
LuceneQuer yPar ser interface.

Hereis an example of configuring a custom query parser registered under the namet est :

<conpass nanme="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<sear chEngi ne>
<queryParser name="test" type="eg. MyQueryParser">
<setting name="paraml" val ue="val uel" />
</ quer yPar ser >
</ sear chEngi ne>
</ conpass>

5.5. Index Structure

It is very important to understand how the Search Engine index is organized so we can than talk about
transaction, optimizers, and sub index hashing. The following structure shows the Search Engine Index
Structure:

Framework (2.0.2)

Search Engine

Compass Index /,_\
Lucene Index

segments
[segment 1]
—™| Sub Index 1 [segment 2]
megnﬁntm]

000

— | Sub Index N

Compass Index Structure

Every sub-index has it's own fully functional index structure (which maps to a single Lucene index). The
Lucene index part holds a "meta data" file about the index (called segrents) and O to N segment files. The
segments can be a single file (if the compound setting is enabled) or multiple files (if the compound setting is
disable). A segment is close to a fully functional index, which hold the actual inverted index data (see Lucene
documentation for a detailed description of these concepts).

Index partitioning is one of Compass main features, alowing for flexible and configurable way to manage
complex indexes and performance considerations. The next sections will explain in more details why this
feature isimportant, especialy in terms of transaction management.

5.6. Transaction

Compass Search Engine abstraction provides support for transaction management on top of Lucene. The
abstraction support common transaction levels: read_comnitted and serial i zabl e, as well as the special
bat ch_i nsert one. Compass provides two phase commit support for the common transaction levels only.

5.6.1. Locking

Compass utilizes Lucene inter and outer process locking mechanism and uses them to establish it's transaction
locking. Note that the transaction locking is on the "sub-index" level (the sub index based index), which means
that dirty operations only lock their respective sub-index index. So, the more aliases/ searchable content map to
the same index (next section will explain how to do it - called sub index hashing), the more aliases / searchable
content will be locked when performing dirty operations, yet the faster the searches will be. Lucene uses a

Framework (2.0.2)

http://lucene.apache.org

Search Engine

special lock file to manage the inter and outer process locking which can be set in the Compass configuration.
Y ou can manage the transaction timeout and polling interval using Compass configuration.

A Compass transaction acquires alock only when adirty (i.e. cr eat e, save Or del et e) operation occurs, which
makes "read only" transactions as fast as they should and can be. The following configuration file shows how to
control the two main settings for locking, the locking timeout (which defaults to 10 seconds) and the locking
polling interval (how often Compass will check and see if a lock is released or not) (defaults to 100
milli-seconds):

<conpass nane="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<transaction | ockTi meout ="15" | ockPol I I nt erval ="200" />
</ conpass>

5.6.2. Isolation

5.6.2.1. read_committed

Read committed transaction isolation level allows to isolate changes done during a transaction from other
transactions until commit. It also allows for load/get/find operations to take into account changes done during
the current transaction. This means that a delete that occurs during a transaction will be filtered out if a search
is executed within the same transaction just after the del ete.

When starting a read_conmi tt ed transaction, no locks are obtained. Read operation will not obtain a lock
either. A lock will be obtained only when a dirty operation is performed. The lock is obtained only on the index
of the alias / searchable content that is associated with the dirty operation, i.e the sub-index, and will lock all
other aliases / searchable content that map to that sub-index. In Compass, every transaction that performed one
Or more save Of cr eat e operation, and committed successfully, creates another segment in the respective index
(different than how Lucene manages it's index), which helps in implementing quick transaction commits, fast
updates, aswell as paving the way for atwo phase commit support (and the reason behind having optimizers).

The read committed transaction support concurrent commit where if operations are performed against several
sub indexes, the commit process will happen concurrently on the different sub indexes. It uses Compass
internal Execution Manager where the number of threads as well as the type of the execution manager
(concurrent or work manager) can be configured.

5.6.2.2. serializable

The seri al i zabl e transaction level operates the same as the read_commi tt ed transaction level, except that
when the transaction is opened/started, a lock is acquired on all the sub-indexes. This causes the transactional
operations to be sequential in nature (as well as being a performance killer).

5.6.2.3. lucene

A specia transaction level, 1 ucene (previously known as batch_insert) isolation level is similar to the
read_comi t t ed isolation level except dirty operations done during a transaction are not visible to get/load/find
operations that occur within the same transaction. Thisisolation level isvery handy for long running batch dirty
operations and can be faster than r ead_commi t t ed. Most usage patterns of Compass (such as integration with
ORM tools) can work perfectly well with the | ucene isolation level.

Compass - Java Search Engine 28

Search Engine

It is important to understand this transaction isolation level in terms of merging done during commit time.
Lucene might perform some merges during commit time depending on the merge factor configured using
conpass. engi ne. ner geFact or . Thisis different from the r ead_conmi t t ed isolation level where no merges are
perfomed during commit time. Possible merges can cause commits to take some time, so one option is to
configure a large merge factor and let the optimizer do its magic (you can configure a different merge factor for
the optimizer).

Another important parameter when using this transaction isolation level is conpass. engi ne. ranBuf fer Si ze
(defaults to 16.0 Mb) which replaces the max buffered docs parameter and controls the amount of transactional
data stored in memory. Larger values will yield better performance and it is best to alocate as much as
possible.

Most of the parameters can aso be configured on a per session/transaction level. Please refer to
Runt i meLuceneEnvi ronnent for more information.

The lucene transaction support concurrent commit where if operations are performed against several sub
indexes, the commit process will happen concurrently on the different sub indexes. It uses Compass internal
Execution Manager where the number of threads as well as the type of the execution manager (concurrent or
work manager) can be configured.

Here is how the transaction isolation level can be configured:

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index" />
</ connecti on>
<transaction isol ati on="lucene" />
</ conpass>

conpass. engi ne. connecti on=t arget/test-index
conpass. transaction.isol ati on=l ucene

5.6.3. Transaction Log

For read_commi tted and seri al i zabl e transaction isolation Compass uses a transaction log of the current
transaction data running. Compass provides the following transaction log implementations:

5.6.3.1. Ram Transaction Log

The Ram transaction log stores all the transaction information in memory. This is the fastest transaction log
available and is the default one Compass uses. The transaction size is controlled by the amount of memory the
JVM has.

Even though thisis the default transaction log implementation, here is how it can be configured:

<conpass nanme="defaul t">
<connecti on>
<file path="target/test-index" />
</ connecti on>
<transaction isolation="read_conm tted">
<readConm ttedSettings transLog="ram//" />
</transaction>
</ conpass>

conpass. engi ne. connect i on=t arget/test-i ndex
conpass. transaction. readconm tted. transl og. connecti on=ram//

Compass - Java Search Engine 29

Search Engine

5.6.3.2. FS Transaction Log

The FS transaction log stores the transactional data on the file system. This allows for bigger transactions
(bigger in terms of data) to be run when compared with the ram transaction log though on account of
performance. The fstransaction log can be configured with a path where to store the transaction log (defaults to
javaio.tmpdir system property). The path is then appended with conpass/ t ransl og and for each transaction a
new unigue directory is created.

Here is an example of how the fs transaction can be configured:

<conpass nane="defaul t">
<connecti on>
<file path="target/test-index" />
</ connecti on>
<transaction isolation="read_conmm tted">
<readConmittedSettings transLog="file://" />
</transaction>
</ conpass>

conpass. engi ne. connecti on=t arget/test-i ndex
conpass. transacti on. readconm tted. transl og. connection=file://

Transactional log settings are one of the session level settings that can be set. This alows to change how
Compass would save the transaction log per session, and not globally on the Compass instance level
configuration. Note, this only applies on the session that is responsible for creating the transaction. The
following is an example of how it can be done:

ConpassSessi on sessi on = conpass. openSessi on();
sessi on. get Settings().setSetting(RuntimeLuceneEnvironnent. Transacti on. ReadConmi tt edTr ansLog. CONNECTI ON,
"file://tnp/");

5.7. All Support

When indexing an Object, XML, or a plain Resource, their respective properties are added to the index. These
properties can later be searched explicitly, for example: tit1 e: f ang. Most times users wish to search on all the
different properties. For this reason, Compass, by default, supports the notion of an "al" property. The property
is actually a combination of the different properties mapped to the search engine.

The all property provides advance features such using declared mappings of given properties. For example, if a
property is marked with a certain analyzer, that analyzer will be usde to add the property to the all property. If it
is untokenized, it will be added without analyzing it. If it is configured with a certain boost value, that part of
the all property, when "hit", will result in higher ranking of the result.

The all property allows for global configuration and per mapping configuration. The global configuration
allows to disable the all feature completely (conpass. property. al | . enabl ed=f al se). It alows to exclude the
alias from the all proeprty (conpass. property. al|.excl udeAl i as=true), and can set the term vector for the
all property (conpass. property. al |l .t ernVect or =yes for example).

The per mapping definitions alow to configure the above settings on a mapping level (they override the global
ones). They are included in an al | tag that should be the first one within the different mappings. Here is an
example for OSEM:

<conpass- cor e- mappi ng>
<[mappi ng] alias="test-alias">

<all enabl e="true" exclude-alias="true" termvector="yes" omt-norns="yes" />
</ [mappi ng] >

Framework (2.0.2)

Search Engine

</ conpass- cor e- mappi ng>

5.8. Sub Index Hashing

Searchable content is mapped to the search engine using Compass different mapping definitions
(OSEM/XSEM/RSEM). Compass provides the ability to partition the searchable content into different sub
indexes, as shown in the next diagram:

D
EublndexHaE h Sublnd exHash EublndexH ash SublndexHash

Al Aﬂ B1, EE C1, EE C3 D1, D2

mmm
N

Sub Index Hashing

In the above diagram A, B, C, and D represent aliases which in turn stands for the mapping definitions of the
searchable content. A1, B2, and so on, are actual instances of the mentioned searchable content. The diagram
shows the different options of mapping searchable content into different sub indexes.

5.8.1. Constant Sub Index Hashing

The simplest way to map aliases (stands for the mapping definitions of a searchable content) is by mapping all
its searchable content instances into the same sub index. Defining how searchable content mapping to the
search engine (OSEM/XSEM/RSEM) is done within the respectable mapping definitions. There are two ways
to define a constant mapping to a sub index, the first one (which issimpler) is:

<conpass- cor e- mappi ng>
<[nupp|ng] alias="test-alias" sub-index="test-subi ndex">
<l-- ... -->
</ [mappi ng] >
</ conpass- cor e- mappi ng>

The mentioned [mapping] that is represented by the alias test-alias will map al its instances to

Framework (2.0.2)

Search Engine

t est - subi ndex. Note, if sub-i ndex isnot defined, it will default to the al i as value.

Another option, which probably will not be used to define constant sub index hashing, but shown here for
completeness, is by specifying the constant implementation of Subl ndexHash within the mapping definition
(explained in details later in this section):

<conpass- cor e- mappi ng>
<[mappi ng] alias="test-alias">
<sub-i ndex- hash type="org. conpass. cor e. engi ne. subi ndex. Const ant Subl ndexHash" >
<setting nane="subl ndex" val ue="t est-subi ndex" />
</ sub-i ndex- hash>
<l-- ... -->
</ [mappi ng] >
</ conpass- cor e- mappi ng>

Hereis an example of how three different aliases: A, B and C can be mapped using constant sub index hashing:

A
Constant Hash

B
Constant Hash

C
Constant Hash

sublndex=test sublndex=test sublndex=testi

Al A2, 'ﬂ"?EI‘I, B2, B3 C1, G2, C3

sub index sub index

[test] [test1]

Modulo Sub Index Hashing

5.8.2. Modulo Sub Index Hashing

Constant sub index hashing allows to map an alias (and all its searchable instances it represents) into the same
sub index. The modulo sub index hashing allows for partitioning an alias into several sub indexes. The
partitioning is done by hashing the alias value with al the string values of the searchable content ids, and then
using the modulo operation against a specified size. It also allows setting a constant prefix for the generated sub

Compass - Java Search Engine 32

Search Engine

index value. Thisis shown in the following diagram:

A
Modulo Hash

prefix=test
size=2

A2 Al A3

sub index sub index
ftest 0] test_1]

Modulo Sub Index Hashing

Here, A1, A2 and A3 represent different instances of alias A (let it be a mapped Java class in OSEM, a
Resource in RSEM, or an XmlObject in XSEM), with a single id mapping with the value of 1, 2, and 3. A
modulo hashing is configured with a prefix of test, and a size of 2. This resulted in the creation of 2 sub
indexes, called t est _0 and t est _1. Based on the hashing function (the alias String hash code and the different
ids string hash code), instances of A will be directed to their respective sub index. Here is how A aliaswould be
configured:

<conpass- cor e- mappi ng>
<[mappi ng] alias="A">
<sub-i ndex- hash type="org. conpass. core. engi ne. subi ndex. Modul oSubl ndexHash" >
<setting name="prefix" value="test" />
<setting nanme="size" val ue="2" />
</ sub-i ndex- hash>
<l-- ... -->
</ [mappi ng] >
</ conpass- cor e- mappi ng>

Naturally, more than one mapping definition can map to the same sub indexes using the same modulo
configuration:

Compass - Java Search Engine 33

Search Engine

A
Modulo Hash

B
Modulo Hash

prefix=test
size=2

prefix=test
size=2

sub index
test 1]

sub index
[test 0]

Complex Modulo Sub Index Hashing

5.8.3. Custom Sub Index Hashing

Const ant Subl ndexHash and Mbdul oSubl ndexHash are implementation of Compass Subl ndexHash interface that
comes built in with Compass. Naturally, a custom implementation of the Subl ndexHash interface can be

configured in the mapping definition.

An implementation of Subl ndexHash must provide two operations. The first, get Subl ndexes, must return all
the possible sub indexes the sub index hash implementation can produce. The second, napSubl ndex(St ri ng
alias, Property[] ids) usesthe provided aliases and idsin order to compute the given sub index. If the sub
index hash implementation also implements the ConpassConfi gurabl e interface, different settings can be
injected to it. Here is an example of a mapping definition with custom sub index hash implementation:

<conpass- cor e- mappi ng>
<[mappi ng] alias="A">
<sub-i ndex- hash type="eg. M/Subl ndexHash" >
<setting nane="paraml" val ue="val uel" />
<setting name="paranR" val ue="val ue2" />
</ sub-i ndex- hash>

<l--

</[mappi ng] >

>

</ conpass- cor e- mappi ng>

Framework (2.0.2)

Search Engine

5.9. Optimizers

As mentioned in the read_conmi tt ed section, every dirty transaction that is committed successfully creates
another segment in the respective sub index. The more segments the index has, the slower the fetching
operations take. That's why it is important to keep the index optimized and with a controlled number of
segments. We do this by merging small segments into larger segments.

In order to solve the problem, Compass has a Sear chEngi neOpt i i zer which is responsible for keeping the
number of segments at bay. When Conpass is built using ConpassConf i gur at i on, the Sear chEngi neQpt i i zer
is started and when Conpass is closed, the Sear chEngi neOpt i ni zer is stopped.

The optimization process works on a sub index level, performing the optimization for each one. During the
optimization process, optimizers will lock the sub index for dirty operations. This causes a tradeoff between
having an optimized index, and spending less time on the optimization process in order to allow for other dirty
operations.

5.9.1. Scheduled Optimizers

Each optimizer in Compass can be wrapped to be executed in a scheduled manner. The default behavior within
Compass is to schedule the configured optimizer (unlessit is the null optimizer). Here is a sample configuration
file that controls the scheduling of an optimizer:

<conpass nanme="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<sear chEngi ne>
<optim zer schedul el nterval ="90" schedul e="true" />
</ sear chEngi ne>
</ conpass>

5.9.2. Aggressive Optimizer

The AggressiveOptini zer uses Lucene optimization feature to optimize the index. Lucene optimization
merges al the segments into one segment. You can set the limit of the number of segments, after which the
index is considered to need optimization (the aggressive optimizer merge factor).

Since this optimizer causes all the segments in the index to be optimized into a single segment, the optimization
process might take along time to happen. This means that for large indexes, the optimizer will block other dirty
operations for along time in order to perform the index optimization. It also means that the index will be fully
optimized after it, which means that search operations will execute faster. For most cases, the
Adapt i veOpt i mi zer should be the one used.

5.9.3. Adaptive Optimizer

The Adapti veOpti mi zer optimizes the segments while trying to keep the optimization time at bay. As an
example, when we have a large segment in our index (for example, after we batched indexed the data), and we
perform severa interactive transactions, the aggressive optimizer will then merge al the segments together,
while the adaptive optimizer will only merge the new small segments. Y ou can set the limit of the number of
segments, after which the index is considered to need optimization (the adaptive optimizer merge factor).

Framework (2.0.2)

Search Engine

5.9.4. Null Optimizer

Compass aso comes with aNul | Opt i mi zer, which performs no optimizations. It is mainly there if the hosting
application developed it's own optimization which is mantained by other means than the
Sear chEngi neQptimi zer. It aso makes sense to use it when configuring a Conpass instance with a
bat ch_i nsert transaction. It can also be used when the index was built offline and has been fully optimized,
and later it is only used for search/read operations.

5.10. Merge

Lucene perfoms merges of different segments after certain operaitons are done on the index. The less merges
you have, the faster the searching is. The more merges you do, the slower certain operations will be. Compass
allows for fine control over when merges will occur. This depends greatly on the transaction isolation level and
the optimizer used and how they are configured.

5.10.1. Merge Policy

Merge policy controls which merges are supposed to happen for a ceratin index. Compass allows to simply
configure the two merge policies that come with Lucene, the LogByt eSi ze (the default) and LogDoc, as well as
configure custom implementations. Configuring the type can be done usign
conpass. engi ne. ner ge. pol i cy. t ype and has possible values of | ogbyt esi ze, | ogdoc, or the fully qualified
class name of aMer gePol i cyPr ovi der .

The LogByteSize can be further configured using conpass.engi ne. nerge. policy. maxMergeMB and
conpass. engi ne. ner ge. pol i cy. m nMer geMB.

5.10.2. Merge Scheduler

Merge scheduler controls how merge operations happen once a merge is needed. Lucene comes with built in
Concurrent MergeSchdul er (executes merges concurrently on newly created threads) and
Seri al Mer geSchedul er that executes the merge operations on the same therad. Compass extends L ucene and
provide Execut or Mer geSchedul er alowing to utlize Compass internal exdecutor pool (either concurrent or
work manager backed) with no overhead of creating new threads. This is the default merge scheduler that
comes with Compass.

Configuring the type of the merge scheduler can be done using conpass. engi ne. ner ge. schedul er . t ype with
the following possible values. execut or (the default), concurrent (Lucene Concurrent merge scheduler), and
serial (Lucene serial merge scheduler). It can also have a fully qualified name of an implementation of
Mer geSchedul er Provi der .

5.11. Index Deletion Policy

Lucene alows to define an | ndexDel eti onPol i cy which allows to control when commit points are deleted
from the index storage. Index deletion policy mainly aim at alowing to keep old Lucene commit points
relevant for a certain parameter (such as expiration time or number of commits), which allows for better NFS
support for example. Compass allows to easily control the index deletion policy to use and comes built in with
several index deletion policy implementations. Here is an example of its configuration using the default index
deletion policy which keeps only the last commit point:

<conpass nane="defaul t">

Compass - Java Search Engine 36

Search Engine

<connecti on>
<file path="target/test-index" />
</ connecti on>

<sear chEngi ne>
<i ndexDel eti onPol i cy>
<keeplLast Commt />
</i ndexDel eti onPol i cy>
</ sear chEngi ne>
</ conpass>

Here is the same configuration using properties based configuration:

<conpass nanme="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<settings>
<setting nanme="conpass. engi ne. store. i ndexDel eti onPolicy.type" val ue="keepl astcommt" />
</settings>
</ conpass>

Compass comes built in with several additional deletion policies including: keepal I which keeps all commit
points. keepl ast n which keeps the last N commit points. expirati onti me which keeps commit points for X
number of seconds (with a default expiration time of "cache invalidation interval * 3").

By default, the index deletion policy is controlled by the actual index storage. For most (ram, file) the deletion
policy is keep last committed (which should be changed when working over a shared disk). For distributed ones
(such as coherence, gigaspaces, terrracotta), the index deletion policy isthe expiration time one.

5.12. Spell Check / Did You Mean

Compass comes with built in support for spell check support. It allows to suggest queries (did you mean
feature) as well as alow to get possible suggestions for given words. By default, the spell check support is
disabled. In other to enable it, the following property need to be set:

conpass. engi ne. spel | check. enabl e=true

Once spell check is enabled, a special spell check index will be built based on the "all" property (more on that
later). It can then be used in the following simple manner:

ConpassQuery query = session. queryBuilder().queryString("jack |ondon").toQuery();
ConpassHits hits = query.hits();
Systemout.println("Oiginal Query: " + hits.getQery());
if (hits. getSuggestedQuery().isSuggested()) {
Systemout.printin("Did You Mean: " + hits.getSuggestedQuery());
}

In order to perform spell index level operations, Conpass €XPOSesS NOW a get Spel | CheckManager () in order to
perform them. Note, this method will return nul | in case spell check is disabled. The spell check manager also
allowsto get suggestions for a given word.

By default, when the spell check index is enabled, two scheduled tasks will kick in. The first scheduled task is
responsible for monitoring the spell check index, and if changed (for example, by a different Compass
instance), will reload the latest changes into the index. The interval for this scheduled task can be controlled

Compass - Java Search Engine 37

Search Engine

using the setting conpass. engi ne. cachel nt erval I nval i dati on (which is used by Compass for the actual
index aswell), and defaultsto 5 seconds (it is set in milliseconds).

The second scheduler is responsible for identifying that the actual index was changed, and rebuild the spell
check index for the relevant sub indexes that were changed. It is important to understand that the spell check
index will not be updated when operations are performed against the actual index. It will only be updated if
explicitly called for rebuild or concurrentRebuild using the Spell Check Manager, or through the scheduler
(which calls the same methods). By default, the scheduler will run every 10 minutes (no sense in rebuilding the
spell check index very often), and can be controlled using the following setting:
conpass. engi ne. spel | check. schedul el nt erval (resolution in seconds).

5.12.1. Spell Index

Compass by default will build a spell index using the same configured index storage simply under a different
"sub context” name called spel | check (the compass index is built under sub context i ndex). For each sub
index in Compass, a spell check sub index will be created. By default, a scheduler will kick in (by default each
10 minutes) and will check if the spell index needs to be rebuilt, and if it does, it will rebuild it. The spell check
manager also exposes API in order to perform the rebuild operations as well as checking if the spell index
needs to be rebuilt. Here is an example of how the scheduler can be configured:

conpass. engi ne. spel | check. enabl e=true

the default it true, just showing the setting
conpass. engi ne. spel | check. schedul e=true

the schedule, in mnutes (defaults to 10)
conpass. engi ne. spel | check. schedul el nt er val =10

The spell check index can be configured to be stored on a different location than the Compass index. Any index
related parameters can be set as well. Here is an example (for example, if the index is stored in the database,
and spell index should be stored on the file system):

conpass. engi ne. spel | check. enabl e=true
conpass. engi ne. spel | check. engi ne. connecti on=file://target/spellindex
conpass. engi ne. spel | check. engi ne. r anBuf f er Si ze=40

In the above example we also configure the indexing process of the spell check index to use more memory (40)
so the indexing process will be faster. As seen here, settings that control the index can be used
(conpass. engi ne. Settings) can apply to the spell check index by prepending the conpass. engi ne. spel | check
Setting.

So, what is actually being included in the spell check index. Out of the box, by just enabling spell check, the all
field is going to be used to get the terms for the spell check index. In this case, things that are excluded from the
all field will be excluded from the spell check index as well

Compass allows for great flexibility in what is going to be included or excluded in the spell check index. The
first two important settings are: conpass. engi ne. spel | check. def aul t Mode and the spel | - check resource
mapping level definition (for class/resource/xml-object). By default, both are set to Na, which results in
including the all property. The al property can be excluded by setting the spel | - check to excl ude on the all
mapping definition.

Each resource mapping (resource/class/xml-object) can have a spel | - check definition of i ncl ude, excl ude,
and na. If set to na, the global default mode will be used for it (which can be set to i ncl ude, excl ude and na as
well).

When the resource mapping ends up with spel | -check Of include, it will automatically include al the

Framework (2.0.2)

Search Engine

properties for the given mapping, except for the "al" property. Properties can be excluded by specifically
setting their respective spel | - check to excl ude.

When the resource mapping ends up with spel | -check of excl ude, it will automatically exclude all the
properties for the given mapping, aswell asthe "al" property. Properties can be included by specifically setting
their respective spel | - check t0i ncl ude.

On top of specific mapping definition. Compass can be configured with
conpass. engi ne. spel | check. gl obabl I ncl udePr operti es Which is a comma separated list of properties that
will always be included. And conpass. engi ne. spel | check. gl obabl Excl udePr operties which is a comma
separated list of properties that will always be excluded.

If you wish to know which properties end up being included for certain sub index, turn the debug logging level
on for org. conpass. core. | ucene. engi ne. spel | check. Def aul t LuceneSpel | CheckManager and it will print
out the list of properties that will be used for each sub index.

5.13. Direct Lucene

Compass provides a helpful abstraction layer on top of Lucene, but it also acknowledges that there are cases
where direct Lucene access, both in terms of API and constructs, is required. Most of the direct Lucene access
is done using the LuceneHel per class. The next sections will describe its main features, for a complete list,
please consult its javadoc.

5.13.1. Wrappers

Compass wraps some of Lucene classes, like Query and Fi | t er . There are cases where a Compass wrapper will
need to be created out of an actual Lucene class, or an actual Lucene class need to be accessed out of awrapper.

Here is an example for wrapping the a custom implementation of aLucene Query with a ConpassQuery:

ConpassSessi on session = // obtain a conpass session

Query nmyQ = new MyQuery(paranl, paran®);
ConpassQuery myCQ = LuceneHel per. cr eat eConpassQuery(session, nyQ;
ConpassHi ts hits = myCQ hits();

The next sample shows how to get Lucene Expl anat i on, which is useful to understand how a query works and
executes:

ConpassSessi on session = // obtain a conpass session

ConpassHits hits = session.find("london");

for (int i =0; i <hits.length(); i++) {
Expl anati on exp = LuceneHel per. get LuceneSear chEngi neHi ts(hits).explain(i);
System out.println(exp.toString());

}

5.13.2. Searcher And IndexReader

When performing read operations against the index, most of the time Compass abstraction layer is enough.
Sometimes, direct access to Lucene own | ndexReader and Sear cher are required. Here is an example of using
the reader to get al the available terms for the category property name (Note, this is a prime candidate for
future inclusion as part of Compass API):

ConpassSessi on session = // obtain a conpass session
LuceneSear chEngi nel nt er nal Search i nternal Search = LuceneHel per. get Lucenel nt er nal Sear ch(sessi on);
Ter nEnum t er tEnum = i nt er nal Sear ch. get Reader (). terns(new Tern{"category", ""));

Framework (2.0.2)

Search Engine

try {
Arrayli st tenpList = new ArraylList();
while ("category".equal s(termEnumternm().field())) {
tenpLi st.add(ternEnumterm().text());

if (!termEnum next()) {
br eak;
}

}
} finally {
t er mtEnum cl ose() ;

}

Compass - Java Search Engine

40

Chapter 6. OSEM - Object/Search Engine Mapping

6.1. Introduction

Compass provides the ahility to map Java Objects to the underlying Search Engine using Java 5 Annotations or
simple XML mapping files. We call this technology OSEM (Object Search Engine Mapping). OSEM provides
a rich syntax for describing Object attributes and relationships. The OSEM files/annotations are used by
Compass to extract the required property from the Object model at run-time and inserting the required
meta-data into the Search Engine index.

The process of saving an Object into the search engine is called marshaling, and the process of retrieving an
object from the search engine is called un-marshaling. As described in Section 5.2, “Alias, Resource and
Property”, Compass uses Resources when working against a search engine, and OSEM is the process of
marshaling and un-marshaling an Object tree to a Resource (for simplicity, think of a Resource as a Map).

6.2. Searchable Classes

Searchable classes are normally classes representing the state of the application, implementing the entities with
the business model. Compass works best if the classes follow the simple Plain Old Java Object (POJO)
programming model. The following class is an example of a searchable class:

import java.util.Date;
i nport java.util. Set;

@vear chabl e
@sear chabl eConst ant (name = "type", values = {"person", "author"})
public class Author {

private Long id; // identifier

private String nane;

private Date birthday;

@sear chabl el d
public Long getld() {
return this.id;

}

private void setld(Long id) {
this.id =id;
}

@sear chabl eProperty(name

@ear chabl eMet aDat a(nane

public String getName() {
return this.nane;

}

public void setNane(String nane) {
t hi s. nanme = nang;

}

@sear chabl eProperty(format = "yyyy- Mt dd")
public Date getBirthday() {
return this.birtday;

}

public void setBirthday(Date birthday) {
this.birthday = birthday;
}
}

"nane")
"aut hor Nane")

The Author class is mapped using Java 5 annotations. The following shows how to map the same class using

Compass - Java Search Engine 41

OSEM - Object/Search Engine Mapping

OSEM xml mapping definitions:

<?xm version="1.0"?>
<! DOCTYPE conpass- cor e- mappi ng PUBLI C
"-// Conpass/ Conpass Core Mapping DTD 2.0//EN'
"http://ww. conpass- proj ect. or g/ dt d/ conpass- cor e- mappi ng- 2. 0. dt d" >

<conpass- cor e- mappi ng package="eg">
<cl ass nane="Aut hor" alias="aut hor">
<id name="id" />

<const ant >
<net a- dat a>t ype</ net a- dat a>
<met a- dat a- val ue>per son</ net a- dat a- val ue>
<met a- dat a- val ue>aut hor </ net a- dat a- val ue>
</ const ant >

<property nanme="name">

<net a- dat a>nane</ net a- dat a>

<met a- dat a>aut hor Nane</ net a- dat a>
</ property>

<property nanme="birthday">
<nmet a-data format="yyyy- MM\ dd" >bi rt hday</ net a- dat a>
</ property>

</ cl ass>
</ conpass- cor e- mappi ng>

Compass works non-intrusive with application Objects, these Objects must follow several rules:

¢ Implement a Default Constructor: Aut hor has an implicit default (no-argument) constructor. All persistent
classes must have a default constructor (which may be non-public) so Compass::Core can instantiate using
Construct or. newl nstance()

» Provide Property Identifier(s): OSEM requires that a root searchable Object will define one or more
properties (JavaBean properties) that identifies the class.

» Declare Accessors and Mutators (Optional): Even though Compass can directly persist instance variables, it
is usually better to decouple this implementation detail from the Search Engine mechanism. Compass
recognizes JavaBean style property (get Foo, i sFoo, and set Foo). This mechanism works with any level of
visibility.

e It is recommended to override the equal s() and hashCode() methods if you intend to mix objects of
persistent classes (e.g. in a Set). You can implement it by using the identifier of both objects, but note that
Compass works best with surrogate identifier (and will provide a way to automatically generate them), thus
it is best to implement the methods using business keys..

The above example defines the mapping for Aut hor class. It introduces some key Compass mapping concepts
and syntax. Before explaining the concepts, it is essential that the terminology used is clearly understood.

The first issue to address is the usage of the term Property. Because of its common usage as a concept in Java
and Compass (to express Search Engine and Semantic terminology), specia care has been taken to clearly
prefix the meaning. A class property refers to a Java class attribute. A resource property refers in Compass to
Search Engine meta-data, which contains the values of the mapped class property value. In previous OSEM
example, the value of class property "name" is mapped to two resource property instances called "name" and
"authorname”, each containing the value of the class property "name".

6.2.1. Alias

Compass - Java Search Engine 42

OSEM - Object/Search Engine Mapping

Each mapping definition in Compass is registered under an aias. The alias is used as the link between the
OSEM definitions of a class, and the class itself. The alias can then be used to reference the mapping, both in
other mapping definitions and when working directly with Compass API. When using annotations mappings,
the alias defaults to the short class name.

6.2.2. Root

There are two types of searchable classes in Compass, root searchable classes and non-root searchable classes.
Root searchable classes are best defined as classes that return as hits when a search is performed. For example,
in a scenario where we have Customer class with a Name class, the Customer will be a root searchable class,
and Name would have root="false" in it since it does not "stands on its own". Another way of looking at root
searchable classes is as searchable classes that end up marshaled into their own Resource (which is then used to
work against the search engine).

Non root searchable classes are not required to define id mappings.

6.2.3. Sub Index

By default, each root searchable class will have its own sub index defaulting to the alias name. The sub index
name can be controlled, alowing to join severa root searchable classes into the same sub index, or using
different sub index hashing functions. Please read Section 5.8, “ Sub Index Hashing” for more information.

6.3. Searchable Class Mappings

6.3.1. Searchable Id and Searchable Meta Data

Each root searchable class must define at least one searchable id. The searchable id(s) are used to uniquely
identify the object within its alias context. More than one searchable id can be defined, as well as user defined
classes to act as searchable ids (must register its own converter or use searchable id component mapping).

Searchable 1d does not require the definition of a searchable meta-data. If none is defined, Compass will
automatically create an internal meta-data id (explained later) which most times is perfectly fine (usualy, text
searching based on the surrogate id is not required). If the searchable id does need to be searched, a searchable
meta-data need to be defined for it. When using xml mapping, one or more meta-data element need to be added
to the id element. When using annotations, there are three options: the first, provide a name for the
Searchableld (compass will automatically act as if a SearchableM etaData was defined on the Searchableld and
add it), the second is to add a SearchableMetaData annotation and the last is to add SearchableMetaDatas
annotation (for multiple meta-datas). Of course, all the three can be combined. The reason why Searchalbeld
will automatically create a SearchableMetaData if the name is provided is to ease the number of annotations
required (and not get to annotation hell).

Here is an example of defining a Searchable I1d using annotations. This example will not create any visible
meta-data (as the Searchableld has no nameto it, or SearchableM etaData(s) annotation).

@pear chabl e

public class Author {
@pear chabl el d
private Long id;
1.

}

Compass - Java Search Engine 43

OSEM - Object/Search Engine Mapping

And here is the same mapping definition using xml:

<cl ass nane="Aut hor" alias="aut hor">
<id name="id" />
== ,,, =22

</ cl ass>

The following is another example, now with actually defining a meta-data on the id for its values to be
searchable:

@sear chabl e

public class Author {
@sear chabl el d(name = "id")
private Long id;
...

}

Which is the same as defining the following mapping using SearchableM etaData explicitly:

@vear chabl e
public class Author {
@pear chabl el d
@sear chabl eMet aDat a(name = "id")
private Long id;
...
}

And here is the same mappings as above using xml:

<cl ass nane="Aut hor" alias="aut hor">
<id nanme="id">
<net a- dat a>i d</ net a- dat a>
</id>
<l-- ... -->
</cl ass>

6.3.2. Searchable Id Component

A searchable id component represent a composite object acting as the id of a object. It works in a similar
manner to searchable component except that it will act asthe id of the class.

Here is an example of defining a Searchable Id Component using annotations (note, in this case, B is not a root
searchable class, and it needs to define only ids):

@vear chabl e

public class A {
@bear chabl el dConponent
private B b;
...

}

@sear chabl e(root = fal se)
public class B {

@sear chabl el d

private long idl

@pear chabl el d
private long id2

And here is the same mapping definition using xml:

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

<cl ass nane="A" alias="a">
<i d-conponent nane="b" />
<l-- ... -->
</ cl ass>
<cl ass nanme="B" alias="b" root="fal se">
<id name="id1l" />
<id nanme="id2" />
</ cl ass>

6.3.3. Searchable Parent

Searchable Parent mapping provides support for cyclic mappings for components (though bi directional
component mappings are also supported). If the component class mapping wish to map the enclosing class, the
parent mapping can be used to map to it. The parent mapping will not marshal (persist the data to the search
engine) the parent object, it will only initialize it when loading the parent object from the search engine.

Here is an example of defining a Searchable Component and Searchable Parent using annotations (note, in this
case, B isnot aroot searchable class, and need not define any ids):

@ear chabl e

public class A {
@sear chabl el d
private Long id;
@sear chabl eConponent
private B b;
1.

}

@bear chabl e(root = fal se)
public class B {
@vear chabl ePar ent
private A a;
1.

}

And here is the same mapping definition using xml:

<cl ass nanme="A" alias="a">
<id name="id" />
<conponent nanme="b" />
<l-- ... -->
</ cl ass>
<cl ass nane="B" alias="b" root="fal se">
<parent nanme="a" />
<l-- ... -->

</ cl ass>

6.3.4. Searchable Property and Searchable Meta Data

A Searchable Property maps to a Class attribute/property which is a simple relationship. The searchable
property maps to a class attribute that ends up as a String within the search engine. Thisinclude primitive types,
primitive wrapper types, java.util.Date, java.util.Calendar and many more types that are automatically
supported by Compass (please see the converter section). A user defined type can be used as well using a
custom converter (though most times, a component relationship is more suited - explained later). A Searchable
Mata Data uses the Searchable Property value (converted String value using its registered converter) and stores
it in the index against a name.

When using xml mapping, one or more meta-data elements can be defined for a property mapping. When using
annotation, a SearchableProperty needs to be defined on the mapped class attribute. A SearchableM etaData
annotation can be explicitly defined, as well as SearchableMetaDatas (for multiple meta data). A

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

SearchableProperty will automatically create a SearchableMetaData (in order not to get annotation hell) if no
SearchableMetaData(s) annotation is defined, or a its name is explicitly defined (note, al the
SearchableMetaData options are also defined on the SearchableProperty, they apply to the automatically
created SearchableM etaData).

Hereis an example of defining a Searchable Property using annotations. This example will automatically create
a Searchable Meta Data with the name of value (the class field name).

@bear chabl e

public class Author {
1.
@bear chabl eProperty
private String val ue
...

}

This mapping is the same as defining the following annotation using SearchableM etaData explicitly:

@ear chabl e
public class Author {
...
@sear chabl eProperty
@sear chabl eMet aDat a(name = "val ue")
private String val ue
...

And here is the same mapping definition using xml:

<cl ass nane="Aut hor" alias="aut hor">
<t ... -->
<property name="val ue">
<net a- dat a>val ue</ net a- dat a>
</ property
S
</ cl ass>

6.3.5. Searchable Constant

Searchable Constant allows to define constant meta data associated with a searchable class with alist of values
set against a constant name. This is useful for adding static meta-data against a Searchable Class, alowing to
create semantic groups across the searchable classes.

Here is how a searchable constant meta-data can be defined using annotations:

@vear chabl e
@ear chabl eConst ant (name = "type", values = {"person", "author"})
public class Author {

}

And hereis how it can be defined using xml mappings:

<cl ass nanme="Aut hor" al i as="aut hor">
<id nanme="id" />
<const ant >
<met a- dat a>t ype</ net a- dat a>
<met a- dat a- val ue>per son</ net a- dat a- val ue>
<net a- dat a- val ue>aut hor </ net a- dat a- val ue>
</ const ant >
<l-- ... -->
</cl ass>

Compass - Java Search Engine 46

OSEM - Object/Search Engine Mapping

6.3.6. Searchable Dynamic Meta Data

The dynamic meta data mapping allows to define meta-data saved into the search engine as a result of
evaluating an expression. The mapping does not map to any class property and acts as a syntactic meta-data
(similar to the constant mapping). The value of the dynamic meta-data tag is the expression evaluated by a
Dynamic Converter. Compass comes with several built in dynamic converters. el (Jakarta commons €), jexl
(Jakarta commons jexl), velocity, ognl, and groovy. When defining the expression, the root class is registered
under the dat a key (for libraries that requireit).

Here is an example of how to define a searchable dynamic meta-data (with jakarta commons jexl) using
annotations (assuming class A has valuel and value2 as class fields):

@vear chabl e
@pear chabl eDynami cMet aDat a(nane = "test", expression = "data.value + data.value2", converter = "jexl!)
public class A {

}

And here is the same mapping using xml:

<cl ass nane="Aut hor" al i as="aut hor">
<id name="id" />
<dynam c- net a- data nanme="test" converter="jexl">
dat a. val ue + data. val ue2
</ dynam c- net a- dat a>
<<l-- ... -->
</cl ass>

6.3.7. Searchable Reference

A searchable reference mapping maps between one root searchable class and the other. The mapping is only
used for keeping the relationship "alive" when performing un-marshalling. The marshalling process marshals
only the referenced object ids (based on its id mappings) and use it later in the un-marshalling process to load
the referenced object from the index.

Cascading is supported when using reference mappings. Cascading can be configured to cascade any
combination of create/save/delete operations, or all of them. By default, no cascading will be performed on the
referenced object.

In order to identify the referenced class mapping, Compass needs access to its class mapping definition. In most
cases there is no need to define the referenced aias that define the class mapping, as Compass can
automatically detect it. If it is required, it can be explicitly set on the reference mappings (an example when
Compass needs this mapping is when using Collection without generics or when a class has more than one class
mapping).

Currently, Compass does not support lazy loading, this means that when loading a searchable class, al its
referenced mappings will be loaded as well.

Here is an example of defining a Searchable Reference using annotations:

@ear chabl e

public class A {
@sear chabl el d
private Long id;
@ear chabl eRef erence

Compass - Java Search Engine a7

OSEM - Object/Search Engine Mapping

private B b;
...

}

@sear chabl e

public class B {
@ear chabl el d
private Long id;
1.,

}

And here is the same mapping definition using xml:

<cl ass nane="A" alias="a">
<id name="id" />
<ref erence nane="b" />
<l-- ... -->

</ cl ass>

<cl ass nanme="B" alias="b">
<id name="id" />
I

</ cl ass>

6.3.8. Searchable Component

A searchable component mapping embeds a searchable class within its owning searchable class. The mapping
is used to alow for searches that "hit" the component referenced searchable class to return the owning
searchable class (or its parent if it also acts a component mapping up until the root object that was saved).

The component referenced searchable class can be either root or not. An example for a non root component can
be a Person class (which is root) with a component mapping to a non root searchable class Name (with
firstName and lastName fields). An example for a root component can be a Customer root searchable class and
an Account searchable class, where when searching for account details, both Account and Customer should
return as hits.

Cascading is supported when using component mappings. Cascading can be configured to cascade any
combination of create/save/delete operations, or al of them. By default, no cascading will be performed on the
referenced object. Cascading can be performed on non root objects as well, which means that a non root object
can be "created/saved/deleted” in Compass (using save operation) and Compass will only cascade the operation
on its referenced objects without actually performing the operation on the non root object.

In order to identify the referenced component class mapping, Compass needs access to its class mapping
definition. In most cases there is no need to define the referenced alias that define the class mapping, as
Compass can automatically detect it. If it is required, it can be explicitly set on the reference mappings (an
example when Compass needs this mapping is when using Collection without generics or when a class has
more than one class mapping).

Here is an example of defining a Searchable Component using annotations (note, in this case, B is not a root
searchable class, and need not define any ids):

@vear chabl e

public class A {
@vear chabl el d
private Long id;
@bear chabl eConponent
private B b;
1.

}

@sear chabl e(root = fal se)
public class B {

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

...

And here is the same mapping definition using xml:

<cl ass nanme="A" alias="a">
<id name="id" />
<conponent nanme="b" />

<l-- ... -->

</cl ass>

<cl ass nane="B" alias="b" root="fal se">
<<l-- ... -->

</cl ass>

6.3.9. Searchable Cascade

The searchable cascading mapping allows to define cascading operations on certain properties without
explicitly using component/reference/parent mappings (which have cascading option on them). Cascading
actually results in a certain operation (save/delete/create) to be cascaded to and performed on the referenced
objects.

Here is an example of a Searchable Cascade mapping based on the class language:

@vear chabl e
public class A {
@pear chabl el d
private Long id;
@bear chabl eCascadi ng(cascade = {Cascade. ALL})
private B b;
1.

}

And here is the same mapping definition using xml:

<cl ass nanme="A" alias="a">
<id name="id" />

<cascade nane="b" cascade="all" />
<l-- ... -->
</ cl ass>

6.3.10. Searchable Analyzer

The searchable analyzer mapping dynamically controls the analyzer that will be used when indexing the class
data. If the mapping is defined, it will override the class mapping anayzer attribute setting.

If, for example, Compass is configured to have two additional analyzers, called an1 (and have settings in the
form of conpass. engi ne. anal yzer. anl. *), and another called an2. The values that the searchable analyzer
can hold are: def aul t (which is an internal Compass analyzer, that can be configured as well), an1 and an2. If
the analyzer will have a null value, and it is applicable with the application, a nul | -anal yzer can be
configured that will be used in that case. If the class property has a value, but there is not matching analyzer, an
exception will be thrown.

Here is an example of a Searchable Analyzer mapping based on the class language:

@sear chabl e

public class A {
@sear chabl el d
private Long id;
@pear chabl eAnal yzer

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

private String | anguage
...
}

And here is the same mapping definition using xml:

<cl ass nane="A" alias="a">
<id name="id" />
<anal yzer nane="| anguage" />
<l-- .. -->

</ cl ass>

6.3.11. Searchable Boost

The searchable boost mapping dynamically controls the boost value associated with the Resource stored. If the
mapping is defined, it will override the class mapping boost attribute setting. The value of the property should
be convertable to float value.

Here is an example of a Searchable Analyzer mapping based on the class language:

@ear chabl e
public class A {
@ear chabl el d
private Long id;
@sear chabl eBoost (def aul t Val ue = 2. 0f)
private Float val ue
...

And here is the same mapping definition using xml:

<cl ass nane="A" alias="a">
<id nanme="id" />
<boost nane="val ue" default="2.0" />

dolassh
6.4. Specifics

6.4.1. Handling Collection Types

Coallection (java.util.Collection) based types cab be mapped using Searchable Property, Searchable Component
and Searchable Reference. The same mapping declaration should be used, with Compass automatically
detecting that a java.util.Collection is being mapped, and applying the mapping definition to the collection
element.

When mapping a Collection with a Searchable Property, Compass will try to automatically identify the
collection element type if using Java 5 Generics. If Generics are not used, the class attribute should be set with
the FQN of the element class. With Searchable Component or Reference Compass will try to automatically
identify the referenced mapping if Generics are used. If generics are not used the ref-alias should be explicitly
Set.

6.4.2. Managed Id

Compass - Java Search Engine 50

OSEM - Object/Search Engine Mapping

When marshaling an Object into a search engine, Compass might add internal meta-data for certain Searchable
Properties in order to properly un-marshall it correctly. Here is an example mapping where an interna
meta-dataid will be created for the firstName and lastName searchable properties:

@pear chabl e

public class A {
@pear chabl el d
private Long id;

@sear chabl eProperty(nanme = "nane")
private String | astNaneg;
@sear chabl eProperty(nane = "nane")

private String firstNang;
@sear chabl eProperty
private String birthdate

In the above mapping we map firstName and lastName into "name". Compass will automatically create internal
meta-data for both firstName and lastName, since if it did not create one, it won't be able to identify which
name belongs to which. Compass comes with three strategies for creating internal meta-data:

e AUTO: Compass will automatically identify if a searchable property requires an interna meta-data, and
create one for it.

« TRUE: Compass will always create an internal meta-dataid for the searchable property.

¢ FALSE: Compass will not create an internal meta-data id, and will use the first searchable meta-data as the
searchable property meta-data identifier.

¢ NO: Compass will not create an internal meta-dataid, and will not try to un-marshall this property at al.

¢ NO_STORE: Compass will not create an interna meta-data id if al of its meta-data mappings have
store="no". Otherwise, it will be treated as AUTO.

Setting the managed id can be done on several levels. It can be set on the property mapping level explicitly. It
can be set on the class level mapping which will then be applied to all the properties that are not set explicitly.
And it can also be set globally be setting the following setting conpass. osem managed! d which will apply to all
the classes and properties that do not set it explicitly. By default, it is set to NO_STORE.

6.4.3. Handling Inheritance

There are different strategies when mapping an inheritance tree with Compass. The first apply when the
inheritance tree is known in advance. If we take a simple inheritance of class A and class B that extends it, here
is the annotation mapping that can be used for it:

@sear chabl e
public class A {
@sear chabl el d
private Long id;
@pear chabl eProperty
private String aVal ue

}

@bear chabl e

public class B extends A {
@sear chabl eProperty
private String bVal ue

}

Compass will automatically identify that B extends A, and will include all of A mapping definitions (note that

Compass - Java Search Engine 51

OSEM - Object/Search Engine Mapping

Searchable attributes will not be inherited). When using annotations, Compass will automatically interrogate
interfaces as well for possible Searchable annotations, as well have the possibility to explicitly define which
mappings to extend using the extend attribute (the mappings to extends need not be annotation driven

mappings).
When using xml mapping definition, the above inheritance tree can be mapped as follows:

<cl ass nane="A" alias="a">
<id nanme="id" />
<property nanme="aVal ue">
<net a- dat a>aVal ue</ net a- dat a>
</ property>
</cl ass>
<cl ass nane="B" alias="b" extends="a">
<property nanme="bVal ue">
<net a- dat a>aVal ue</ net a- dat a>
</ property>
</ cl ass>

When using extends explicitly (as needed when using xml mappings), a list of the aliases to extend (comma
separated) can be provided. All the extended mapping definitions will be inherited except for class mapping
attributes.

If the inheritance tree is not known in advance, a poly flag should be set on all the known mapped inheritance
tree. Compass will be able to persist unknown classes that are part of the mapped inheritance tree, using the
closest searchable mapping definition. Here is an example of three classes: A and B are searchable classes, with
B extending A. C extends B but is not a searchable class and we would till like to persist it in the search
engine. The following is the annotation mappings for such arelationship:

@sear chabl e(poly = true)
public class A {
...

}

@bear chabl e(poly = true)
public class B extends A {
1.

}

/1l Note, No Searchable annotation for C
public class C extends B {
1. ..

}

And here is the xml mapping definition:

<cl ass nanme="A" alias="a">
<id name="id" />
<property nanme="aVal ue">
<net a- dat a>aVal ue</ net a- dat a>
</ property>
</ cl ass>
<cl ass nane="B" alias="b" extends="a">
<property nanme="bVal ue">
<met a- dat a>aVal ue</ net a- dat a>
</ property>
</ cl ass>

When saving an Object of class C, B mapping definitions will be used to map it to the search engine. When
loading it, an instance of class C will be returned, with all of its B level attributes initialized.

6.4.4. Polymorphic Relationships

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Polymorphic relationship are applicable when using component or reference mappings. If we take the following
polymorphic relationship of a Father class to a Child class, with a Son and Daughter sub classes, the
component/reference mapping relationship between Father and Child is actually a relationship between Father
and Child, Son and Daughter. The following is how to map it using annotations:

@ear chabl e

public class Father {
...
@sear chabl eConponent
private Child child;

}

@bear chabl e(poly = true)
public class Child {
...

}

@sear chabl e(poly = true)
public class Son extends Child {
...

}

@sear chabl e(poly = true)
public class Daughter extends Child {
...

}

Compass will automatically identify that Child mappings has a Son and a Daughter, and will add them to the
ref-alias definition of the SearchableComponent (similar to automatically identifying the mapping of Child).
Explicit definition of the referenced aliases can be done by providing a comma separated list of aliases (this
will disable Compass automatic detection of related classes and will only use the provided list). Note as well,
that the Child hierarchy had to be defined as poly.

Here is the same mapping using xml:

<cl ass nane="Father" alias="father">
<id name="id" />
<conponent nanme="child" />

</ cl ass>

<cl ass nane="Child" alias="chlid" poly="true">
<l-- ... -->

</ cl ass>

<cl ass nanme="Son" alias="son" poly="true" extends="child">
<l-- ... -->

</ cl ass>

<cl ass nane="Daughter" alias="daughter" poly="true" extends="child">
<l-- ... -->

</cl ass>

6.4.5. Cyclic Relationships

Compass OSEM fully supports cyclic relationships both for reference and component mappings. Reference
mappings are simple, they are simply defined, and Compass would handle everything if they happen to perform
acyclic relationship.

Bi directiona component mappings are simple as well with Compass automatically identifying cyclic
relationship. A tree based cyclic relationship is a bit more complex (think of afile system tree like relationship).
In such a case, the depth Compass will traverse with the component mapping is controlled using the max-depth
attribute (defaultsto 1).

6.4.6. Annotations and Xml Combined

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Compass allows for Annotations and Xml mappings definitions to be used together. Annotations mappings can
extend/override usual cpm.xml mapping definition (event extending xml contract mapping). When using
annotations, a .com.ann.xml can be defined that will override annotations definitions using xml definitions.

6.4.7. Support Unmarshall

Compass adds an overhead both in terms of memory consumption, processing speed and index size (managed
ids) when it works in a mode that needs to support un-marshalling (i.e. getting objects back from the search
engine). Compass can be configured not to support un-marshalling. In such a mode it will not add any internal
Compass information to the index, and will use less memory. This setting can be a global setting (set within
Compass configuration), or per searchable class definitions.

Though initially this mode may sounds unusable, it is important to remember that when working with support
unmarshall set to false, the application can still use Compass Resource level access to the search engine. An
application that works against the database using an ORM tool for example, might only heed Compass to index
its domain model into the search engine, and display search results. Displaying search results can be done using
Resources (many times this is done even when using support for unmarshalling). Create/Delete/Update
operations will be done based on ORM based fetched objects, and mirrored (either explicitly or implicitly) to
the search engine.

6.4.8. Configuration Annotations

Compass aso alows using annotation for certain configuration settings. The annotations are defined on a
package level (package-infojava). Some of the configuration annotations are @ear chAnal yzer,
@ear chAnal yzer Fi | t er, and @ear chConver t er . Please see the javadocs for more information.

6.5. Searchable Annotations Reference

All the annotations are documented in Compass javadoc. Please review it for a complete reference of all of
Compass Searchable annotations.

6.6. Searchable Xml| Reference

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above, or in
the compass-core-x.x.x.jar. Compass will always ook for the DTD in the classpath first.

6.6.1. compass-core-mapping

The main element which holds all the rest of the mappings definitions.

<conpass- cor e- mappi ng package="packageNane"/>

Table 6.1. OSEM Xml Mapping - compass-cor e-mapping

Attribute Description

package (optional) Specifies a package prefix for unqualified class names in the
mapping document.

Compass - Java Search Engine 54

OSEM - Object/Search Engine Mapping

6.6.2. class

Declaring a searchable class using the cl ass element.

pol y-cl ass="the class nane that will be used to instantiate poly mapping (optional)"

<cl ass
name="cl assNange"
alias="alias"
sub-i ndex="sub i ndex nane"
anal yzer="nanme of the analyzer"
root ="true| fal se"
pol y="fal se| true"
extends="a conmma separated |list of aliases to extend"
support -unmarshal | ="true| f al se"
boost ="boost val ue for the class"
converter="converter |ookup nane"

>

all ?,

sub- i ndex- hash?.
(id)*,

parent ?,

(anal yzer?),
(boost ?),

(property|dynam c- net a- dat a| conponent | r ef erence| const ant) *

</ cl ass>

Table 6.2. OSEM Xml Mapping - class

Attribute

name

dlias

Description

The fully qualified class name (or relative if the package is declared
in conpass- cor e- mappi ng).

The dias of the Resour ce that will be mapped to the class.

sub-index (optional, defaults to the
al i as value)

analyzer (optiona, defaults to the
def aul t analyzer)

root (optional, defaultsto t r ue)

poly (optional, defaultsto f al se)

poly-class (optional)

The name of the sub-index that the alias will map to. When joining
several searchable classes into the same index, the search will be
much faster, but updates perform locks on the sub index level, so it
might slow it down.

The name of the analyzer that will be used to analyze TOKENI ZED
properties. Defaults to the defaul t analyzer which is one of the
internal analyzers that comes with Compass. Note, that when using
the anal yzer mapping (a child mapping of class mapping) (for a
property value that controls the analyzer), the analyzer attribute will
have no effects.

Specifies if the classis a"root" class or not. Y ou should define the
searchable class with false if it only acts as mapping definitions for
a component mapping.

Specifiesif the class will be enabled to support polymorphism. This
is the less preferable way to map an inheritance tree, since the
extends attribute can be used to statically extend base classes or
contracts.

If poly is set to true, the actual class name of the indexed object
will be saved to the index as well (will be used later to instantiate
the Object). If the poly-classis set, the class name will not be saved
to the index, and the value of poly-class will be used to instantiate

Compass - Java Search Engine 55

OSEM - Object/Search Engine Mapping

Attribute Description
al the classes in the inheritance tree.

extends (optional) A comma separated list of aliases to extend. Can extend a cl ass
mapping or a contract mapping. Note that can extend more than
onecl ass/ contract

support-unmarhsall (optional) Controls if the searchable class will support unmarshalling from the
search engine or using Resour ce is enough. Un-marshalling is the
process of converting araw Resour ce into the actual domain object.
If support un-marshall is enabled extra information will be stored
within the search engine, as well as consumes extra memory.

Defaults to Compass global setting
conpass. osem suppor t Unmarshal | (which in turn defaults to
true).

boost (optional, defaultsto 1. 0) Specifies the boost level for the class.

converter (optional) The global converter lookup name registered with the

configuration. Responsible for converting the d assMapping
definition. Defaults to compassinternal d assMappi ngConverter .

Root classes have their own index within the search engine index directory (by default). Classes with a
dependency to Root class, that don't require an index (i.e. component) should set r oot to false. You can control
the sub-index that the root classes will map to using the sub-i ndex attribute or the sub- i ndex- hash element,
otherwise it will create a sub-index based on the alias name.

The cl ass mapping can extend other cl ass mappings (more than one), as well as cont ract mappings. All the
mappings that are defined within the cl ass mapping or the contract mapping will be inherited from the
extended mappings. Y ou can add any defined mappings by defining the same mappingsin the cl ass mappings,
except for id mappings, which will be overridden. Note that any xml attributes (like root, sub-index, ...) that are
defined within the extended mappings are not inherited.

The default behavior of the searchable class will support the "all" feature, which means that compass will create
an "al" metadata which represents al the other meta-data (with several exceptions, like Reader class
property). The name of the "all" meta-data will default to the compass setting, but you can also set it using the
al | - net adat a attribute.

6.6.3. contract

Declaring a searchable contract using the cont ract element.

<contract
alias="alias"

>

(id)*,

(anal yzer?),

(boost ?),

(property|dynam c- met a- dat a| conponent | r ef er ence| const ant) *
</ contract >

Table 6.3. OSEM Xml Mapping - contract

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Attribute Description

dlias The dias of the contract. Will be used as the alias name in the
cl ass mapping extended attribute

A contract acts as an interface in the Java language. Y ou can define the same mappings within it that you can
define in the cl ass mapping, without defining the class that it will map to.

If you have severa classes that have similar properties, you can define a contract that joins the properties
definition, and than extend the contract within the mapped classes (even if you don't have a concrete interface
or classin your Java definition).

6.6.4.id

Declaring a searchable id class property (a.k.a JavaBean property) of aclass using thei d element.

<id
nanme="property nanme"
accessor="property|field"
boost ="boost val ue for the class property"
class="explicit declaration of the property class"
managed-i d="aut o| true| f al se"
managed- i d- converter="managed id converter |ookup nanme"
excl ude-fromal | ="no| yes| no_anal yzed"
converter="converter |ookup nane"

>
(et a- dat a) *
</id>

Table6.4. OSEM Xml Mapping - id

Attribute Description

name The class property (ak.a JavaBean property) name, with initia
lowercase |etter.

accessor (optional, defaults to The strategy to access the class property value. property access
property) using the Java Bean accessor methods, while fi el d directly access
the classfields.

boost (optional, default to 1. of) The boost level that will be propagated to al the meta-data defined
within theid.

class (optional) An explicit definition of the class of the property, helps for certain
converters.

managed-id (optional, defaultsto aut o) | The strategy for creating or using a class property meta-data id
(which maps to aResour ceProperty).

managed-id-converter (optional) The global converter lookup name applied to the generated
managed id (if generated).

exclude-from-all (optional, defaults to Excludes the class property from participating in the "al"

no) meta-data, unless specified in the meta-data level. If set to
no_anal yzed, un_tokenized properties will be analyzed when
added to the all property (the analyzer can be controlled using the
analyzer attribute).

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Attribute

converter (optional)

Description

The global converter lookup name registered with the
configuration.

The id mapping is used to map the class property that identifies the class. Y ou can define severa id properties,
even though we recommend using one. Y ou can use the id mapping for all the Java primitive types (i.e. i nt),
Java primitive wrapper types (i.e. Integer), String type, and many other custom types, with the only
requirement that atype used for an id will be converted to a single String.

6.6.5. property

Declaring a searchable class property (a.k.a JavaBean property) of aclass using the property element.

<property
nanme="property nanme"
accessor="property|field"

boost ="boost val ue for the property"
class="explicit declaration of the property class"

anal yzer="name of the analyzer"

override="true|fal se"
managed- i d="aut o| t rue| f al se"

managed- i d- i ndex="[conpass. managedl| d. i ndex setting]|no|un_tokeni zed"
managed- i d- converter="nmanaged id converter |ookup nanme"

excl ude-fromal | ="no| yes| no_anal yzed"

converter="converter |ookup nanme"

>
(met a- dat a) *
</ property>

Table6.5. OSEM Xml Mapping - property

Attribute

name

accessor (optional, defaults to
property)

boost (optional, default to 1. of)

Description

The class property (ak.a JavaBean property) name, with initial
lowercase | etter.

The strategy to access the class property value. property means
accessing using the Java Bean accessor methods, while fiel d
directly accesses the classfields.

The boost level that will be propagated to all the meta-data defined
within the class property.

class (optional)

analyzer (optional, defaults to the class
mapping analyzer decision scheme)

An explicit definition of the class of the property, helps for certain
converters (especially for java. util. Col | ection type properties,
since it applies to the collection elements).

The name of the analyzer that will be used to analyze TOKENI ZED
meta-data mappings defined for the given property. Defaults to the
class mapping analyzer decision scheme based on the analyzer set,
or the anal yzer mapping property.

override (optional, defaultstot r ue)

managed-id (optional, defaults to aut o)

If there is another definition with the same mapping name, if it will
be overridden or added as additional mapping. Mainly used to
override definitions made in extended mappings.

The strategy for creating or using a class property meta-data id
(which mapsto aResour ceProperty.

Compass - Java Search Engine 58

OSEM - Object/Search Engine Mapping

Attribute

managed-id-index (optional, defaults to
conpass. managedl d. i ndex setting,
which defaults to no)

managed-id-converter (optional)

exclude-from-all (optional, defaults to
no)

Description

Can be either un_t okeni zed or no. It isthe index setting that will be
used when creating an interna managed id for a class property
mapping (if it is not a property id, if it is, it will aways be
un_t okeni zed).

The global converter lookup name applied to the generated
managed id (if generated).

Excludes the class property from participating in the "al”
meta-data, unless specified in the meta-data level. If set to
no_anal yzed, un_t okeni zed properties will be analyzed when
added to the all property (the analyzer can be controlled using the
analyzer attribute).

converter (optional)

The global converter lookup name registered with the
configuration.

You can map al internal Java primitive data types, primitive wrappers and most of the common Java classes
(i.e. Date and cal endar). You can also map Arrays and Collections of these data types. When mapping a
Col | ecti on, you must specify the object class (like j ava. | ang. Stri ng) in the class mapping property (unless

you are using generics).

Note, that you can define a property with no net a- dat a mapping within it. It means that it will not be
searchable, but the property value will be stored when persisting the object to the search engine, and it will be
loaded from it aswell (unlessit is of typej ava. i 0. Reader).

6.6.6. analyzer

Declaring an analyzer controller property (a.k.a JavaBean property) of aclassusing the anal yzer element.

<anal yzer
nanme="property nanme"

nul | -anal yzer="anal yzer nane if value is null"

accessor="property|field"

converter="converter |ookup nane"

>
</ anal yzer >

Table 6.6. OSEM Xml Mapping - analyzer

Attribute

name

accessor (optional, defaults to
property)

null-analyzer (optional, defaults to error
incaseof anul | value)

converter (optional)

Description

The class property (ak.a JavaBean property) name, with initial
lowercase |etter.

The strategy to access the class property value. property means
accessing using the Java Bean accessor methods, while fiel d
directly accesses the classfields.

The name of the analyzer that will be used if the property has the
nul | value.

The global converter lookup name registered with the
configuration.

Compass - Java Search Engine 59

OSEM - Object/Search Engine Mapping

The analyzer class property mapping, controls the analyzer that will be used when indexing the class data (the
underlying Resour ce). If the mapping is defined, it will override the class mapping analyzer attribute setting.

If, for example, Compass is configured to have two additional analyzers, caled an1 (and have settings in the

form of conpass. engi ne. anal yzer. ani. *

), and another called an2. The values that the class property can hold

are: default (which is an internal Compass analyzer, that can be configured as well), an1 and an2. If the
analyzer will have anul| value, and it is applicable with the application, anul | - anal yzer can be configured
that will be used in that case. If the class property has a value, but there is not matching analyzer, an exception

will be thrown.

6.6.7. boost

Declaring boost property (a.k.a JavaBean property) of aclass using the boost element.

<boost
nanme="property nanme"

defaul t ="t he boost default value when no property value is present”

accessor="property|field"

converter="converter |ookup nane"

>
</ boost >

Table 6.7. OSEM Xml Mapping - analyzer

Attribute

Description

name

accessor (optional, defaults to
property)

default (optional, defaults 1. of)

converter (optional)

The class property (ak.a JavaBean property) name, with initial
lowercase |etter.

The strategy to access the class property value. property means
accessing using the Java Bean accessor methods, while fiel d
directly accesses the class fields.

The default value if the property has anull value.

The global converter lookup name registered with the
configuration.

The boost class property mapping, controls the boost associated with the Resource created based on the mapped
property. The value of the property should be allowed to be converted to float.

6.6.8. meta-data

Declaring and using the net a- dat a element.

<net a- dat a
st ore="yes| no| conpr ess"

i ndex="t okeni zed| un_t okeni zed| no"
boost ="boost val ue for the neta-data"

anal yzer="name of the anal yzer"
rever se="no| reader| string"

nul | -val ue="String value that will be stored when the property value is null"
exclude-fromall ="[parent's exclude-fromall]]|no|yes|no_anal yzed"
converter="converter |ookup nane"

term vect or =" no| yes| posi ti ons| of f set s| positi ons_of fsets"

format="the format string (only applies to formatted el enments)"

>
</ met a- dat a>

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Table 6.8. OSEM Xml Mapping - meta-data

Attribute Description

store (optional, defaultsto yes) If the value of the class property that the meta-data maps to, is
going to be stored in the index.

index (optional, defaultsto t okeni zed) | If the value of the class property that the meta-data maps to, is
going to be indexed (searchable). If it does, than controls if the
value is going to be broken down and analysed (t okeni zed), or is
going to be used asis (un_t okeni zed).

boost (optional, defaultsto 1. of) Controlsthe boost level for the net a- dat a.

analyzer (optional, defaults to the The name of the analyzer that will be used to analyze TOKENI ZED

parent analyzer) meta-data. Defaults to the parent property mapping, which in turn
defaults to the class mapping analyzer decision scheme based on
the analyzer set, or the anal yzer mapping property.

term-vector (optional, defaults to no) The term vector value of meta data.

reverse (optional, defaults to no) The meta-data will have it's value reversed. Can have the values of
no - ho reverse will happen, string - the reverse will happen and
the value stored will be a reversed string, and r eader - a special
reader will wrap the string and reverse it. The reader option is
more performant, but the store and index settings will be
discarded.

exclude-from-all (optional, defaults to Excludes the meta-data from participating in the "all" meta-data. If

the parent'sexcl ude-from al | value) set to no_anal yzed, un_t okeni zed properties will be analyzed
when added to the all property (the analyzer can be controlled using
the analyzer attribute).

null-value (optional, defaults to not | A String null value that will be used when the property evaluates to
storing the anything on null) null.

converter (optional) The global converter lookup name registered with the
configuration. Note, that in case of a Col |l ection property, the
converter will be applied to the collection elements (Compass has
it's own converter for Collections).

format (optional) Allows for quickly setting a format for format-able types (dates,
and numbers), without creating/registering a specialized converter
under alookup name.

The element net a- dat a iSaProperty within aResour ce.

You can control the format of the marshalled values when mapping a j ava. | ang. Number (or the equivalent
primitive value) using the format provided by the java.text.Decimal Format. You can aso format a
java. util . Date using the format provided by j ava. t ext . Si npl eDat eFor mat . You set the format string in the
format attribute.

6.6.9. dynamic-meta-data

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Declaring and using the dynani c- net a- dat a element.

<dynam c- net a- dat a

nane="The nane the neta data will be saved under"

st ore="yes| no| conpr ess"

i ndex="t okeni zed| un_t okeni zed| no"
boost ="boost val ue for the neta-data"

anal yzer ="name of the analyzer"

rever se="no| reader| string"

nul | -val ue="optional String val ue when expression is null"

exclude-fromall ="[parent's exclude-fromall]]|no|yes|no_anal yzed"
converter="the Dynam c Converter |ookup nane (required)"
format="the format string (only applies to formatted el enments)"

>
</ et a- dat a>

Table 6.9. OSEM Xml Mapping - dynamic-meta-data

Attribute

name

store (optional, defaultsto yes)

index (optional, defaultsto t okeni zed)

boost (optional, defaultsto 1. of)

analyzer (optional, defaults to the
parent analyzer)

Description

The name the dynamic meta data will be saved under (similar to the
tag name of the et a- dat a mapping).

If the value of the class property that the meta-data maps to, is
going to be stored in the index.

If the value of the class property that the meta-data maps to, is
going to be indexed (searchable). If it does, than controls if the
value is going to be broken down and analysed (t okeni zed), or is
going to be used asis (un_t okeni zed).

Controls the boost level for the net a- dat a.

The name of the analyzer that will be used to analyze TOKENI ZED
meta-data. Defaults to the parent property mapping, which in turn
defaults to the class mapping analyzer decision scheme based on
the analyzer set, or the anal yzer mapping property.

reverse (optional, defaults to no)

The meta-data will have it's value reversed. Can have the values of
no - no reverse will happen, string - the reverse will happen and
the value stored will be a reversed string, and reader - a specia
reader will wrap the string and reverse it. The reader option is
more performant, but the store and index settings will be
discarded.

exclude-from-all (optional, defaults to
the parent's excl ude- from al | value)

null-value (optional, defaults to not
saving the value)

converter (required)

format (optional)

Excludes the meta-data from participating in the "al" meta-data. If
set to no_anal yzed, un_t okeni zed properties will be analyzed
when added to the all property (the analyzer can be controlled using
the analyzer attribute).

If the expression evaluates to null, the String null value that will be
stored for it.

The global dynamic converter lookup name registered with the
configuration. Built in dynamic converters include: €, jexl,
velocity, ognl and groovy.

Allows for quickly setting a format for format-able types (dates,
and numbers), without creating/registering a specialized converter
under a lookup name. Applies when the dynamic expression

Compass - Java Search Engine 62

OSEM - Object/Search Engine Mapping

Attribute

type (optional)

Description
evauates to a formatable object. Must set the type attribute as well.

The fully qualified class name of the object evaluated as a result of
the dynamic expression. Applies when using formats.

The dynamic meta data mapping allows to define meta-data saved into the search engine as a result of
evaluating an expression. The mapping does not map to any class property and acts as a syntactic meta-data
(similar to the constant mapping). The value of the dynamic meta-data tag is the expression evaluated by a
Dynamic Converter. Compass comes with several built in dynamic converters. el (Jakarta commons €), jexl
(Jakarta commons jexl), velocity, ognl, and groovy. When defining the expression, the root class is registered
under the dat a key (for libraries that requireit).

6.6.10. component

Declaring and using the conponent element.

<conponent

nane="t he cl ass property nanme"
ref-alias="name of the alias"
max- dept h="t he depth of cyclic conponent nappings al |l owed"

accessor="property|field"

converter="converter |ookup name"
cascade="conma separated |ist of create, save,delete or all"

>
</ conponent >

Table 6.10. OSEM Xml Mapping - component

Attribute

name

Description

The class property (ak.a JavaBean property) name, with initial
lowercase |etter.

ref-alias (optional)

max-depth (optional, defaultsto 1)

override (optional, defaultstot r ue)

accessor (optional, defaults
property)

converter (optional)

cascade (optional, defaults to none)

to

The class mapping alias that defines the component. This is an
optiona attribute since under most conditions, Compass can infer
the referenced alias (it actually can't infer it when using Collection
without generics, or when a class has more than one mapping). In
case of polymorphic relationship, a list of aiases can be provided
(though again, Compass will try and auto detect the list of aliases if
none is defined).

The depth of cyclic component mappings allowed.

If there is another definition with the same mapping name, if it will
be overridden or added as additional mapping. Mainly used to
override definitions made in extended mappings.

The strategy to access the class property value. property access
using the Java Bean accessor methods, while fi el d directly access
the classfields.

The global converter lookup name registered with the
configuration.

A comma separated list of operations to cascade. The operations

Compass - Java Search Engine 63

OSEM - Object/Search Engine Mapping

Attribute Description

names are; create, save and delete. all can be used as well to mark
cascading for all operations.

The component element defines a class dependency within the root class. The dependency name isidentified by
theref - al i as, which can be non-rootable or have no i d mappings.

An embedded class means that all the mappings (meta-data values) defined in the referenced class are stored
within the alias of the root class. It means that a search that will hit one of the component mapped meta-datas,
will return it's owning class.

The type of the JavaBean property can be the class mapping classitself, an Array or Col | ecti on.

6.6.11. reference

Declaring and using ther ef er ence element.

<ref erence
name="t he cl ass property nanme"
ref-alias="nane of the alias"
ref-conp-alias="nane of an optional alias mapped as conponent"
accessor="property|field"
converter="converter |ookup name"
cascade="comma separated |ist of create, save,delete or all"

>

</reference>

Table6.11. OSEM Xml Mapping - reference

Attribute Description

name The class property (a.k.a JavaBean property) name, with initial
lowercase |etter.

ref-alias (optional) The class mapping aias that defines the reference. This is an
optiona attribute since under most conditions, Compass can infer
the referenced alias (it actually can't infer it when using Collection
without generics, or when a class has more than one mapping). In
case of polymorphic relationship, a list of aliases can be provided
(though again, Compass will try and auto detect the list of aliases if
none is defined).

ref-comp-alias (optional) The class mapping aias that defines a "shadow component”. Will
marshal a component like mapping based on the alias into the
current class. Note, it's best to create a dedicated class mapping
(with root="false") that only holds the required information. Based
on the information, if you search for it, you will be able to get as
part of your hits the encompassing class. Note as well, that when
changing the referenced class, for it to be reflected as part of the
ref-comp-alias you will have to save all the relevant encompassing
classes.

accessor (optional, defaults to The strategy to access the class property value. property access
property) using the Java Bean accessor methods, while fi el d directly access
the classfields.

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

Attribute Description

converter (optional) The global converter lookup name registered with the
configuration.

cascade (optional, defaults to none) A comma separated list of operations to cascade. The operations
names are; create, save and delete. all can be used as well to mark
cascading for all operations.

The reference element defines a "pointer” to a class dependency identified inref - al i as.
The type of the JavaBean property can be the class mapping classitself, an Array of it, or acol I ecti on.

Currently there is no support for lazy behavior or cascading. It means that when saving an abject, it will not
persist the object defined references and when loading an object, it will load al it's references. Future versions
will support lazy and cascading features.

Compass supports cyclic references, which means that two classes can have a cyclic reference defined between
them.

6.6.12. parent

Declaring and using the par ent element.

<par ent
nane="t he cl ass property nane"
accessor="property|field"
converter="converter |ookup nane"
>

</reference>

Table 6.12. OSEM Xml Mapping - parent

Attribute Description

name The class property (ak.a JavaBean property) name, with initia
lowercase |etter.

accessor (optional, defaults to The strategy to access the class property value. property access
property) using the Java Bean accessor methods, while fi el d directly access
the classfields.

converter (optional) The global converter lookup name registered with the
configuration.

The parent mapping provides support for cyclic mappings for components (though bi directional component
mappings are also supported). If the component class mapping wish to map the enclosing class, the parent
mapping can be used to map to it. The parent mapping will not marshal (persist the data to the search engine)
the parent object, it will only initialize it when loading the parent object from the search engine.

6.6.13. constant

Declaring a constant set of net a- dat a using the const ant element.

Framework (2.0.2)

OSEM - Object/Search Engine Mapping

<const ant

excl ude-fromal | ="no| yes| no_anal yzed"
converter="converter |ookup nane"

>
nmet a- dat a,
net a- dat a- val ue+
</reference>

Table6.13. OSEM Xml Mapping - constant

Attribute

exclude-from-all (optional, defaults to
fal se)

override (optional, defaultstot r ue)

converter (optional)

Description

Excludes the constant meta-data and all it's values from
paticipating in the "al" feature. If set t0 no_anal yzed,
un_t okeni zed properties will be analyzed when added to the all
property (the analyzer can be controlled using the analyzer
attribute).

If there is another definition with the same mapping name, if it will
be overridden or added as additional mapping. Mainly used to
override definitions made in extended mappings.

The global converter lookup name registered with the
configuration.

If you wish to define a set of constant meta data that will be embedded within the searchable class (Resour ce),
you can use the constant element. You define the usua neta-data element followed by one or
morenet a- dat a- val ue elements with the value that maps to the net a- dat a within it.

Compass - Java Search Engine 66

Chapter 7. XSEM - Xml to Search Engine Mapping

7.1. Introduction

Compass provides the ability to map XML structure to the underlying Search Engine through simple XML
mapping files, we call thistechnology XSEM (XML to Search Engine Mapping). XSEM provides arich syntax
for describing XML mappings using Xpath expressions. The XSEM files are used by Compass to extract the
required xml elements from the xml structure at run-time and inserting the required meta-data into the Search
Engine index.

7.2. Xml Object

At the core of XSEM supportsis xm oj ect abstraction on top of the actual XML library implementation. The
Xm bj ect represents an XML element (document, node, attribute, ...) which is usually the result of an Xpath
expression. It allows to get the name and value of the given element, and execute Xpath expressions against it
(for more information please see the xm vj ect javadoc).

Here is an example of how xm bj ect is used with Compass:

ConpassSessi on sessi on = conpass. openSessi on();

...

Xm Obj ect xm Cbject = // create the actual Xm Cbject inplementation (we will see how soon)
sessi on. save("alias", xm Qbject);

An extension to the xm oj ect interface is the Al i asedXm bj ect interface. It represents an xml object that is
also associated with an alias. This means that saving the object does not require to explicitly specify the aias
that it will be saved under.

ConpassSessi on sessi on = conpass. openSessi on();

...

Al'i asedXm Obj ect xm Cbject = // create the actual Xm Object inplenmentation (we will see how soon)
sessi on. save(xm bj ect) ;

Compass comes with support for domd4j and JSE 5 xml libraries, here is an example of how to use dom4j API
in order to create a domd4j xml object:

ConpassSessi on sessi on = conpass. openSessi on();

1.

SAXReader saxReader = new SAXReader ();

Docunent doc = saxReader.read(new StringReader(xm));

Al'i asedXm Obj ect xm Cbj ect = new Don¥j Al i asedXnl Obj ect (al i as, doc. get Root El ement ());
sessi on. save(xm bj ect) ;

And here is a simple example of how to use JSE 5:

ConpassSessi on sessi on = conpass. openSessi on();

...

Docunent doc = Docunent Bui | der Fact ory. newi nst ance() . newDocunent Bui | der () . par se(new | nput Sour ce(new Stri ngReader (
Al'i asedXm Obj ect xm Cbj ect = NodeAl i asedXm Obj ect (al i as, doc);

sessi on. save(xm Obj ect) ;

7.3. Xml Content Handling

Compass - Java Search Engine 67

XSEM - Xml to Search Engine Mapping

Up until now, Compass has no knowledge of how to parse and create an actual xm bj ect implementation, or
how to convert an xn bj ect into its xml representation. This is perfectly fine, but it also means that systems
will not be able to work with xm j ect for read/search operations. Again, this is perfectly ok for some
application, since they can always work with the underlying Resour ce representation, but some applications
would still like to store the actual xml content in the search engine, and work with the Xm bj ect for
read/search operations.

Compass XSEM support alows to define the xm - content mapping (defined below), which will cause
Compeass to store the xml representation in the search engine as well. It will also mean that for read/search
operations, the application will be able to get an xn vj ect back (for example, using ConpassSessi on#get
operation).

In order to support this, Compass must be configured with how to parse the xml content into an Xm j ect , and
how to convert an xm oj ect into an xml string. Compass comes with built in converters that do exactly that:
Table 7.1. Compass XmlContentConverters

XmlContentConverter Description

org.compass.core.xml.javax.converter. Support for JSE 5 xml libraries. Not recommended on account of
NodeX mlContentConverter performance.

org.compass.core.xml.domdj.converter. = Support dom4j saxreader for parsing, and XM.w i ter to write the
SAXReaderXmlContentConverter raw xml data.

org.compass.core.xml.domd4j.converter. Support dom4j xPPReader for parsing, and XM.w i t er to write the
XPPReaderXmlContentConverter raw xml data.

org.compass.core.xml.domdj.converter. = Support domdj XPP3Reader for parsing, and XMW i t er to write the
XPP3ReaderX ml ContentConverter raw xml data.

org.compass.core.xml.domdj.converter. Support domdj STAXEvent Reader for parsing, and XM.Witer to
STAXReaderX mlContentConverter write the raw xml data.

Most of the time, better performance can be achieved by pooling Xni Cont ent Convert er S implementations.
Compass handling of xm Cont ent Converter alows for three different instantiation models: prototype, pool,
and singleton. prototype will create a new Xni Cont ent Converter each time, a singleton will use a shared
Xm Cont ent Converter for al operations, and pooled will pool Xm Cont ent Convert er instances. The default is
prototype.

Hereis an example of a Compass schema based configuration that registers a global Xml Content converter:

<conpass-core-config ...
<conpass nanme="defaul t">

<connecti on>
<file path="target/test-index" />
</ connecti on>

<converters>
<converter nanme="xm Cont ent Mappi ng"
t ype="org. conpass. core. converter. nmappi ng. xsem Xm Cont ent Mappi ngConverter">
<setting name="xm Cont ent Converter.type"
value="[fully qualified class name of Xnl ContentConverter]" />
<setting name="xnl Cont ent Converter.w apper" val ue="prototype" />
</ converter>
</ converters>

</ conpass>
</ conpass- cor e-confi g>

Compass - Java Search Engine 68

XSEM - Xml to Search Engine Mapping

And hereisan example of aDTD (settings) based configuration file:

<! DOCTYPE conpass-core-configurati on PUBLIC ..
<conpass- cor e-confi gurati on>
<conpass>
<setting nane="conpass. converter. xm Cont ent Mappi ng. t ype" >
or g. conpass. core. converter. mappi ng. xsem Xni Cont ent Mappi ngConverter
</setting>
<setting nanme="conpass. converter.xm Cont ent Mappi ng. xm Cont ent Converter.type">
[fully qualified class nane of Xm Content Converter]
</setting>
<setting name="conpass. converter.xm Cont ent Mappi ng. xm Cont ent Converter. w apper ">
prototype
</setting>
</ conpass>
</ <conpass- cor e-confi gurati on>

And lagt, hereis how it can be configured it programmatically:

settings. set G oupSettings(ConpassEnvironnent. Converter. PREFI X
ConpassEnvi ronment . Convert er. Def aul t TypeNames. Mappi ng. XM._CONTENT_MAPPI NG,
new String[]{ConpassEnvironnent. Converter. TYPE, ConpassEnvironnent.Converter.Xm Content. TYPE},
new String[]{Xm Cont ent Mappi ngConverter.cl ass. get Nane(), XPP3Reader Xm Cont ent Converter. cl ass. get Nane()})

Note, that specific converters can be associated with a specific xni - obj ect mapping, in order to do it, simply
register the converter under a different name (compass.converter.xmlContentMapping is the default name that
Compass will use when nothing is configured), and use that name in the converter attribute of the xni - cont ent

mapping.

7.4. Raw Xml Object

If Compass is configured with an Xml Content converter, it now knows how to parse an xml content into an
Xm Qvj ect . This alows us to smplify more the creation of xm vj ect s from a raw xml data. Compass comes
with awrapper xm oj ect implementation, which handles raw xml data (non parsed one). Here is how it can be
used:

Reader xml Data = // construct an xm reader over raw xm content
Ali asedXm Ooj ect xm Cbj ect = RawAl i asedXm Cbj ect (al i as, xnl Data);
sessi on. save(xm Obj ect) ;

Here, Compass will identify that it is a RawAl i asedXni Obj ect, and will used the registered converter (or the
one configured against the xm - cont ent mapping for the given alias) to convert it to the appropriate xm bj ect
implementation. Note, that when performing any read/search operation, the actual Xnmi Gbj ect that will be
returned is the onc the the registered converter creates, and not the raw xml object.

7.5. Mapping Definition

XML/Search Engine mappings are defined in an XML document, and maps XML data structures. The
mappings are xml centric, meaning that mappings are constructed around XML data structures themselves and
not internal Resour ces. If we take the following as a sample XML data structure:

<xm - f ragnment >
<dat a>
<id value="1"/>
<dat al val ue="datallattr">datall</datal>

Compass - Java Search Engine 69

XSEM - Xml to Search Engine Mapping

<dat al val ue="datal2attr">datal2</datal>
</ dat a>
<dat a>
<id val ue="2"/>
<dat al val ue="dat a2lattr" >dat a21</dat al>
<dat al val ue="dat a22attr">dat a22</ dat al>
</ dat a>
</ xm - fragnment >

We can map it using the following XSEM definition file:

<?xm version="1.0"?>
<! DOCTYPE conpass- cor e- mappi ng PUBLI C
"-// Conpass/ Conpass Core Mapping DTD 2. 0//EN'
"http://ww. conmpass- proj ect . or g/ dt d/ conpass- cor e- mappi ng- 2. 0. dt d" >

<conpass- cor e- nappi ng>

<xm -obj ect alias="datal" xpath="/xm -fragnent/data[1]">
<xm -id nane="id" xpath="id/ @al ue" />
<xm - property xpath="dat al/ @al ue" />
<xm - property nane="el eText" xpath="datal" />

</ xm - obj ect >

<xm - obj ect alias="data2" xpath="/xm -fragment/data">
<xm -id nanme="id" xpath="id/ @al ue" />
<xm - property xpath="datal/ @al ue" />
<xm -property nane="el eText" xpath="datal" />

</ xm - obj ect >

<xm - obj ect alias="data3" xpath="/xnl-fragnent/data">
<xm -id nane="id" xpath="id/ @al ue" />
<xml - property xpath="datal/ @al ue" />
<xm -property nane="el eText" xpath="datal" />
<xnl - content nane="content" />

</ xm - obj ect >

</ conpass- cor e- mappi ng>

The mapping definition here shows three different mappings (that will work with the sample xml). The
different mappings are registered under different aliases, where the alias acts as the connection between the
actual XML saved and the mappings definition.

An xni - obj ect mapping can have an associated xpath expression with it, which will narrow down the actual
xml elements that will represent the top level xml object which will be mapped to the search engine. A nice
benefit here, is that the xpath can return multiple xml objects, which in turn will result in multiple Resour ces
saved to the search engine.

Each xml object mapping must have at least one xni -i d mapping definition associated with it. It is used in
order to update/del ete existing xml objects.

In the mapping definition associated with data3 alias, the xn - cont ent mapping is used, which stores the actual
xml content in the search engine as well. This will alow to unmarshall the xml back into an xm Qbj ect
representation. For the first two mappings (datal and data?), search/read operations will only be able to work
on the Resour ce level.

7.5.1. xml-object

Y ou may declare axml object mapping using the xm - obj ect element:

<xml - obj ect
al i as="al i asNane"
sub-i ndex="sub i ndex nanme"
xpat h="opti onal xpath expression"

Framework (2.0.2)

XSEM - Xml to Search Engine Mapping

anal yzer="nanme of the anal yzer"

/>
al | 2,
sub-i ndex- hash?,
xm -id*,

(xm - anal yzer ?),
(xm -boost ?),
(xm - property)*,
(xm - cont ent ?)

Table 7.2. xml-object mapping

Attribute Description
dias The name of the alias that represents the xm j ect .

sub-index (optional, defaults to the The name of the sub-index that the alias will map to.
al i as value)

xpath (optional, will not execute an An optional xpath expression to narrow down the actual xml

Xpath expression if not specified) elements that will represent the top level xml object which will be
mapped to the search engine. A nice benefit here, is that the xpath
can return multiple xml objects, which in turn will result in multiple
Resour ces Saved to the search engine.

analyzer (optional, defaults to the The name of the analyzer that will be used to analyze TOKENI ZED

def aul t analyzer) properties. Defaults to the defaul t analyzer which is one of the
internal analyzers that comes with Compass. Note, that when using
the xni -analyzer mapping (a child mapping of xml object
mapping) (for an xml element that controls the analyzer), the
analyzer attribute will have no effects.

7.5.2. xml-id

Mapped Xn bj ect* s must declare at least one xni -i d. The xm -i d element defines the Xn vj ect (element,
attribute, ...) that identifies the root xm bj ect for the specified alias.

<xm -id
nane="t he nane of the xnmi id"
xpat h="xpat h expressi on"
val ue- converter="val ue converter |ookup name"
converter="converter |ookup nane"
/>

Table 7.3. xml-id mapping

Attribute Description

name The name of the xm -i d. Will be used when constructing the xml-id
internal path.

xpath The xpath expression used to identify the xml-id. Must return a

single xml element.

value-converter (optional, default to The global converter lookup name registered with the
Compass Si npl exm Val ueConverter) | configuration. This is a converter associated with converting the

Framework (2.0.2)

XSEM - Xml to Search Engine Mapping

Attribute

converter (optional)

Description

actual value of the xml-id. Acts as a convenient extension point for
custom value converter implementation (for example, date
formatters). Si npl exnl Val ueConverter will usually act as a base
classfor such extensions.

The global converter lookup name registered with the
configuration. The converter will is responsible to convert the
xml-id mapping.

An important note regarding the xni -i d mapping, is that it will always at as an internal Compass Property.
This means that if one wish to have it as part of the searchable content, it will have to be mapped with

xni - property aswell.

7.5.3. xml-property

Declaring and using the xm - pr oper t y element.

<xnl - property
xpat h="xpat h expressi on"

nane="optionally the nane of the xml property"

st ore="yes| no| conpr ess"

i ndex="t okeni zed| un_t okeni zed| no"
boost ="boost val ue for the property"

anal yzer ="name of the anal yzer"

rever se="no| reader| string"
override="true|fal se"

excl ude-fromal | ="no| yes| no_anal yzed"
val ue- converter="val ue converter |ookup name"
converter="converter |ookup nane"

/>

Table 7.4. xml-property mapping

Attribute

Description

name (optional, will use the xml object
(element, attribute, ...) name if not set)

xpath

store (optional, defaultsto yes)

index (optional, defaultsto t okeni zed)

boost (optional, defaultsto 1. of)

analyzer (optional, defaults to the xml
mapping analyzer decision scheme)

The name that the value will be saved under. It is optional, and if
not set, will use the xml object name (the result of the xpath
expression).

The xpath expression used to identify the xml-property. Can return
no xml abjects, one xml object, or many xml objects.

If the value of the xml property is going to be stored in the index.

If the value of the xml property is going to be indexed (searchable).
If it does, than controls if the value is going to be broken down and
analyzed (t okeni zed), or isgoing to be used asis (un_t okeni zed).

Controls the boost level for the xml property.

The name of the analyzer that will be used to analyze TOKENI ZED
xml property mappings defined for the given property. Defaults to
the xml mapping analyzer decision scheme based on the analyzer
Set, or the xm - anal yzer mapping.

exclude-from-all (optional, default to Excludes the property from participating in the "al" meta-data. If

Compass - Java Search Engine 72

XSEM - Xml to Search Engine Mapping

Attribute

no)

override (optional, defaultstot r ue)

reverse (optional, defaults to no)

value-converter (optional, default to
Compass Si npl exm Val ueConverter)

converter (optional)

Description

set to no_anal yzed, un_t okeni zed properties will be analyzed
when added to the all property (the analyzer can be controlled using
the analyzer attribute).

If there is another definition with the same mapping name, if it will
be overridden or added as additional mapping. Mainly used to
override definitions made in extended mappings.

The meta-data will have it's value reversed. Can have the values of
no - no reverse will happen, string - the reverse will happen and
the value stored will be a reversed string, and r eader - a special
reader will wrap the string and reverse it. The reader option is
more performant, but the store and index settings will be
discarded.

The global converter lookup name registered with the
configuration. This is a converter associated with converting the
actual value of the xml-id. Acts as a convenient extension point for
custom value converter implementation (for example, date
formatters). Si npl exnl Val ueConverter will usualy act as a base
classfor such extensions.

The global converter lookup name registered with the
configuration. The converter will is responsible to convert the

xml-property mapping.

7.5.4. xml-analyzer

Declaring an analyzer controller property using the xm - anal yzer €lement.

<xm - anal yzer
nane="property nane"
xpat h="xpat h expressi on"

nul | -anal yzer="anal yzer nane if value is null"
converter="converter |ookup nane"

>
</ xm - anal yzer >

Table 7.5. xml-analyzer mapping
Attribute
name

Xpath

Description
The name of the xml-analyzer (resultsin apProperty).

The xpath expression used to identify the xml-analyzer. Must return
asingle xml element.

null-analyzer (optional, defaults to error
incase of anul | value)

converter (optional)

The name of the analyzer that will be used if the property has a
nul I value, or the xpath expression returned no elements.

The global converter lookup name registered with the
configuration.

Compass - Java Search Engine 73

XSEM - Xml to Search Engine Mapping

The analyzer xml property mapping, controls the analyzer that will be used when indexing the xm bj ect . If
the mapping is defined, it will override the xml object mapping analyzer attribute setting.

If, for example, Compass is configured to have two additional analyzers, caled an1 (and have settings in the
form of conpass. engi ne. anal yzer. anl. *), and another called an2. The values that the xml property can hold
are: default (which is an internal Compass analyzer, that can be configured as well), an1 and an2. If the
analyzer will have anul| value, and it is applicable with the application, anul | - anal yzer can be configured
that will be used in that case. If the resource property has a value, but there is not matching analyzer, an
exception will be thrown.

7.5.5. xml-boost

Declaring a dynamic boost mapping controlling the boost level using the xm - boost element.

<xm - anal yzer
nanme="property nanme"
xpat h="xpat h expressi on"
defaul t ="t he boost default value when no property value is present”
converter="converter |ookup nane"
>
</ xm -anal yzer >

Table 7.6. xml-analyzer mapping

Attribute Description

name The name of the xml-analyzer (resultsin aproperty).

Xpath The xpath expression used to identify the xml-analyzer. Must return
asingle xml element.

default (optional, defaultsto 1. 0) The default boost value if no value is found.

converter (optional) The global converter lookup name registered with the

configuration.

The boost xml property mapping, controls the boost associated with the Resource created based on the mapped
property. The value of the property should be allowed to be converted to float.

7.5.6. xml-content

Declaring an xml content mapping using the xm - cont ent € ement.

<xni - cont ent
nanme="property nanme"
st ore="yes| conpress"
converter="converter |ookup nane"
>

</ xm - cont ent >

Table 7.7. xml-content mapping

Attribute Description

name The name the xml content will be saved under.

Framework (2.0.2)

XSEM - Xml to Search Engine Mapping

Attribute Description
store (optional, defaults to yes) How to store the actual xml content.
converter (optional) The global converter lookup name registered with the

configuration.

The xni - cont ent mapping causes Compass to store the actual xml content in the search engine as well. This
will alow to unmarshall the xml back into an xn Qbj ect representation. For xm - obj ect mapping without an
xn - cont ent mapping, search/read operations will only be able to work on the Resour ce level.

Framework (2.0.2)

Chapter 8. RSEM - Resource/Search Engine
Mapping

8.1. Introduction

Compass provides OSEM technology for use with an applications Object domain model or XSEM when
working with xml data structures. Compass also provides Resource Mapping technology for resources other
than Objects/XML (that do not benefit from OSEM). The benefits of using Resources can be summarized as:

« Your application does not have a domain model (therefore cannot use OSEM), but you still want to use the
functionality of Compass.

* Your application already works with Lucene, but you want to add Compass additional features (i.e.
transactions, fast updates). Working with Resour ces makes your migration easy (asit is similar to working
with Lucene Document).

* You execute a query and want to update all the meta-data (Resour ce Property) with a certain value. You
use OSEM in your application, but you do not wish to iterate through the results, performing run-time
object type checking and casting to the appropriate object type before method call. Y ou can simply use the
Resour ce interface and treat al the results in the same abstracted way.

8.2. Mapping Declaration

In order to work directly with a Resour ce, Compass needs to know the alias and the primary properties (i.e.
primary keys in data-base systems) associated with the Resour ce. The primary properties are also known as id
properties. Thisinformation is declared in Resource Mapping XML documents, so that Compass knows how to
manage the Resour ce internally (thisis needs especially for update/del ete operations).

Here is an example of a Resource Mapping XML document:

<?xm version="1.0"?>
<! DOCTYPE conpass- cor e- mappi ng PUBLI C
"-// Compass/ Conpass Core Mapping DTD 2.0//EN'
"http://ww. conpass- proj ect. org/ dt d/ conpass- cor e- mappi ng-2. 0. dtd" >

<conpass- cor e- mappi ng>

<resource alias="a">
<resource-id name="id" />
</ resource>

<resource alias="b">
<resource-id nane="idl" />
<resource-id nanme="id2" />
</ resource>

<resource alias="c">
<resource-id name="id" />
<resour ce-property nanme="val uel" />
<resource-property name="val ue2" store="yes" index="tokeni zed" />
<resour ce-property name="val ue3" store="conpress" index="tokenized" />
<resour ce-property name="val ue4" store="yes" index="un_tokenized" />
<resour ce-property name="val ue5" store="yes" index="no" converter="ny-date" />
</ resource>
</ conpass- cor e- mappi ng>

Compass - Java Search Engine 76

RSEM - Resource/Search Engine Mapping

Now that the Resource Mapping has been declared, you can create the Resource in the application. In the
following code example the Resource is created with an alias and id property matching the Resource Mapping
declaration.

Resour ceFactory resourceFactory = conpass. get ResourceFactory();
Resource r = resourceFactory. creat eResource("a");
Property id = resourceFactory. createProperty("id", "1",
Property. Store. YES, Property.|ndex. UN TOKENI ZED);
r.addProperty(id);
r. addProperty(resourceFactory. createProperty("nvalue", "property test",
Property. Store. YES, Property.|ndex. TOKENI ZED)) ;

sessi on. save(r);

The Resource Mapping file example above defines mappings for three resource types (each identified with a
different aias). Each resource has a set of resource ids that are associated with it. The value for the
resour ce-i d tag isthe name of the Proper t y that is associated with the primary property for the Resour ce.

The third mapping (alias "c"), defines r esour ce- property mappings as well as resour ce-i d mappings. The
resource-property mapping works with the Resource#addProperty(String nanme, Object val ue)
operation. It provides definitions for the resource properties that are added (i ndex, st or e, and so on), and they
are then looked up when using the mentioned add method. Using the r esour ce- pr opert y mapping, helps clean
up the code when constructing a Resour ce, since all the property characteristics are defined in the mapping
definition, as well as auto conversion from different objects, and the ability to define new ones. Note that the
resour ce-property definition will only work with the mentioned addProperty method, and no other
addProperty method.

Hereis an example of how r esour ce- pr oper t y mappings can simplify Resource construction code:

Resour ceFactory resourceFactory = conpass. get ResourceFactory();

Resource r = resourceFactory. creat eResource("c");

r.addProperty("id", 1);

r.addProperty("valuel*, "this is a sanple value");

r.addProperty("val ue5", new Date()); // will use the ny-date converter (using the format defined there)
sessi on. save(r);

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above or in
the compass core distribution. Compass will always ook for the DTD in the classpath first.

There are no conpass- cor e- mappi ng attributes that are applicable when working with resource mappings.

8.2.1. resource

Y ou may declare aresource mapping using ther esour ce element:

<resource
al i as="al i asName"
sub-i ndex="sub index name"
extends="a conma separated |list of aliases to extend"
anal yzer ="nanme of the analyzer"
/>
all 2,
sub- i ndex- hash?,
resource-id*,
(resource-anal yzer?),
(resour ce- boost ?)
(resource-property)*

Compass - Java Search Engine 77

RSEM -

Resource/Search Engine Mapping

Table8.1.

Attribute

dias

sub-index (optional, defaults to the
al i as value)

extends (optional)

Description
The name of the alias that represents the Resour ce.

The name of the sub-index that the alias will map to.

A comma separated list of aliasesto extend. Can extend ar esour ce
mapping or aresour ce-cont ract mapping. Note that can extend
more than Ooneresour ce/ resour ce-contract

analyzer (optiona, defaults to the
def aul t analyzer)

The name of the analyzer that will be used to analyze TOKENI ZED
properties. Defaults to the defaul t analyzer which is one of the
internal analyzers that comes with Compass. Note, that when using
the resource-anal yzer mapping (a child mapping of resource
mapping) (for aresource property value that controls the analyzer),
the analyzer attribute will have no effects.

8.2.2. resource-contract

Y ou may declare a resource mapping contract using ther esour ce- cont ract €lement:

<resource-contract
al i as="al i asNane"

extends="a comma separated |list of aliases to extend"
anal yzer ="nanme of the analyzer"

/>
resource-id*,
(resource-anal yzer?),
(resource-property)*

Table 8.2.
Attribute
dlias

extends (optional)

analyzer (optiona, defaults to the
def aul t analyzer)

Description
The name of the alias that represents the Resour ce.

A comma separated list of aliasesto extend. Can extend ar esour ce
mapping or aresour ce-cont ract mapping. Note that can extend
more than Oneresour ce/ resour ce-contract

The name of the analyzer that will be used to analyze TOKENI ZED
properties. Defaults to the defaul t analyzer which is one of the
internal analyzers that comes with Compass. Note, that when using
the resource-anal yzer mapping (a child mapping of resource
mapping) (for aresource property value that controls the analyzer),
the analyzer attribute will have no effects.

8.2.3. resource-id

Compass - Java Search Engine 78

RSEM - Resource/Search Engine Mapping

Mapped Resour ce' s must declare at least one resource-i d. The resource-i d element defines the Property
that identifies the Resour ce for the specified dlias.

<resource-id
nanme="i dNane"

/>
Table 8.3.
Attribute Description
name The name of the property (known aso as the name of the

meta-data) that istheid of the Resour ce.

8.2.4. resource-property

Declaring and using ther esour ce- property €element.

<resource-property
nane="property nanme"
st ore="yes| no| conpr ess"
i ndex="t okeni zed| un_t okeni zed| no"
boost ="boost val ue for the property"
anal yzer="nanme of the analyzer"
reverse="no| reader|string"
override="true|fal se"
excl ude-fromal | ="no| yes| no_anal yzed"
converter="converter |ookup name"

>

</ resource-property>

Table 8.4.

Attribute Description

name The name of the property (known aso as the name of the
meta-data).

store (optional, defaultsto yes) If the value of the resource property is going to be stored in the
index.

index (optional, defaultsto t okeni zed) | If the value of the resource property is going to be indexed
(searchable). If it does, than controls if the value is going to be
broken down and analyzed (t okeni zed), or isgoing to be used asis
(un_t okeni zed).

boost (optional, defaultsto 1. of) Controls the boost level for the resource property.

analyzer (optional, defaults to the The name of the analyzer that will be used to analyze TOKENI ZED

resource mapping analyzer decision | resource property mappings defined for the given property.

scheme) Defaults to the resource mapping analyzer decision scheme based
on the analyzer set, or ther esour ce- anal yzer mapping.

exclude-from-all (optional, default to Excludes the property from participating in the "al" meta-data. If

fal se) set to no_anal yzed, un_t okeni zed properties will be analyzed
when added to the al property (the analyzer can be controlled using
the analyzer attribute).

Framework (2.0.2)

RSEM

- Resource/Search Engine Mapping

Attribute

override (optional, defaultstot r ue)

reverse (optional, defaults to no)

converter (optional)

Description

If there is another definition with the same mapping name, if it will
be overridden or added as additional mapping. Mainly used to
override definitions made in extended mappings.

The meta-data will have it's value reversed. Can have the values of
no - no reverse will happen, string - the reverse will happen and
the value stored will be a reversed string, and reader - a specia
reader will wrap the string and reverse it. The reader option is
more performant, but the store and index settings will be
discarded.

The global converter lookup name registered with the
configuration.

Defines the characteristics of aResour ce Property identified by the nane mapping. The definition only applies
when using the Resour ce#addProperty(String nanme, Object val ue) operation, and the operation can only
be used with ther esour cde- pr oper t y mapping.

Note that other Resource Property can be added that are not defined in the resource mapping using the

creat ePr oper t y operation.

8.2.5. resource-analyzer

Declaring an analyzer controller property using ther esour ce- anal yzer element.

<r esour ce-anal yzer
nanme="property nanme"

nul | -anal yzer="anal yzer nane if value is null"
converter="converter |ookup nane"

>
</ resource-anal yzer >

Table 8.5.
Attribute Description
name The name of the Property (known aso as the name of the

null-analyzer (optional, defaults to error
in case of anul | value)

meta-data).

The name of the analyzer that will be used if the property has the
nul | value.

converter (optional)

The global converter lookup name registered with the
configuration.

The analyzer resource property mapping, controls the analyzer that will be used when indexing the Resour ce. If
the mapping is defined, it will override the resource mapping analyzer attribute setting.

If, for example, Compass is configured to have two additional analyzers, called an1 (and have settings in the

form of conpass. engi ne. anal yzer. an1.

*), and another called an2. The values that the resource property can

hold are: def aul t (which is an internal Compass analyzer, that can be configured as well), an1 and an2. If the
analyzer will have anul| vaue, and it is applicable with the application, anul | - anal yzer can be configured

Framework (2.0.2)

RSEM - Resource/Search Engine Mapping

that will be used in that case. If the resource property has a value, but there is not matching analyzer, an
exception will be thrown.

8.2.6. resource-boost

Declaring a dynamic property to control the resource boost value using ther esour ce- boost element.

<resour ce- boost
nanme="property nanme"
defaul t ="t he boost default val ue when no property value is present"
converter="converter |ookup nanme"

>

</ resour ce- boost >

Table 8.6.

Attribute Description

name The name of the property (known aso as the name of the
meta-data).

default (optional, defaultsto 1. 0) The default value if the property has a null value.

converter (optional) The global converter lookup name registered with the

configuration.

The boost resource property mapping, controls the boost associated with the Resource created based on the
mapped property. The value of the property should be allowed to be converted to float.

Compass - Java Search Engine 81

Chapter 9. Common Meta Data

9.1. Introduction

The common meta-data feature of Compass.:Core provides a way to externalize the definition of meta-data
names and aliases used in OSEM files, especially useful if your application has a large domain model with
many OSEM files. Another advantage of this mechanism is the ability to add extra information to the meta data
(i.e. along description) and the ability to specify the format for the meta-data definition, removing the need to

explicitly define formatsin the OSEM file (like. . . f or mat =" yyyy/ MM dd". .).

By centralizing your meta-data, other tools can take advantage of this information and extend this knowledge
(i.e. adding semantic meaning to the data). Compass::Core provides a common meta-data Ant task that
generates a Java class containing constant values of the information described in the Common meta-data file,
allowing programmatic access to this information from within the application (see Library class in sample

application).

Note, the common meta-data support in Compass is completely optional for applications.

9.2. Commnon Meta Data Definition

The common meta-data definition are defined in an XML document. Here is an example:

<?xm version="1.0"?>
<! DOCTYPE conpass-core-neta-data PUBLIC
"-// Compass/ Conpass Core Meta Data DTD 2. 0//EN'

"http://ww. conpass- proj ect. org/ dt d/ conpass- cor e- net a- dat a- 2. 0. dtd" >

<conpass- cor e- net a- dat a>

<nmet a-dat a-group id="library" displayNanme="Library Meta Data">

<descri ption>Li brary Meta Data</descripti on>

<uri

<al

</ al

<al

</ al

<al

</ al

<al

</ al

>http://conpass/sanpl e/library</uri>

as id="author" displ ayNane="Aut hor">
<descri pti on>Aut hor al i as</description>
<uri>http://conpass/sanple/library/alias/author</uri>
<name>aut hor </ nane>

i as>

as id="nane" displ ayName="Nane" >

<descri pti on>Nane alias</description>
<uri>http://conpass/sanple/library/alias/nane</uri>
<nane>nane</ name>

i as>

as id="article" displayName="Article">
<description>Article alias</description>
<uri>http://conpass/sanple/library/alias/article</uri>
<nane>arti cl e</ nane>

i as>

as i d="book" di spl ayNanme="Book" >

<descri pti on>Book al i as</description>
<uri>http://conpass/sanple/library/alias/book</uri>
<name>book</ nane>

i as>

<met a-data i d="type" displ ayNane="Type">

<descri ption>Type of an entity in the systenx/description>

<uri>http://conpass/sanple/library/type</uri>
<nane>t ype</ nane>

<val ue i d="ndPer son" >per son</ val ue>

<val ue i d="ndAut hor " >aut hor </ val ue>

Compass - Java Search Engine

82

Common Meta Data

</ met a- dat a>

<met a- dat a i d="keyword" di spl ayName="Keywor d" >
<descri pti on>Keyword associated with an entity</description>
<uri>http://conpass/sanpl e/library/ keyword</uri>
<nane>keywor d</ nane>

</ et a- dat a>

<met a-dat a i d="nane" di spl ayNane="Nane" >
<descri pti on>The name of a person</description>
<uri>http://conpass/sanpl e/library/ nane</uri>
<nanme>nane</ nane>

</ et a- dat a>

<met a-data i d="birthdate" displayNane="Birthdate">
<description>The birthdate of a person</description>
<uri>http://conpass/sanpl e/library/ birthdate</uri>
<nane fornat="yyyy/ MM dd" >bi rt hdat e</ nanme>

</ net a- dat a>

<met a-data id="isbn" di spl ayName="| SBN'>
<descri ption>l SBN of the book</descripti on>
<uri>http://conpass/sanple/library/isbn</uri>
<nane>i sbn</ name>

</ met a- dat a>

<meta-data id="title" displayName="Title">
<description>The title of a book or an articl e</description>
<uri>http://conpass/sanple/library/title</uri>
<name>titl e</ nane>

</ net a- dat a>

</ met a- dat a- gr oup>

</ conpass- cor e- et a- dat a>

9.3. Using the Definition

In order to use the Common meta-data definition, you need to specify the location of the file or files in the
Compass configuration file (compass.cfg.xml). Compass will automatically replace labels used in OSEM files
with the values contain in the Common meta-data file.

<met a- data resource=
"org/ conpass/sanple/library/library.cmd. xm" />

Note: The common meta data reference needs to be BEFORE the mapping files that use them.

To use common meta data within a OSEM file, you use the familiar ${ ...} label (similar to Ant). An example of
using the common meta data definitions in the mapping fileis:

<?xm version="1.0"?>
<! DOCTYPE conpass- cor e- mappi ng PUBLI C
"-// Conmpass/ Conpass Core Mapping DTD 2.0//EN'
"http://ww. conpass- proj ect. or g/ dt d/ conpass- cor e- mappi ng- 2. 0. dtd" >

<conpass- cor e- mappi ng package="org. conpass. sanple.library">
<cl ass nane="Author" alias="${library.author}">
<id name="id" />
<const ant >
<met a-dat a>${| i brary. t ype} </ net a- dat a>
<net a- dat a- val ue>${l i brary. t ype. ndPer son} </ net a- dat a- val ue>

<met a- dat a- val ue>${ 1 i brary. t ype. ndAut hor } </ net a- dat a- val ue>
</ const ant >

Compass - Java Search Engine 83

Common Meta Data

<property nanme="keywords">
<net a- dat a boost="2">%${li brary. keywor d} </ net a- dat a>
</ property>

<conponent nane="nane" ref-alias="${library.nanme}" />

<property name="birthdate">
<net a- dat a>${ ! i brary. bi rt hdat e} </ et a- dat a>
</ property>

<conponent nane="articles" ref-alias="${library.article}" />
<ref erence nane="books" ref-alias="${library. book}" />
</cl ass>

<cl ass nane="Nane" alias="${library.nane}" root="fal se">

<property name="title">
<met a-data>${li brary.titl eNane}</ et a- dat a>

</ property>

<property name="firstNane">
<neta-data>${li brary. first Nane} </ net a- dat a>
<net a- dat a>${ | i brary. nane} </ net a- dat a>

</ property>

<property nanme="| ast Nane" >
<net a-data>${|i brary. | ast Nane} </ net a- dat a>
<net a- dat a>${| i brary. nane} </ net a- dat a>

</ property>

</ cl ass>

</ conpass- cor e- mappi ng>

9.4. Commnon Meta Data Ant Task

One of the benefits of using the common meta data definitions is the meta data Ant task, which generate Java
classes with constant values of the defined definitions. The common meta data classes allows you to use the
definition within your code.

The following is a snippet from an ant build script (or maven) which uses the common meta data ant task.

<t askdef nanme="ndtask"
cl assnane="or g. conpass. cor e. net adat a. ant . Met aDat aTask"
cl asspat href ="cl asspat hhref "/ >
<nmdt ask destdir="${java.src.dir}">
<fileset dir="${java.src.dir}">
<include name="**/*"/>
</fil eset>
</ mdt ask>

Compass - Java Search Engine 84

Chapter 10. Transaction

10.1. Introduction

As we explained in the overview page, Compass provides an abstraction layer on top of the actual transaction
handling using the ConpassTransacti on interface. Compass has a transaction handling framework in place to
support different transaction strategies and comes built in with Local Tranasction and JTA synchronization
support.

As oppose to transaction handling based on JDBC data source or JCA based resources (and until compass will
implement something similar to JCA), you have to use the ConpassTransacti on abstraction. Note, that it is
made much simpler when using ConpassTenpl ate and ConpassCal | back classes since both the session
management and the transaction management is done by the template class.

10.2. Session Lifecycle

Conpass interface manages the creation of ConpassSession using the openSession() method. When
begi nTransacti on() is called on the ConpassTransacti on, the session is bound to the created transaction
(JTA, Spring, Hibernate or Local) and used throughout the life-cycle of the transaction. It means that if an
additional session is opened within the current transaction, the originating session will be returned by the
openSessi on() method.

When using the opensSessi on method, Compass will automatically try and join an aready running outer
transaction. An outer transaction can be an aready running local Compass transaction, a JTA transaction, a
Hibernate transaction, or a Spring managed transaction. If Compass manages to join an existing outer
transaction, the application does not need to call ConpassSession#begi nTransaction() OF use
ConpassTransact i on t0 manage the transaction (since it is already managed). This allows to simplify the usage
of Compass within managed environments (CMT or Spring) where a transaction is already in progress by not
requiring explicit Compass code to manage a Compass transaction. In fact, calling begi nTransacti on will not
actually begin atransaction in such a case, but will simply join it (with only the rollback method used).

10.3. Local Transaction

Compass::Core provides support for compass local transactions. Local transactions are Compass session level
transaction, with no knowledge of other running transactions (like JDBC or JTA).

A loca transaction which starts within the boundaries of a compass local transaction will share the same
session and transaction context and will be controlled by the outer transaction.

In order to configure Compass to work with the Local Transaction, you must set the
conpass. transaction. factory tOorg. conpass. core. transacti on. Local Transacti onFactory.

10.4. JTA Synchronization Transaction

Compass provides support for JTA transactions using the JTA synchronization support. A JTA transaction will
bejoined if already started (by CMT for example) or will be started if non wasinitiated.

Compass - Java Search Engine 85

Transaction

The support for JTA also includes support for suspend and resume provided by the JTA transaction manager
(or REQUIRES NEW in CMT when there is already a transaction running).

JTA transaction support is best used when wishing to join with other transactional resources (like DataSource).

The current implementation performs the full transaction commit (first and second phase) at the
af t er Conpl et i on method and any exception is logged but not propagated. It can be configured to perform the
commit in the bef or eConpl et i on phase, which is useful when storing the index in the database.

In order to configure Compass to work with the JTA Sync Transaction, you must set the
conpass. transaction. factory tO org. conpass. core.transaction. JTASyncTransacti onFactory. YOU can
also set the transaction manager lookup based on the environment your application will be running at (Compass
will try to automatically identify it).

10.5. XA Transaction

Compass provides support for JTA transactions by enlisting an XAResource with a currently active
Transact i on. Thisallows for Compass to participate in atwo phase commit process. A JTA transaction will be
joined if already started (by CMT for example) or will be started if non was initiated.

The support for JTA also includes support for suspend and resume provided by the JTA transaction manager
(or REQUIRES NEW in CMT when there is already atransaction running).

The XA support provided allows for proper two phase commit transaction operations, but do not provide a full
implementation such as a JCA implementation (mostly for recovery).

In order to configure Compass to work with the JTA XA Transaction, you must set the
compass. transaction.factory t0O org. conpass. core. transaction. XATransacti onFactory. You can aso
set the transaction manager lookup based on the environment your application will be running at (Compass will
try to automatically identify it).

Compass - Java Search Engine 86

Chapter 11. Working with objects

11.1. Introduction

Lets assume you have download and configured Compass within your application and create some
RSEM/OSEM/XSEM mappings. This section provides the basics of how you will use Compass from within the
application to load, search and delete Compass searchable objects. All operations within Compass are accessed
through the ConpassSessi on interface. The interface provides oj ect and Resour ce method API's, giving the
developer the choice to work directly with Compass internal representation (Resour ce) or application domain
Objects.

11.2. Making Object/Resource Searchable

Newly instantiated objects (or Resources) are saved to the index using the save(Obj ect) method. If you have
created more than one mapping (alias) to the same object (in OSEM file), use the save(String ali as,
oj ect) instead.

Aut hor aut hor = new Aut hor();
aut hor. set 1 d(new Long(1));

aut hor. set Name(" Jack London");
conpassSessi on. save(aut hor);

When using OSEM and defining cascading on component/reference mappings, Compass will cascade save
operations to the target referenced objects (if they are marked with save cascade). Non root objects are allowed
to be saved in Compass if they have cascading save relationship defined.

11.3. Loading an Object/Resource

Thel oad() method allows you to load an object (or a Resource) if you already know it's identifier. If you have
one mapping for the object (hence one alias), you can usethel oad(d ass, Object id) method. If you created
more than one mapping (alias) to the same object, usethel oad(String alias, Object id) method instead.

Aut hor aut hor = (Author) session. | oad(Author.class,
new Long(12));

| oad() will throw an exception if no object exists in the index. If you are not sure that there is an object that
maps to the supplied id, use the get method instead.

11.4. Deleting an Object/Resource

If you wish to delete an object (or a Resource), you can use the del et e() method on the ConpassSessi on
interface (note that only the identifiers need to be set on the corresponding object or Resource).

sessi on. del et e(Aut hor . cl ass, 12);

Il or :

sessi on. del et e(Aut hor . cl ass, new Aut hor (12));

/'l or :

sessi on. del et e(Aut hor. cl ass, "12"); // Everything in the search engine is a String at the end

Compass - Java Search Engine 87

Working with objects

When using OSEM and defining cascading on component/reference mappings, Compass will cascade delete
operations to the target referenced objects (if they are marked with delete cascade). Non root objects are
allowed to be deleted in Compass if they have cascading save relationship defined. Note, deleting objects by
their id will not cause cascaded relationships to be deleted, only when the actual object is passed to be deleted,
with the relationships initialized (the object can be loaded from the search engine).

11.5. Searching

For a quick way to query the index, use thefi nd() method. Thefind() method returns a ConpassHi t s object,
which is an interface which encapsul ates the search results. For more control over how the query will executed,
use the conpassQuery interface, explained later in the section.

ConpassHits hits = session.find("nanme:jack");

11.5.1. Query String Syntax

The free text query string has a specific syntax. The syntax is the same one Lucene uses, and is summarised
here:

Table11.1.

Expression Hits That

jack Contain theterm j ack in the default search field

jack london (jack AND london) Containsthe termj ack and | ondon in the default search field

jack OR london Contains the term j ack or | ondon, or both, in the default search

field

+jack +london (jack AND london) Contains both j ack and | ondon in the default search field
name:jack Containsthetermj ack in the nane property (meta-data)

namejack -city:london (namejack | Have j ack in the nane property and don't have | ondon inthecity
AND NOQOT city:london) property

name:"jack london" Contains the exact phrasej ack | ondon inthe name property

name:"jack london"~5 Contain the term jack and | ondon within five positions of one
another

jack* Contain terms that begin with j ack

jack~ Contains terms that are close to the word j ack

birthday:[1870/01/01 TO 1920/01/01] Havethebi rt hday values between the specified values. Note that it
isalexicography range

The default search can be controlled using the Compass::Core configuration parameters and defaults to al |
meta-data.

Compass - Java Search Engine 88

http://lucene.apache.org

Working with objects

11.5.2. Query String - Range Queries Extensions

Compass simplifies the usage of range queries when working with dates and numbers. When using numbers it
is preferred to store the number if a lexicography correct value (such as 00001, usualy using the format
attribute). When using range queries, Compass alows to execute the following query: value:[1 TO 3] and
internally Compass will automatically trandate it to value:[0001 TO 0003].

When using dates, Compass allows to use severa different formats for the same property. The format of the
Date object should be sortable in order to perform range queries. This means, for example, that the format
attribute should be: format="yyyy-MM-dd". This alows for range queries such as: date:[1980-01-01 TO
1985-01-01] to work. Compass aso allows to use different formats for range queries. It can be configured
within the format configuration: format="yyyy-MM-dd||dd-MM-yyyy" (the first format is the one used to store
the String). And now the following range query can be executed: date:[01-01-1980 TO 01-01-1985].

Compass also alows for math like date formats using the now keyword. For example: "now+1lyear" will
tranglate to a date with ayear from now. For more information please refer to the DateM athParser javadoc.

11.5.3. CompassHits, CompassDetachedHits & CompassHitsOperations

All the search results are accessible using the ConpassHi ts interface. It provides an efficient access to the
search results and will only hit the index for "hit number N" when requested. Results are ordered by relevance
(if no sorting is provided), in other words and by how well each resource matches the query.

ConpassHi ts can only be used within a transactional context, if hits are needed to be accessed outside of a
transactional context (like in a jsp view page), they have to be "detached", using one of ConpassHi t s#det ch
methods. The detached hits are of type ConpassDet achedHi ts, and it is guaranteed that the index will not be
accessed by any operation of the detached hits. ConpassHi ts and ConpassDet achedHi t s both share the same
operations interface called ConpassHi t sQper at i ons.

The following table lists the different ConpassHi t sOper at i ons methods (note that there are many more, please
view the javadoc):

Table11.2.

Method Description

get Lengt h() Or | engt h() Number of resources in the hits.

score(n) Normalized score (based on the score of the topmost resource) of
the n'th top-scoring resource. Guaranteed to be greater than 0 and
less than or equal to 1.

resource(n) Resource instance of the n'th top-scoring resource.

dat a(n) Object instance of the n'th top-scoring resource.

11.5.4. CompassQuery and CompassQueryBuilder

Compass::Core comes with the ConpassQueryBuil der interface, which provides programmatic APl for
building a query. The query builder creates a ConpassQuery which can than be used to add sorting and
executing the query.

Compass - Java Search Engine 89

Working with objects

Using the ConpassQuer yBui | der, simple queries can be created (i.e. eq, between, prefix, fuzzy), and more
complex query builders can be created as well (such as a boolean query, multi-phrase, and query string).

The following code shows how to use a query string query builder and using the ConpassQuery add sorting to
the resullt.

ConpassHits hits = session. createQueryBuil der()
.queryString("+nane:jack +fam | yNane:|ondon")
.set Anal yzer("anl") // use a different anal yzer
.toQuery()
.addSort ("fam | yNane", ConpassQuery. Sort PropertyType. STRI NG
.addSort ("birthdate", ConpassQuery. SortPropertyType.|NT)
Lhits();

Another example for building a query that requires the name to be jack, and the familyName not to be london:

ConpassQuer yBui | der queryBuil der = session. creat eQueryBuil der();
ConpassHi ts hits = queryBuil der. bool ()
.addMust (queryBui |l der.tern("nane", "jack"))
.addMust Not (queryBuil der.ternm("fam | yNanme", "london"))
.toQuery()
.addSort ("fam | yNane", ConpassQuery. Sort PropertyType. STRI NG
.addSort ("birthdate", ConpassQuery. SortPropertyType.|NT)
Lhits();

Note that sorted resource properties / meta-data must be stored and un_tokenized. Also sorting requires more
memory to keep sorting properties available. For numeric types, each property sorted requires four bytes to be
cached for each resource in the index. For st ri ng types, each unique term needs to be cached.

When a query is built, most of the queries can accept an Object as a parameter, and the name part can be more
than just a simple string value of the meta-data / resource-property. If we take the following mapping for
example:

<cl ass nane="eg. A" alias="a">
<id name="id" />

<property name="fam | yName" >
<met a- dat a>f am | y- nane</ net a- dat a>
</ property>

<property nanme="date">
<met a- dat a convert er - param="YYYYMVDD" >dat e- senx/ net a- dat a>
</ property>

</ cl ass>

The mapping defines a simple class mapping, with a simple string property called familyName and a date
property called date. With the ConpassQuer yBui | der, most of the queries can directly work with either level of
the mappings. Here are some samples:

ConpassQuer yBui | der queryBui |l der = session. creat eQueryBuil der();
/1 The follow ng search will result in matching "l ondon" agai nst "fam|yName"
ConpassHits hits = queryBuilder.tern("a.fam|yNane.fam|y-name", "london").hits();

/1l The following search will use the class property neta-data id, which in this case

/1 is the first one (famly-nanme). If there was another neta-data with the family-nane val ue,
/1 the internal neta-data that is created will be used ($/a/fam|yNane).

ConpassHits hits = queryBuilder.tern{"a.fam |yNane", "london").hits();

// Here, we provide the Date object as a paraneter, the query builder will use the
/'l converter framework to convert the value (and use the given paraneter)
ConpassHits hits = queryBuilder.tern{("a.date.date-sent, new Date()).hits();

/'l Remmenber, that the alias constraint will not be added autonatically, so
// the follow ng query will cause only fam ly-nane with the value "l ondon" of alias "a"
ConpassHits hits = queryBuil der. bool ()

Framework (2.0.2)

Working with objects

.addMust (queryBuil der.alias("a"))
.addMust (queryBuil der.term("a.fam | yNane", "london"))
.toQuery().hits();

When using query strings and query parsers, Compass enhances L ucene query parser to support custom formats
(for dates and numbers, for example) as well as support dot path notation. The query:
a.fani | ynane. fani | y- name: | ondon Will result in a query matching on fanilyName to | ondon as well as
wrapping the query with one that will only match the a alias.

11.5.5. Terms and Frequencies

Compass allows to easily get all the terms (possible values) for a property / meta-data name and their respective
frequencies. This can be used to build a frequency based list of terms showing how popular are different tags
(as different blogging sites do for example). Here is a simple example of how it can be used:

ConpassTernfreq[] ternfFreqs = session.ternfFreqsBuil der(new String[]{"tag"}).toTernfreqs();
// iterate over the termfreqgs and display them

/1 a nore conpl ex exanpl e:
ternfFreqs = session.ternFreqsBuil der(new String[]{"tag"}).setSize(10).
.set Sort (ConpassTer nFreqsBui | der. Sort. TERM . normal i ze(0, 1).toTernFreqs();

11.5.6. CompassSearchHelper

Compass provides a simple search helper providing support for pagination and automatic hits detach. The
search helper can be used mainly to simplify search results display and can be easily integrated with different
MV C frameworks. CompassSearchHel per isthread safe. Here is an example of how it can be used:

/'l constructs a new search hel per with page size 10.
ConpassSear chHel per sear chHel per = new ConpasssSear chHel per (conpass, 10);
1.
ConpassSear chResul ts results = searchHel per. search(new ConpassSear chConmand(“test", new |Integer(0)));
for (int i =0; i <results.getH ts().length; i++) {
ConpassHit hit = results.getHits()[i];
/1 display the results
}
// iterate through the search results pages
for (int i =0; i <results.getPages().length; i++) {
Page page = results.getPages()[i];
/'l display a page, for exanple 1-10, 11-20, 21-30
}

11.5.7. CompassHighlighter

Compass::Core comes with the ConpassHi ghl i ghter interface. It provides ways to highlight matched text
fragments based on a query executed. The following code fragment shows a simple usage of the highlighter
functionality (please consult the javadoc for more information):

ConpassHits hits = session.find("london");
/1 a fragnment highlighted for the first hit, and the description property nane
String fragment = hits. highlighter(0).fragment("description");

Highlighting can only be used with ConpassHi ts, which operations can only be used within a transactional
context. When working with pure hits results, ConpassHits can be detached, and then used outside of a
transactional context, the question is. what can be done with highlighting?

Framework (2.0.2)

Working with objects

Each highlighting operation (as seen in the previous code) is also cached within the hits object. When detaching
the hits, the cache is passed to the detached hits, which can then be used outside of a transaction. Here is an
example:

ConpassHits hits = session.find("london");
for (int i =0.; i < 10; i++) {
hits. highlighter(i).fragnent("description"); // this will cache the highlighted fragnent

}
ConpassHi t[] detachedHits = hits.detach(0, 10).getHits();

/'l outside of a transaction (maybe in a view technol ogy)
for (int i =0; i < detachedHi ts.length; i++) {
/1l this will return the first fragnment
detachedHi ts[i].get Hi ghlightedText (). getH ghlightedText();
/1 this will return the description fragnent, note that the inplenentation
/1 implenents the Map interface, which allows it to be used sinply in JSTL env and ot hers
detachedHi ts[i]. get Hi ghlightedText (). getH ghlightedText("description");

Compass - Java Search Engine 92

Part Il. Compass Vocabulary

Compass::VVocabulary aim is to provide common semantic meta-data based on several open forums for online
meta-data standards (such as the Dublin Core Meta data initiative.

Compass - Java Search Engine 93

http://dublincore.org/

Chapter 12. Introduction

Compass::VVocabulary aim is to provide common semantic meta-data based on several open forums for online
meta-data standards (such as the Dublin Core Meta data initiative.

Built on top of the general support for common meta-data, provided by Compass::Core, Compass:.:V ocabulary
provides both a set of common meta data xml definitions files (*.cmd.xml) and the compiled Java version of
them (using the common meta-data ant task).

Compass - Java Search Engine 94

http://dublincore.org/

Chapter 13. Dublin Core

The Compass::Vocabulary supports the Dublin Core Meta data initiative. The common meta data xml mapping
files can be found at: org/conpass/vocabul ary/ dublinCore.cnd. xmi. The generated classes are
or g. conpass. vocabul ary. Dubl i nCore and or g. conpass. vocabul ary. Dubl i nCor et hers. These classes can
used in your application to use the static String values of the vocabulary.

Compass - Java Search Engine 95

http://dublincore.org/

Part lll. Compass Gps

One of the aims of Compass::Gps is to provide a common API for integrating multiple different indexable data
sources (which we are calling Gps devices). An indexable data source could be afile system, ftp site, web page
or a database (either via JDBC or ORM tool). A datasource accessed as a GPS device provides the ability to
index it's data, either via batch mode or through real time data changes which are mirrored in the index.

Compass::Gps provides an API for registering GPS devices and controlling their lifecycle, along with a set of
base classes that implement popular data accessing technologies (i.e JDBC, JDO, Hibernate ORM and OJB).
Developers can create their own GPS Device's simply, extending the capability of Compass::Gps.

Compass - Java Search Engine 96

Chapter 14. Introduction

14.1. Overview

Compass Gps provides integration with different indexable data sources using two interfaces. CompassGps and
CompassGpsDevice. Both interfaces are very abstract, since different data sources are usually different in the
way they work or the API they expose.

A deviceis considered to be any type of indexable data source imaginable, from a database (maybe through the
use of an ORM mapping tool), file system, ftp site, or aweb site.

The main contract that a device is required to provide is the ability to index it's data (using the i ndex()
operation). You can think of it as batch indexing the datasource data, providing access for future search queries.
An additional possible operation that a device can implement is mirror data changes, either actively or
passively.

Compass Gps is built on top of Compass Core module, utilizing all it's features such as transactions (including
the important bat ch_i nsert level for batch indexing), OSEM, and the simple API that comes with Compass
Core.

When performing the index operation, it is very important NOT to perform it within an aready running
transaction. For Local TransactionFactory, NnO outer Local Transaction should be started. For
JTATr ansact i onFact ory, no JTA transaction must be started, or no CMT transaction defined for the method
level (on EJB Session Bean for example). For Spri ngSyncTransact i onFact ory, N0 spring transaction should
be wrapping the index code, and the executing method should not be wrapped with a transaction (using
transaction proxy for example).

14.2. CompassGps

Conpass@s is the main interface within the Compass Gps module. It holds a list of ConpassGpsDevi ces, and
manages their lifecycle.

ConpassGps| nt er f aceDevi ce IS an extension of ConpassGps, and provides the needed abstration between the
Conpass instance/s and the given devices. Every implementation of a ConpassGps must also implement the
ConpassGps| nt er f aceDevi ce. Compass Gps module comes with two implementations of ConpassGps:

14.2.1. SingleCompassGps

Holds a single conpass instance. The Conpass instance is used for both the index operation and the mirror
operation. When executing the index operation Single Compass Gps will clone the provided Conpass instance.
Additional or overriding settings can be provided using indexSettings. By default, default overriding settings
are: batch_insert as transaction isolation mode, and disabling of any cascading operations (as they usually do
not make sense for index operations). A prime example for overriding setting of the index operation can be
when using a database as the index storage, but define a file based storage for the index operation (the index
will be built on the file system and then copied to the database).

When calling the index operation on the Si ngl eConpassGps, it will gracefully replace the current index
(pointed by the initialized single Conpass instance), with the content of the index operation. Gracefully means
that while the index operation is executing and building a temporary index, no write operations will be allowed

Compass - Java Search Engine 97

Introduction

on the actual index, and while the actual index is replaced by the temporary index, no read operations are
allowed aswell.

14.2.2. DualCompassGps

Holds two Conpass instances. One, called i ndexConpass is responsible for index operation. The other, called
mi rror Conpass iS responsible for mirror operations. The main reason why we have two different instances is
because the transaction isolation level can greatly affect the performance of each operation. Usualy the
i ndexConpass instance will be configured with the bat ch_i nsert isolation level, while the i rror Conpass
instance will use the default transaction isolation level (read_comi tt ed).

When calling the index operation on the Dual ConpassGps, it will gracefully replace the mirror index (pointed
by the initialized mi rr or Conpass instance), with the content of the index index (pointed by the initialized
i ndexConpass instance). Gracefully means that while the index operation is executing and building the index,
no write operations will be alowed on the mirror index, and while the mirror index is replaced by the index, no
read operations are allowed as well.

Both implementations of ConpassGps alow to set / override settings of the Conpass that will be responsible for
the index process. One sample of using the feature which might yield performance improvements can be when
storing the index within a database. The indexing process can be done on the local file system (on atemporary
location), in a compound format (or non compound format), by setting the indexing compass connection setting
to point to a file system location. Both implementations will perform "hot replace" of the file system index into
the database location, automatically compounding / uncompounding based on the settings of both the index and
the mirror compass instances.

14.3. CompassGpsDevice

A Gps devices must implement the ConpassGpsDevi ce interface in order to provide device indexing. It is
responsible for interacting with a data source and reflecting it's data in the Compass index. Two examples of
devices are afile system and a database, accessed through the use of a ORM tool (like Hibernate).

A device will provide the ability to index the data source (using the i ndex() operation), which usually means
iterating through the device data and indexing it. It might also provide "real time" monitoring of changesin the
device, and applying them to the index as well.

A ConpassGpsDevi ce cannot operate standalone, and must be a part of a ConpassGps instance (even if we have
only one device), since the device requires the Compass instance(s) in order to apply the changes to the index.

Each device has a name associated with it. A device name must be unique across all the devices within asingle
CompassGps instance.

14.3.1. MirrorDataChangesGpsDevice

As mentioned, the main operation in ConpassGpsDevi ce iSi ndex() , which is responsible for batch indexing all
the relevant data in the data source. Gps devices that can mirror real time data changes made to the data source
by implementing the M r r or Dat aChangesGpsDevi ce interface (which extends the ConpassGpsDevi ce interface).

There are two types of devices for mirroring data. ActiveM rror GpsDevi ce provides data mirroring of the
datasource by explicit programmatic calls to performM rroring. PassiveM rror GosDevi ce IS a GPS device
that gets notified of data changes made to the data source, and does not require user intervention in order to
reflect data changes to the compass index.

Compass - Java Search Engine 98

Introduction

For ActiveM rrorGpsDevi ce, Compass Gps provides a Schedul edM rror GosDevi ce class, which wraps an
ActiveM rror GosDevi ce and schedules the execution of the per f ormM rror () operation.

14.4. Programmatic Configuration

Configuration of Compass Gps is achieved by programmatic configuration or through an 10C container. All the
devices provided by Compass Gps as well as ConpassGps can be configured via Spring framework.

The following code snippet shows how to configure Compass Gps as well as managing it's lifecycle.

Conpass conpass = ... // configure conpass
Conpass@s gps = new Si ngl eConpassGps(conpass);

ConpassGosDevi ce devicel = ... // configure the first device
devi cel. set Nanme("devi cel");
gps. addDevi ce(devi cel);

ConpassGpsDevi ce device2 = ... // configure the second device
devi ce2. set Nane("devi ce2");

gps. addDevi ce(devi ce2);

gps. start();

//on application shutdown
gps. stop();

14.5. Parallel Device

The Compass Gps module provides a convenient base class for parallel indexing of devices (data sources). The
Abst ract Paral | el GosDevi ce and its supporting classes allow to simplify paralleled gps devices index
operations (and is used by Hibernate and Jpa Gps devices).

If we use the following aliases mapped to different sub indexes as an example:

Compass - Java Search Engine 99

Introduction

D
SublndexH ash Sublndex Hash EublndexH ash SublndexHash

Al AEI B1, BE C1, CE C3 D1, D2

mmm
M

Alias To Sub Index Mapping

The first step during the parallel device startup (st art operation) is to ask its derived class for its indexable
entities (the parallel device support defines an index entity as an entity "template” about to be indexed
associated with a name and a set of sub indexes). In our case, the following are the indexed entities:

Pardlel Index Entities

Then, still during the startup process, the index entities are partitioned using an | ndexEntiti esPartiti oner
implementation. The default (and the only one provided built in) is the Subl ndex| ndexEnti ti esPartiti oner
that partitions the entities based on their sub index allocation (thisis aso usualy the best partitioning possible,
aslocking is performed on the sub index level). Here are the index entities partitioned:

Framework (2.0.2)

Introduction

2) D) GO GO

Partitioned Index Entities

During the index operation, a Par al | el I ndexExecut or implementation will then execute the index operation
using the partitioned index entities, and an | ndexEnti ti esl ndexer implementation (which is provided by the
derived class). The default implementation is Concurrent Par al | el I ndexExecut or Which creates N threads
during the index operation based on the number of partitioned entities and then executes the index process in
parallel on the partitioned index entities. In our case, the following diagram shows the index process:

R EDERED

Concurrent Parallel Index Process

Compass also comes with a simple SaneThr eadPar al | el | ndexExecut or which basically uses the same thread
of execution to execute the index operation sequentialy.

14.6. Building a Gps Device

If you wish to build your own Gps Device, it could not be simpler (actualy, it is as simple as getting the data
from the data source or monitoring the data sorce data changes). The main API that a device must implement is
i ndex() which by contract means that all the relevant data for indexing in the data source is indexed.

If you wish to perform real time mirroring of data changes from the data source to the index, you can controll
the lifecycle of the mirroring using the start() and stop() operations, and must implement either the
ActiveM rror GpsDevi ce or the Passi veM rror GpsDevi ce interfaces.

Framework (2.0.2)

Introduction

Compass::Gps comes with a set of base classes for gps devices that can help the development of new gps
devices.

Compass - Java Search Engine 102

Chapter 15. JDBC

15.1. Introduction

The Jdbc Gps Device provides support for database indexing through the use of JDBC. The Jdbc device maps a
Jdbc Resul t Set to a set of Compass Resour ces (sharing the same resource mapping). Each Resour ce maps one
to one with a Resul t Set row. The Jdbc device can hold multiple Resul t Set to Resour ce mappings. The Jdbc
Gps device class is Resul t Set JdbcGpsDevi ce. The core configuration is the mapping definitions of a Jdbc
Resul t Set and a Compass Resour ce.

The Jdbc Gps device does not use OSEM, since no POJOs are defined that map the Resul t Set to objects. For
applications that use ORM tools, Compass::Gps provides severa devices that integrate with popular ORM tools
such as Hibernate, JDO, and OJB. For more information about Compass Resour ce, Resource Property and
resource mapping, please read the Search Engine and Resource Mapping sections.

The Jdbc Gps device also provides support for Acti veM rror GosDevi ce, meaning that data changes done to the
database can be automatically detected by the defined mappings and device.

For the rest of the chapter, we will use the following database tables:

CREATE TABLE parent (
id | NTEGER NOT NULL | DENTITY PRI MARY KEY,
first_nane VARCHAR(30),
| ast _name VARCHAR(30),
versi on BI G NT NOT NULL
)
CREATE TABLE child (
id | NTEGER NOT NULL | DENTITY PRI MARY KEY
parent _id | NTEGER NOT NULL,
first_name VARCHAR(30),
| ast _name VARCHAR(30),
versi on BI G NT NOT NULL

ai ter table child add constraint
fk_child_parent foreign key (parent_id) references parent(id);

The PARENT.ID isthe primary key of the PARENT table, and the CHILD.ID isthe primary key of the CHILD
table. There is a one to many relationship between PARENT and child using the CHILD.PARENT _ID column.
The VERSION columns will be explained later, as they are used for the data changes mirroring option.

15.2. Mapping

To enable the Jdbc device to index a database, a set of mappings must be defined between the database and the
compass index. The main mapping definition maps a generic Jdbc Resul t Set to a set of Compass Resour ceS
that are defined by a specific Resource Mapping definitions. The mapping can be configured either at database
Resul t Set or Table levels. Resul t Set ToResour ceMappi ng Maps generic select SQL (returning a Resul t Set)
and Tabl eToResour ceMappi ng (extends the Resul t Set ToResour ceMappi ng) Simply maps database tables.

15.2.1. ResultSet Mapping

The following code sample shows how to configure a single Resul t Set that combines both the PARENT and
CHILD tables into a single resource mapping with an alias called "result-set".

Resul t Set ToResour ceMappi ng mappi ng = new Resul t Set ToResour ceMappi ng() ;

Compass - Java Search Engine 103

JDBC

mappi ng. set Al i as("result-set");
mappi ng. set Sel ect Query("sel ect "

+ "p.id as parent_id, p.first_name as parent_first_nanme, p.last_nanme as parent_| ast_nanme, "

+ "c.id as child_id, c.first_name as child_first_name, c.last_name child_|l ast_nane "
+ "fromparent p left join child c on p.id = c.parent_id");
// maps froma parent_id colum to a resource property naned parent-id
mappi ng. addl dMappi ng(new | dCol ummToPr opert yMappi ng("parent _id", "parent-id"));
// maps froma child_id colum to a resource property nanmed child-id
mappi ng. addl dMappi ng(new | dCol umToPr opert yMappi ng("“child_id", "child-id"));
mappi ng. addDat aMappi ng(new Dat aCol unmToPr opert yMappi ng(" parent _first_nane", "parent-first-nanme"));
mappi ng. addDat aMappi ng(new Dat aCol utmToPr opert yMappi ng(" parent _first_name", "first-nanme"));
mappi ng. addDat aMappi ng(new Dat aCol unmToPr opert yMappi ng("“chil d_first_nane", "child-first-nane"));
mappi ng. addDat aMappi ng(new Dat aCol uimToPr opert yMappi ng("chil d_first_nane", "first-nane"));

Here, we defined a mapping from a Resul t Set that combines both the PARENT table and the CHILD table
into asingle set of Resour ces. Note aso in the above example how "parent_first_name" is mapped to multiple
alias names, alowing searches to be performed on either the specific attribute type or the more general
"first_name".

The required settings for the Resul t Set ToResour ceMappi ng are the alias name of the Resour ce that will be
created, the select query that generates the Resul t Set, and the ids columns mapping (at least one must be
defined) that maps to the columns the uniquely identifies the rows in the Resul t Set .

Col unmToPr oper t yMappi ng iS a general mapping from a database column to a Compass Resour ce Property.
The mapping can map from a column name or a column index (the order that it appears in the select query) to a
Proper ty name. It can also have definitions of the Proper t y characteristics (Property. | ndex, Property. Store
and Property. Ter mVect or). Both |1 dCol umToPr oper t yMappi ng and Dat aCol urmToPr oper t yMappi ng are of
Col utmToPr oper t yMappi ng type.

In the above sample, the two columns that identifies a row for the given select query, are the parent_id and the
child_id. They are mapped to the parent-id and child-id property names respectively.

Mapping data columns using the Dat aCol unnToPr oper t yMappi ng provides mapping from "data’ columns into
searchable meta-data (Resource Property). AS mentioned, you can control the property name and it's
characteristics. Mapping data columns is optiona, though mapping none makes little sense.
Resul t Set ToResour ceMappi ng has the option to index all the unmapped columns of the Resul t Set by setting
the i ndexUnMappedCol urms property to t rue. The meta-datas that will be created will have the property name
set to the column name.

15.2.2. Table Mapping

Tabl eToResour ceMappi ng is a sSimpler mapping that extends the Resul t Set ToResour ceMappi ng, and maps a
database table to a resource mapping. The following code sample shows how to configure the table mapping.

Tabl eToResour ceMappi ng par ent Mappi ng = new Tabl eToResour ceMappi ng(" PARENT", "parent");

par ent Mappi ng. addDat aMappi ng(new Dat aCol umToPr opert yMappi ng("first_name", "first-name"));
Tabl eToResour ceMappi ng chi | dvappi ng = new Tabl eToResour ceMappi ng(" CHI LD"', "child");

chi | dMappi ng. addDat aMappi ng(new Dat aCol uimToPr opert yMappi ng("first_name", "first-nanme"));

The above code defined the table mappings. One mapping for the PARENT table to the "parent” aias, and one
for the CHILD table to the "child" aias. The mappings definitions are much simpler than the
Resul t Set ToResour ceMappi ng, With only the table name and the alias required. Since the mapping works
against a database table, the id columns can be auto generated (based on the table primary keys, and the
property names are the same as the column names), and the select query (based on the table name). Note that
the mapping will auto generate only settings that have not been set. If for example the select query is set, it will
not be generated.

Compass - Java Search Engine 104

JDBC

15.3. Mapping - MirrorDataChanges

The Resul t Set JdbcGpsDevi ce supports mirroring data changes to the database. In order to enable it, the
Resul t Set that will be mapped must have at least one version column. The version column must be
incremented whenever a change occurs to the corresponding row in the database (Note that some databases
have the feature built in, like ORACLE).

15.3.1. ResultSet Mapping

The following code sample shows how to configure amirroring enabled ResultSet mapping:

Resul t Set ToResour ceMappi ng mappi ng = new Resul t Set ToResour ceMappi ng() ;

mappi ng. set Al i as("result-set");

mappi ng. set Sel ect Query("sel ect "
+ "p.id as parent_id, p.first_nanme as parent_first_nanme, p.last_nane as parent_| ast_nane, p.version as parent_
+ "COALESCE(c.id, 0) as child_id, c.first_name as child_first_name, c.last_nanme child_| ast_name, COALESCE(c. ve
+ "fromparent p left join child c on p.id = c.parent_id");

mappi ng. set Ver si onQuery("select p.id as parent_id, COALESCE(c.id, 0) as child_id, "
+ "p.version as parent_version, COALESCE(c.version, 0) as child_version "
+ "fromparent p left join child ¢c on p.id = c.parent_id");

mappi ng. addl dMappi ng(new | dCol umToPr opert yMappi ng(" parent _id", "parent-id", "p.id"));

mappi ng. addl dMappi ng(new | dCol ummToPr opert yMappi ng(“child_id", "child-id", "COALESCE(c.id, 0)"));

mappi ng. addDat aMappi ng(new Dat aCol utmToPr opert yMappi ng(" parent _first_nanme", "parent-first-nanme"));

mappi ng. addDat aMappi ng(new Dat aCol uimToPr opert yMappi ng("child_first_nane", "child-first-nane"));

mappi ng. addVer si onMappi ng(new Ver si onCol uimMappi ng(" par ent _version"));

mappi ng. addVer si onMappi ng(new Ver si onCol uimMappi ng(“chi |l d_version"));

There are three additions to the previously configured result set mapping. Thefirst is the version query that will
be executed in order to identify changes made to the result set (rows created, updated, or deleted). The version
query should return the Resul t Set id and version columns. The second change is the id columns names in the
select query, since a dynamic where clause is added to the select query for mirroring purposes. The last one is
the actual version column mapping (no version column mapping automatically disabled the mirroring feature).

15.3.2. Table Mapping

The following code sample shows how to configure a mirroring enabled Table mapping:

Tabl eToResour ceMappi ng par ent Mappi ng = new Tabl eToResour ceMappi ng(" parent”, "parent");
par ent Mappi ng. addVer si onMappi ng(new Ver si onCol uimMappi ng("version"));
par ent Mappi ng. set | ndexUnMappedCol ums(true);

Tabl eToResour ceMappi ng chi | dvappi ng = new Tabl eToResour ceMappi ng("child", "child");
chi | dMappi ng. addVer si onMappi ng(new Ver si onCol unmMappi ng("version"));
chi | dMappi ng. set | ndexUnMappedCol umrms(true);

Again, the table mapping is much simpler than the result set mapping. The only thing that needs to be added is
the version column mapping. The version query is automatically generated.

15.3.3. Jdbc Snapshot

The mirroring operation works with snapshots. Snapshots are taken when the index() or the
performM rroring() arecaled and represents the latest Resul t Set State.

Compass::Gps comes with two snapshot mechanisms. The first is JdbcSnapshot Persister:
RAMIdbcSnapshot Per si ster which holds the Jdbc snapshot in memory and is not persistable between
application lifecycle. The second is FSidbcSnapshot Per si st er, which save the snapshot in the file system

Compass - Java Search Engine 105

JDBC

(using the given file path). A code sample:

gpsDevi ce = new Resul t Set JdbcGpsDevi ce();
gpsDevi ce. set Snapshot Per si st er (new FSJdbcSnapshot Persi ster ("target/testindex/snapshot"));

15.4. Resource Mapping

After defining the result set mapping, the resource mapping must be defined as well. Luckily, there is no need
to create the mapping file (cpm.xml file), since it can be generated automatically using Compass::Core
Mappi ngResol ver feature. The Jdbc device provides the Resul t Set Resour ceMappi ngResol ver which
automatically generates the resource mapping for a given Resul t Set ToResour ceMappi ng. Additional settings
for the resource mapping can be set as well, such as the sub-index, all meta data, etc.

ConpassConfigurati on conf = new ConpassConfiguration()
.set Setting(ConpassEnvi ronnment. CONNECTI ON, “"target/testindex");

Dat aSour ce dataSource = // get/create a Jdbc Data Source
Resul t Set ToResour ceMappi ng mapping = // create the result set napping

conf . addMappi ngResover (new Resul t Set Resour ceMappi ngResol ver (mappi ng, dat aSource));

15.5. Putting it All Together

After explaining two of the most important aspects of the Jdbc mappings, here is a complete example of
configuring aResul t Set JdbcGpsDevi ce.

Resul t Set ToResour ceMappi ng nmappingl = // create the result set nmapping or table nmapping
Resul t Set ToResour ceMappi ng mapping2 = // create the result set napping or table mapping
Dat aSour ce dat aSource = // create a jdbc dataSource or look it up from JNDI

ConpassConfigurati on conf = new ConpassConfiguration().setSetting(ConpassEnvironnment. CONNECTI ON,
"target/testindex");
conf . addMappi ngResover (new Resul t Set Resour ceMappi ngResol ver (mappi ngl, dataSource));

/! build the mrror conpass instance
conpass = conf. bui |l dConpass();

gpsDevi ce = new Resul t Set JdbcGpsDevi ce();
gpsDevi ce. set Dat aSour ce(dat aSour ce) ;
gpsDevi ce. set Name("j dbcDevi ce");

gpsDevi ce. set M rror Dat aChanges(f al se);
gpsDevi ce. addMappi ng(mappi ngl) ;

gpsDevi ce. addMappi ng(mappi ng2) ;

gps = new Si ngl eConpass@&s(conpass);
gps. addGpsDevi ce(gpsDevi ce) ;
gps.start();

GPS devices are Inversion Of Control / Dependency Injection enabled, meaning that it can be configured with
an 10C container. For an example of configuring the Resul t Set JdbcGpsDevi ce, please see Spring Jdbc Gps
Device section.

Framework (2.0.2)

Chapter 16. Embedded Hibernate

16.1. Introduction

Compass alows for embedded integration with Hibernate and Hibernate JPA. Using simple configuration,
Compass will automatically perform mirroring operations (mirroring changes done through Hibernate to the
search engine), as well as alow to simply index the content of the database using Hibernate.

The integration involves few simple steps. The first is enabling Embedded Compass within Hibernate. If
Hibernate Annotations or Hibernate EntityManager (JPA) are used, just dropping Compass jar file to the
classpath will enable it (make sure you don't have Hibernate Search in the classpath, as it uses the same event
classname:)). If Hibernate Core is used, the following event listeners need to be configured:

<hi ber nat e- confi gurati on>
<sessi on-fact ory>

<l-- .. -->

<event type="post-update">

<l i stener class="org.conpass. gps. devi ce. hi ber nat e. enbedded. ConpassEvent Li st ener"/>
</ event >
<event type="post-insert">

<l istener class="org.conpass. gps. devi ce. hi bernat e. enbedded. ConpassEvent Li st ener"/>
</ event >
<event type="post-delete">

<listener class="org.conpass. gps. devi ce. hi bernat e. enbedded. ConpassEvent Li st ener"/ >
</ event >
<event type="post-collection-recreate">

<l i stener class="org.conpass. gps. devi ce. hi ber nat e. enbedded. ConpassEvent Li st ener"/ >
</ event >
<event type="post-collection-renove">

<l istener class="org.conpass. gps. devi ce. hi bernat e. enbedded. ConpassEvent Li st ener"/>
</ event >
<event type="post-collection-update">

<l i stener class="org.conpass. gps. devi ce. hi ber nat e. enbedded. ConpassEvent Li st ener"/>
</ event >

</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

Now that Compass is enabled with Hibernate there is one required Compass property in order to configure it
which isthe location of where the search engine index will be stored. Thisis configured as a Hibernate property
configuration using the key conpass. engi ne. connecti on (for example, having the value fil e://tnp/i ndex).
When it is configured, Compass will automatically use the mapped Hibernate classes and check if one of them
is searchable. If there is at least one, then the listener will be enabled. That isit!. Now, every operation done
using Hibernate will be mirrored to the search engine.

Direct access to the Compass (for example to execute search operations), either the Hi ber nat eHel per (when
using pure Hibernate) or Hi ber nat eJpaHel per (when using Hibernate JPA) can be used to access it. For
example:

Conpass conpass = Hi bernat eHel per. get Conpass(sessi onFactory);
ConpassSessi on sessi on = conpass. openSessi on();
ConpassTransaction tr = session. begi nTransaction();
ConpassHits hits = session.find("search sonething")

tr.commt();
sessi on. cl ose();

In order to completely reindex the content of the database based on both the Hibernate and Compass mappings,

Compass - Java Search Engine 107

Embedded Hibernate

a Compass Gps can be created. Here is an example of how to do it:

Conpass@ds gps = Hi bernat eHel per. get ConpassGps(sessi onFactory);
gps. i ndex();

16.2. Configuration

The basic configuration of embedded Hibernate is explained in the introduction section. Within the Hibernate
(or JPA persistance xml) configuration, the Compass instance used for mirroring and searching can be
configured using Compass usual properties (using the conpass. prefix). If configuring Compass using external
configuration is needed, the conpass. hi ber nat e. conf i g can be used to point to Compass configuration file.

An implementation of HibernateMrrorFilter can aso be configured in order to allow for filtering out
specific objects from the index (for example, based on their specific content). The
conpass. hi bernate. mirrorFilter property should be configured having the fully qualified class name of the
mirroring filter implementation.

The Compass instance created automatically for the indexing operation can be also configured using specific
properties. This properties should have the prefix of gps.index.. This is usualy configured to have specific
parameters for the indexing Compass, for example, having a different index storage location for it while
indexing.

16.3. Transaction Management

Compass will integrate with Hibernate transaction management (using whichever transaction management it
does) by default. When configuring Compass to work with JTA Sync or XA, Compass will integrate with these
transaction management.

Compass - Java Search Engine 108

Chapter 17. Hibernate

17.1. Introduction

The Hibernate Gps Device provides support for database indexing through the use of Hibernate ORM
mappings. If your application uses Hibernate, it couldn't be easier to integrate Compass into your application
(Sometimes with no code attached - see the petclinic sample).

Hibernate Gps Device utilizes Compass::Core OSEM feature (Object to Search Engine Mappings) and
Hibernate ORM feature (Object to Relational Mappings) to provide simple database indexing. As well as
Hibernate 3 new event based system to provide real time mirroring of data changes done through Hibernate.
The path data travels through the system is: Database -- Hibernate -- Objects -- Compass:Gps --
Compass::Core (Search Engine).

Hibernate Gps Device extends Compass Gps Abstract Paral | el GosDevi ce and supports parallel index
operations. It is discussed in more detail here: Section 14.5, “Parallel Device”.

17.2. Configuration

When configuring the Hibernate device, one must instantiate Hi ber nat eGpsDevi ce. After instantiating the
device, it must be initialized with a Hibernate Sessi onFact ory.

Here is a code sample of how to configure the hibernate device:

Conpass conpass = ... // set conpass instance

Si ngl eConpassGps gps = new Si ngl eConpassGps(conpass);

Conpass@sDevi ce hi bernat eDevi ce = new Hi bernat eGosDevi ce("hi bernate", sessionFactory);
gps. addDevi ce(hi ber nat eDevi ce) ;

.... Il configure other devices

gps. start();

In order to register event listener with Hibernate Sessi onFact ory, the actua instance of the session factory
need to be obtained. The Hibernate device allows for a pluggable Nat i veHi ber nat eExt r act or implementation
responsible for extracting the actua instance. Compass comes with a default implementation when working
within a Spring environment called: Spri ngNat i veH ber nat eExtr act or .

17.2.1. Deprecated Hibernate Devices

For backward compatibility, Compass supports previous Hi ber nat e2GpsDevi ce and Hi benr at e3GpsDevi ce.
The classes have moved to a different package, and are usable with a simple change to the package name. The
new package for the deprecated devicesis: or g. conpass. gps. devi ce. hi ber nat e. dep.

17.2.1.1. Configuration

When configuring the Hibernate device, one must instantiate either Hi ber nat e2GpsDevi ce (for Hibernate 2
Version) or Hi ber nat e3GpsDevi ce (for Hibernate 3 version). After instantiating the device, it must be initialized
by either a Hibernate Configuration or a Hibernate Sessi onFact ory. When configuring the device with
Hibernate Conf i gur ati on, anew Sessi onFact ory is created when the device is started.

It is more preferable to configure the device with the Sessi onFact ory that the actual application will use,
especially since data mirroring will only work when both the device and the application will use the same

Compass - Java Search Engine 109

http://hibernate.org

Hibernate

Sessi onFactory.

Here is acode sample of how to configure the hibernate device:

Conpass conpass = ... // set conpass instance
Si ngl eConpass@s gps = new Si ngl eConpassGps(conpass);
ConpassGpsDevi ce hi ber nat eDevi ce =
[/ |f Hi bernate 2

new Hi ber nat e2GysDevi ce(" hi bernate", sessionFactory);
/1l 1f H bernate 3

new Hi ber nat e3GysDevi ce("hi bernate", sessionFactory);
gps. addDevi ce(hi ber nat eDevi ce) ;
.... /Il configure other devices
gps.start();

17.3. Index Operation

Hibernate Gps device provides the ability to index a database. Compass will index objects (or their matching
database tables in the Hibernate mappings) specified in both the Hibernate mappings and Compass::Core
mappings (OSEM) files.

The indexing process is pluggable and Compass comes with two implementations. The first,
Pagi nat i onHi ber nat el ndexEnt i ti esl ndexer, USeS set Fi r st Resul t and set MaxResul ts in order to perform
pagination. The second one, Scrol | abl eHi ber nat el ndexEnt i ti esl ndexer , Uses Hibernate scrollable resultset
in order to index the data. The default indexer used is the scrollable indexer.

During the indexing process Compass will execute a default query which will fetch al the relevant data from
the database using Hibernate. The query itself can be controlled both by setting a static sgl query and providing
a query provider. This setting applies per entity. Note, when using the scrollable indexer, it is preferable to use
acustom query provider that will return specific Hibernate Cri t eri a instead of using static sgl query.

17.4. Real Time Data Mirroring

The Hibernate Gps Device, with Hibernate 3 new event system, provides support for real time data mirroring.
Data changes via Hibernate are reflected in the Compass index. There is no need to configure anything in order
to enable the feature, the device takes care for it all.

An important point when configuring the hibernate device is that both the application and the hibernate device
must use the same Sessi onFact ory. Which means that the device must be configured with a Sessi onFact ory
and not aConfi gurati on.

Note on Hibernate 2 and | nt er cept or S. When using generated ids with Hibernate 2, the id in the interceptor is
nul I, which means that when creating new objects and persisting them to the database, the device has no way
to index the object. If Hibernate 2 is a must, one possible solution is to use aspects.

If using Hibernate 3 and the Spring Framework, please see the SpringHibernate3GpsDevice

17.5. HibernateSyncTransaction

Compass integrates with Hibernate transaction synchronization services. This means that whichever Hibernate
transaction management is used (Jta, JDBC, ..) you are using, the HibernateSyncTransaction will
synchronize with the transaction upon transaction completion. The Hibernate transaction support uses
Hibernate context session in order to obtain the current session and the current transaction. The application

Compass - Java Search Engine 110

Hibernate

using this feature must also use Hibernate context session (which is the preferred Hibernate usage model
starting from Hibernate 3.2).

If you are using the Hi ber nat eSyncTr ansact i on, a Hibernate based transaction must already be started in order
for HibernateSyncTransaction to join. If no transaction is started, Compass can start one (and will commit it
eventually). Note, if you are using other transaction management abstraction (such as Spring), it is preferable to
use it instead of this transaction factory.

In order to configure Compass to work with the HiberanteSyncTransaction, you must set the
conpass. transaction.factory to
or g. conpass. gps. devi ce. hi berant e. t ransacti on. Hi ber nat eSyncTr ansact i onFact ory. Additional
initialization should be performed by calling Hi ber nat eSyncTr ansact i onFact ory. set Sessi onFact ory with
Hibernate Sessi onFact or y instance before the Conpass is created.

17.6. Hibernate Transaction Interceptor

When working with Hibernate transactions (and not utilizing Hibernate context session) and Compass local
transactions, an Compass implementation of Hibernate I nterceptor can be used to synchronize with a
Hibernate session. ConpassTr ansact i onl nt er cept or can be used to inject an instance of itself into Hibernate
Sessi onFact ory. Please refer to its javadoc for more information.

Compass - Java Search Engine 111

Chapter 18. JPA (Java Persistence API)

18.1. Introduction

The Jpa Gps Device provides support for database indexing through the use of the Java Persistence API (Jpa),
part of the EJB3 standard. If your application uses Jpa, it couldn't be easier to integrate Compass into your
application.

Jpa Gps Device utilizes Compass::Core OSEM feature (Object to Search Engine Mappings) and Jpa feature
(Object to Relational Mappings) to provide simple database indexing. As well as Jpa support for life-cycle
event based system to provide real time mirroring of data changes done through Jpa (see notes about real time
mirroring later on). The path data travels through the system is: Database -- Jpa (Entity Manager) -- Objects --
Compass::Gps -- Compass.:Core (Search Engine).

JPA Gps Device extends Compass Gps Abst r act Par al | el GosDevi ce and supports parallel index operations. It
is discussed in more detail here: Section 14.5, “ Parallel Device”.

18.2. Configuration

When configuring the Jpa device, one must instantiate JpaGpsDevi ce. After instantiating the device, it must be
initialized by an Enti t yManager Fact ory. Thisis the only required parameter to the JpaGpsDevi ce. For tighter
integration with the actual implementation of Jpa (i.e. Hibernate), and frameworks that wrap it (i.e. Spring), the
device alows for abstractions on top of it. Each one will be explained in the next sections, though in the spirit
of compass, it already comes with implementations for popular Jpaimplementations.

Here is acode sample of how to configure the Jpa device:

Conpass conpass = ... // set conpass instance
Conpass@s gps = new Si ngl eConpassGps(conpass);
ConpassGpsDevi ce j paDevice =

new JpaGpsDevi ce("j pa", entityMinagerFactory);
gps. addDevi ce(j paDevi ce) ;
.... Il configure other devices
gps.start();

The device performs all it's operations using its Enti t yManager W apper . The Jpa support comes with three
different implementations: Jt akntit yManager W apper which will only work within a JTA environment,
Resour ceLocal Entit yManager W apper for resource local transactions, and Def aul t Enti t yManager W apper
which works with both JTA and resource local environments. The Def aul t Enti t yManager W apper iS the
default implementation of the Ent i t yManager W apper the device will use.

Several frameworks (like Spring) sometimes wrap (proxy) the actual ent i t yManager Fact or y. Some features of
the Jpa device require the actual implementation of the Ent i t yManager Fact ory. This features are the ones that
integrate tightly with the implementation of the Entit yManager Fact ory, which are described later in the
chapter. The device allows to set Nat i veEnt i t yManager Fact or yExt r act or , which is responsible for extracting
the actual implementation.

18.3. Index Operation

Joa Gps device provides the ability to index a database. It automatically supports all different Jpa

Compass - Java Search Engine 112

JPA (Java Persistence API)

implementations. Compass will index objects (or their matching database tables in the Jpa mappings) specified
in both the Jpa mappings and Compass::Core mappings (OSEM) files.

When indexing Compass.:Gps, the Jpa device can be configured with a fetchCount. The fetchCount
parameter controls the pagination process of indexing a class (and it's represented table) so in case of large
tables, the memory level can be controlled.

The device alows to set a JpaEnti ti esLocat or, Which is responsible for extracting al the entities that are
mapped in both Compass and Jpa Ent i t yManager . The default implementation Def aul t JpaEnti ti esLocat or
uses Annotations to determine if a class is mapped to the database. Most of the times, this will suffice, but for
applications that use both annotations and xml definitions, a tighter integration with the Jpa implementation is
required, with a specialized implementation of the locator. Compass comes with several specialized
implementations of alocator, and auto-detect the one to use (defaulting to the default implementation if noneis
found). Note, that this is one of the cases where the actual EntityManager Factory is required, so if the
application is using a framework that wraps the Enti t yManager Fact ory, a
Nat i veEnt i t yManager Fact or yExt r act or should be provided.

18.4. Real Time Data Mirroring

The Jpa specification allows for declaring life-cycle event listeners either on the actual domain model using
annotations, or in the persistence settings. The Ent i t yManager Fact ory APl does not alow for away to register
global listeners programatically. Compass comes with two abstract support classes to ease the definition of
listeners. The first is the Abstract ConpassJpaEntityListener, which requires the implementation to
implement the get Conpass which will fetch the actual compass instance (probably from Jndi). The second is
the Abstract Devi ceJpaEnti tyLi stener, which requires the implementation to implement the get Devi ce
which will fetch the Jpa Gps Device.

With several Jpa implementation, Compass can automatically register life-cycle event listeners based on the
actual implementation API's (like Hibernate event listeners support). In order to enable it, the
injectEntityLifecycleListener must be set to true (defaults to false), and an implementation of
JpaEntityLifecyclelnjector can be provided. Compass can auto-detect a proper injector based on the
currently provided internal injector implementations. The auto-detection will happen if no implementation for
the injector is provided, and the inject flag is set to true. Note, that this is one of the cases where the actual
EntityManager Factory IS required, so if the application is using a framework that wraps the
Enti t yManager Fact ory, @Nat i veEnt i t yManager Fact or yExt r act or should be provided.

An important point when configuring the Jpa device is that both the application and the Jpa device must use the
Same Ent i t yManager Fact ory.

Compass - Java Search Engine 113

Chapter 19. Embedded OpenJPA

19.1. Introduction

Compeass has "native" integration with OpenJPA by working in an "embedded" mode within it. OpenJPA can
be used with Chapter 18, JPA (Java Persistence API) and Compass has specific indexer and lifecycle for it, but
Compass can aso work from within OpenJPA and have OpenJPA control Compass creation and configuration.

Embedded Compass OpenJPA integration provides support for database indexing and mirroring through the
use of the OpenJPA, an implementation of the EJB3 standard.

Compass OpenJPA integration utilizes Compass::Core OSEM feature (Object to Search Engine Mappings) and
Jpa feature (Object to Relational Mappings) to provide ssimple database indexing. As well as OpenJPA support
for life-cycle event based system to provide real time mirroring of data changes done through Jpa (see notes
about real time mirroring later on). The path data travels through the system is: Database -- Jpa (Entity
Manager) -- Objects -- Compass::Gps -- Compass.:Core (Search Engine).

The Compass OpenJPA uses under the cover Chapter 18, JPA (Java Persistence API) and all configuration
options apply when using it. The JPA Gps Device extends Compass Gps Abst r act Par al | el GosDevi ce and
supports paralel index operations. It is discussed in more detail here: Section 14.5, “Parallel Device”.

19.2. Configuration

Configuration of Embedded Compass OpenJPA integration is done within the persistence xml file (or
programmatic Map configuration) using Compass support for properties based configuration. Here is the most
simplest example of enabling Compass within OpenJPA (note, just having Compass jars within the classpath
enableit!):

<persi stence xm ns="http://java.sun.conl xm /ns/ persi stence"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocation="http://java. sun.com xm / ns/ persi stence persistence_1_0.xsd" version="1.0">

<persi st ence-unit nanme="enbeddedopenj pa" transaction-type="RESOURCE LOCAL" >

<provi der >or g. apache. openj pa. per si st ence. Per si st encePr ovi der | npl </ provi der >

<cl ass>eg. Test </ cl ass>

<excl ude-unl i st ed- cl asses>t rue</ excl ude-unl i st ed- cl asses>

<properties>
<property name="openjpa.jdbc. DBDi cti onary" val ue="hsqgl" />
<property nanme="openj pa. Connecti onDri ver Nane" val ue="org. hsgl db. j dbcDriver" />
<property name="openj pa. Connecti onURL" val ue="j dbc: hsql db: remtest" />
<property nanme="openj pa. Connecti onUser Nane" val ue="sa" />
<property name="openj pa. Connecti onPassword" val ue="" />

<l-- This will enable Comapss, this is also the single Conpass configuration required --
<property name="conpass. engi ne. connection" val ue="target/test-index" />
</ properties>
</ per si st ence- uni t
</ per si st ence>

19.3. Index Operation

Embedded Compass OpenJpa provides the ability to index a database (through the use of the JPA device).
Indexing the database is simple and can be done using:

Compass - Java Search Engine 114

http://openjpa.apache.org/

Embedded OpenJPA

OpenJPAHel per. get ConpassGps(entityManager Factory).index();

Specific configuration for the Compass index instance can be done using gps.index. conpass. prefix.
Internally the ConpassGps implementation used is Si ngl eConpassGps.

Several specia properties can aso be used. The first, conpass. openj pa. rei ndexOnSt art up (defaultsto f al se)
will cause Compass to reindex the database when it starts up. Another important configuration option is
conpass. openj pa. i ndexQuery. [entity nane/class] which alows to plug a custom query string for
indexing.

19.4. Real Time Data Mirroring

The embedded Compass OpenJPA integration will automatically register with OpenJPA for lifecycle events
and mirror any operation performed using OpenJPA to the database. It aso, automatically, integrates with
OpenJdPA transactions and commits/rollbacks a transaction when OpenJPA transaction commits/rollbacks.

19.5. OpenJPA Helper

OpenJPAHel per can be used to obtain the current open ConpassSessi on and a Conpass instance. Both can be
obtained from an EntityManager Factory OF an EntityManager. Prime use case for obtaining a Compass
session is to query the index. Note, when querying the index, the returned Objects are not "attached" to JPA,
and loaded from the index. Thisis done for performance reasons as usually they will be used to display results
to the user. Attaching them can be done simply by using JPA API.

Compass - Java Search Engine 115

Chapter 20. Embedded TopLink Essentials

20.1. Introduction

Compeass alows for embedded integration with TopLink Essentials. Using simple configuration, Compass will
automatically perform mirroring operations (mirroring changes done through TopLink to the search engine), as
well asalow to simply index the content of the database using TopLink.

The integration involves few simple steps. The first is enabling Embedded Compass within TopLink. Within
the persistence configuration (or when passing properties) a custom Compass TopLink session customizer
needs to be defined:

<persi stence-unit nanme="test" transaction-type="RESOURCE_LOCAL">
<provi der >oracl e. topl i nk. essenti al s. Per si st encePr ovi der </ provi der >
<properties>
<l-- ... (other properties) -->
<property name="toplink.session.custom zer"
val ue="or g. conpass. gps. devi ce. j pa. enbedded. t opl i nk. ConpassSessi onCust om zer" />
</ properties>
</ per si st ence- uni t >

Now that Compass is enabled with TopLink there is one required Compass property in order to configure it
which is the location of where the search engine index will be stored. This is configured as a Persistence Unit
property configuration using the key conpass. engine.connection (for example, having the value
file://tnp/index). When it is configured, Compass will automatically use the mapped TopLink classes and
check if one of them is searchable. If there is at least one, then the it will be enabled. That isitl. Now, every
operation done using TopLink will be mirrored to the search engine.

Direct access to Compass (for example to execute search operations), can be done using TopLi nkHel per . For
example:

Conpass conpass = TopLi nkHel per. get Conpass(entityManager Factory);
ConpassSessi on sessi on = conpass. openSessi on();
ConpassTransaction tr = session. begi nTransaction();

ConpassHits hits = session.find("search sonething")

tr.commt();
sessi on. cl ose();

In order to completely reindex the content of the database based on both the TopLink and Compass mappings, a
Compass Gps can be accessed. Here is an example of how to doit:

Conmpass@s gps = TopLi nkHel per. get ConpassGps(entityManager Factory);
gps. i ndex();

20.2. Configuration

The basic configuration of embedded TopLink Essentials is explained in the introduction section. Within the
persistence configuration, the Compass instance used for mirroring and searching can be configured using
Compass usual properties (using the conpass. prefix). If configuring Compass using external configuration is
needed, the conpass. t opl i nk. conf i g can be used to point to Compass configuration file.

The Compass instance created automatically for the indexing operation can be also configured using specific

Compass - Java Search Engine 116

Embedded TopLink Essentials

properties. This properties should have the prefix of gps.index.. Thisis usualy configured to have specific
parameters for the indexing Compass, for example, having a different index storage location for it while
indexing.

20.3. Transaction Management

Compass will integrate with TopLink transaction management (using whichever transaction management it
does) by default. If no Compass transaction factory is configured, Compass local transaction factory will be
used when using JPA RESOURCE LOCAL transaction type, and JTA sync transaction factory will be used
with JPA JTA one.

Compass - Java Search Engine 117

Chapter 21. Embedded EclipseLink

21.1. Introduction

Compass dlows for embedded integration with EclipseLink. Using simple configuration, Compass will
automatically perform mirroring operations (mirroring changes done through EcliseLink to the search engine),
aswell asalow to simply index the content of the database using EclipseLink.

The integration involves few simple steps. The first is enabling Embedded Compass within EclipseLink. Within
the persistence configuration (or when passing properties) a custom Compass EclipseLink session customizer
needs to be defined:

<persi stence-unit nanme="test" transaction-type="RESOURCE_LOCAL">
<provi der >or g. ecl i pse. persi st ence. j pa. Per si st encePr ovi der </ provi der >
<properties>
<l-- ... (other properties) -->
<property nanme="ecl i pselink.session. custoni zer"
val ue="or g. conpass. gps. devi ce. j pa. enbedded. ecl i psel i nk. ConpassSessi onCust om zer" />
</ properties>
</ per si st ence- uni t >

Now that Compass is enabled with EclipseLink there is one required Compass property in order to configure it
which is the location of where the search engine index will be stored. This is configured as a Persistence Unit
property configuration using the key conpass. engine.connection (for example, having the value
file://tnp/index). When it is configured, Compass will automatically use the mapped EclipseLink classes
and check if one of them is searchable. If thereis at least one, then the it will be enabled. That isit!. Now, every
operation done using EclipseLink will be mirrored to the search engine.

Direct access to Compass (for example to execute search operations), can be done using Ecl i pseLi nkHel per.
For example:

Conpass conpass = Ecli pselLi nkHel per. get Conpass(entityManager Factory);
ConpassSessi on sessi on = conpass. openSessi on();
ConpassTransaction tr = session. begi nTransaction();

ConpassHits hits = session.find("search sonething")

tr.commt();
sessi on. cl ose();

In order to completely reindex the content of the database based on both the EclipselLink and Compass
mappings, a Compass Gps can be accessed. Here is an example of how to do it:

Conmpass@s gps = EclipselLinkHel per. get ConpassGps(entityManager Factory);
gps. i ndex();

21.2. Configuration

The basic configuration of embedded EclipseLink is explained in the introduction section. Within the
persistence configuration, the Compass instance used for mirroring and searching can be configured using
Compass usual properties (using the conpass. prefix). If configuring Compass using external configuration is
needed, the conpass. ecl i psel i nk. confi g can be used to point to Compass configuration file.

The Compass instance created automatically for the indexing operation can be also configured using specific

Compass - Java Search Engine 118

Embedded EclipseLink

properties. This properties should have the prefix of gps.index.. Thisis usualy configured to have specific
parameters for the indexing Compass, for example, having a different index storage location for it while
indexing.

21.3. Transaction Management

Compass will integrate with EclipseLink transaction management (using whichever transaction management it
does) by default. If no Compass transaction factory is configured, Compass local transaction factory will be
used when using JPA RESOURCE LOCAL transaction type, and JTA sync transaction factory will be used
with JPA JTA one.

Compass - Java Search Engine 119

Chapter 22. JDO (Java Data Objects)

22.1. Introduction

The Jdo Gps Device provides support for database indexing through the use of Jdo ORM mappings. If your
application uses Jdo, it couldn't be easier to integrate Compass into your application.

Jdo Gps Device utilizes Compass::Core OSEM feature (Object to Search Engine Mappings) and Jdo ORM
feature (Object to Relational Mappings) to provide simple database indexing. As well as Jdo 2 new event based
system to provide real time mirroring of data changes done through the Jdo 2 implementation. The path data
travels through the system is: Database -- Jdo -- Objects -- Compass::Gps -- Compass::Core (Search Engine).

22.2. Configuration

When configuring the Jdo device, one must instantiate either JdoGpsDevice (for Jdo 1 version) or
Jdo2GpsDevice (for Jdo 2 version). After instantiating the device, it must be initialized Jdo
Per si st enceManager Factory.

Here is acode sample of how to configure the hibernate device:

Conpass conpass = // set conpass instance
ConpassGps gps = new Si ngl eConpassGps(conpass);
ConpassGpsDevi ce j doDevice =
/1 1f Jdo 1

new JdoGpsDevi ce("jdo", persistenceManager Factory);
/1 1f Jdo 2

new Jdo2GpsDevi ce("j do", persistenceManager Factory);
gps. addDevi ce(j doDevi ce) ;
.... Il configure other devices
gps.start();

22.3. Index Operation

Jdo Gps device provides the ability to index the database. It supports both Jdo and Jdo 2 versions. Compass will
index objects (or their matching database tables in the Jdo mappings) specified in both the Jdo mappings and
Compass::Core mappings (OSEM) file.

22.4. Real Time Data Mirroring

The Jdo 2 Gps Device, with Jdo 2 new event system, provides support for real time data mirroring. Data
changes via Jdo are reflected in the Compass index. There is no need to configure anything in order to enable
the feature, the device takes carefor it all.

An important point when configuring the jdo device is that both the application and the jdo device must use the
Same Per si st enceManager Fact ory.

Compass - Java Search Engine 120

Chapter 23. OJB (Object Relational Broker)

23.1. Introduction

The OJB Gps Device provides support for database indexing through the use of Apache OJB ORM mappings.
If your application uses OJB, it couldn't be easier to integrate Compass into your application (Sometimes with
no code attached - see the petclinic sample).

OJB Device uses Compass::Core OSEM feature (Object to Search Engine Mappings) and OJB ORM feature
(Object to Relational Mappings) to provide simple database indexing. The device also utilizes OJB lifecycle
events to provide real time mirroring of data changes done through OJB. The path data travels through the
system is: Database -- OJB -- Objects -- Compass::Gps -- Compass::Core (Search Engine).

23.2. Index Operation

OJB device provides the ability to index the database. The objects that will be indexed (or their matching
database tables in the OJB mappings) are ones that have both OJB mappings and Compass.:Core mappings
(OSEM).

Indexing the data (using the

<code>index()</code>

operation) requires the i ndexPer si st ent Br oker property to be set, before the i ndex() operation is called. You
can use the g bGpsDevi ce#at t achPer si st enceBr oker For | ndex(ConpassGpsDevi ce, Persi stenceBroker) as
a helper method.

23.3. Real Time Data Mirroring

Real-time mirroring of data changes requires using the
g bGpsDevi ce#at t achLi f ecycl eLi st ener s(Per si st enceBr oker) to let the device listen for any data changes,
and g bGpsDevi ce#r enpveli f ecycl eLi st ener s(Per si st enceBroker) to remove the listener. Since the
lifecycle listener can only be set on the instance level and not the factory level, attach and remove must be

called every time a PersistentBroker is instantiated. You can use the
O bGpsDevi ceUti | s#attachPer si st ent Broker For M rror (ConpassGpsDevi ce, Per si st enceBroker) and
O bGpsDevi celUti | s#renpvePer si st ent Br oker For M rr or (ConpassGpsDevi ce, Per si st enceBr oker) as

helper methods if attachment/removal is required for a generic device (i.e. OjbGpsDevice).

Since the real time mirroring and the event listener registration sounds like an aspect for Ojb aware
classes/methods, Compass::Spring utilizes spring support for OJB and aspects for a much simpler event
registration, please see Compass::Spring for more documentation.

23.4. Configuration

Hereis acode sample of how to configure the ojb device:

Conpass conpass = ... // set conpass instance
ConpassGps gps = new Si ngl eConpassGps(conpass);
ConpassGosDevi ce oj bDevi ce = new Q bGpsDevi ce();
oj bDevi ce. set Name("oj b");

gps. addDevi ce(oj bDevi ce) ;

Compass - Java Search Engine 121

OJB (Object Relational Broker)

.. /1 configure other devices
gps.start();

// just before calling the index nethod

Per si st enceBroker pb = // create Persistence Broker

QO bGpsDevicelti | s. attachPersi st enceBr oker For | ndex(oj bDevi ce, pb);
gps. i ndex();

/'l a Persistence Broker operation |evel
Per si st enceBroker pb = // create Persistence Broker

O bGpsDeviceltil s. attachPersi st enceBr oker For M rror (oj bDevi ce, pb);

/| Persistence Broker operations

O bGpsDevi celti|l s. removePer si st enceBr oker For M rror (oj bDevi ce, pb);

Compass - Java Search Engine

122

Chapter 24. iBatis

24.1. Introduction

The SglMapClient (iBatis) Gps Device provides support for database indexing through the use of Apache iBatis
ORM mappings. The device can index the database data using a set of configured select statements. Mirroring
is not supported, but if Spring is used, Compass::Spring AOP can be simply used to add advices that will mirror
data changes that are made using iBatis DAOs.

24.2. Index Operation

When using iBatis and it's sql Mapd i ent , the application has several sglMap configuration files. The sgiMap
configuration usually holds configuration for a specific class, and holds it's respective
insert/update/del ete/select operations. The Compass iBatis support can use the select statements to fetch the
data from the database. When creating the sql Mapd i ent GosDevi ce, an array of select statements ids can be
supplied, and the device will execute and index all of them. If the selects requires parameters as well, an
additional array of Object parameters can be supplied, matching one to one with the select statements.

24.3. Configuration

Here is a code sample of how to configure the SglMapClient (iBatis) device:

Conpass conpass = ... // set conpass instance

Si ngl eConpassGps gps = new Si ngl eConpassGps(conpass) ;

ConpassGpsDevi ce i bati sDevice = new Sgl Mapd i ent GosDevi ce();

Sgl MapClient sqglMapClient = ... // set sgl MapClient instance

i bati sDevi ce. set Nane("ibatis", sqgl Mapdient, new String[] {"getUsers", "getContacts"});
gps. addDevi ce(i bati sDevi ce) ;

.... Il configure other devices

gps. start();

gps i ndex();

Compass - Java Search Engine 123

http://ibatis.apache.org/

Part IV. Compass Spring

Compass::Spring aim isto provide a closer integration with the springframework.

Compass - Java Search Engine 124

http://www.springframework.org

Chapter 25. Introduction

25.1. Overview

Compass::Spring aim is to provide closer integration with the springframework. The following list summarizes
the main integration points with Spring.

e Support for aconpass level factory bean, with Spring I0OC modelled configuration options.

e Compass DAO level support (similar to the ORM dao support), with transaction integration and Compass
DAO support class.

e An extension on top of Spring's Hibernate 3 dao support which extends Compass::Gps Hibernate 3 device.
Handles Spring proxing of the Hibernate Sessi onFact ory.

 An extension on top of Spring's OJB dao support which extends Compass.:Gps OJB device. Mainly
provides non programmatic configuration with OJB.

e Extension to Spring MV C, providing Search controller (based on Compass:.:Core search capabilities) and an
Index controller (based on Compass::Gps index operation).

25.2. Compass Definition in Application Context

Compass::Spring provides the ability to expose Conpass as a Spring bean from an application context file.
Application objects that need to access Conpass will obtain a reference to a pre-defined instance via bean
references. The following is an example of a Spring XML application context definition configuring Conpass:

<beans>

<bean i d="conpass"
cl ass="org. conpass. spri ng. Local ConpassBean" >

<property nanme="resourcelLocations">
<list>
<val ue>cl asspat h: or g/ conpass/ spri ng/test/ A cpm xm </ val ue>
</list>
</ property>
<property name="conpassSettings">
<pr ops>
<prop key="conpass. engi ne. connecti on">
target/testindex
</ pr op>
<l-- This is the default transaction handling
(just explicitly setting it) -->
<prop key="conpass.transaction.factory">
or g. conpass. core.transacti on. Local Transacti onFact ory
</ prop>
</ props>
</ property>
</ bean>

</ beans>

If using a Spring PI at f or niTr ansact i onManager , you should also initialize the t r ansact i onManager property

Compass - Java Search Engine 125

http://www.springframework.org

Introduction

of the Local ConpassBean.

Also, of storing the index within a database, be sure to set the dat aSour ce property of the Local ConpassBean.
It will be automatically wrapped by Spring's Tr ansact i onAwar eDat aSour cePr oxy if not wrapped already.

When using Compass code within an already managed code (within a transaction), it is enough to just use
Conpass#openSessi on() , without worrying about Compass transaction management code, or even closing the
session. Since even opening the session should not be really required, aLocal ConpassSessi onBean can be used
to directly inject ConpassSessi on to be used. It can be initialized with a conpass instance, but if there is only
one within Spring application context, it will automaticaly identify and use it (this feature is similar to
@CompassContext annotation explained | ater).

Compass also supports @onpassCont ext annotations to inject either Conpass instance or ConpassSessi on
instance. The annotation can be used on either a class field or on a property setter. In order to inject the
annotation, the bean or g. conpass. spri ng. support . ConpassCont ext BeanPost Processor heed to be added to
the bean configuration. If Spring 2 new schema based support is used, conpass: cont ext can be used.

Compass Spring integration also supports Spring 2 new schema based configuration. Using Compass own
schema definition, the configuration of a Compass instance can be embedded within a Spring beans schema
based configuration. Here is an example of using the new schema based configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: conpass="htt p://ww. conpass- proj ect. or g/ schema/ spri ng- core-confi g"

xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. conpass- proj ect.org/schema/ spring-core-config http://ww. conpass- proj ect.org/schema/spring-cor

<bean i d="transacti onManager" ...>
</ bean>
<conpass: conpass nanme="conpass" txManager="transacti onManager">
<conpass: connecti on>
<conpass:file path="target/test-index" />

</ conpass: connecti on>
</ conpass: conpass>

<l-- A direct Local ConpassSessi onBean, used with code within a transaciton context -->
<conpass: sessi on i d="sess" />
</ beans>

Compass - Java Search Engine 126

Chapter 26. DAO Support

26.1. Dao and Template

Compass::Spring uses the ConpassTenpl at e and ConpassCal | back classes provided by Compass.:Core module
as part of it's DAO (Data Access Object) support for Spring.

Compass::Spring provides a ssimple base class called ConpassbDaoSupport which can be initialized by Conpass
or ConpassTenpl at e and provides access to ConpassTenpl at e from it's subclasses.

The following code shows asimple Library Dao:

public class LibraryConpassDao extends ConpassDaoSupport {
public int getNunmberOH ts(final String query) {
I nteger numberOFH ts = (Integer)get ConpassTenpl at e() . execut e(
new ConpassCal | back() {
public nject dol nConpass(ConpassSessi on session) {
ConpassHits hits = session.find(query);
return new I nteger(hits.getlLength());

}

DE
}

return nunber OfHi ts.intVal ue();

The following is an example of configuring the above Library DAO in the XML application context (assuming
that we configured a Local ConpassBean named "compass' previously:

<beans>
<bean i d="Ili braryConpass" cl ass="Li braryConpassDao" >
<property name="conpass">
<ref |ocal ="conpass" />
</ property>
</ bean>
</ beans>

Compass - Java Search Engine 127

Chapter 27. Spring Transaction

27.1. Introduction

Compass::Spring integrates with Spring transaction management in several ways, either using Compass.:Core
own Local Transaction or using the Spring transaction synchronization services. Currently there is no Compass
implementation of Spring's Pl at f or nilr ansact i onManagenent .

27.2. LocalTransaction

Compass::Core default transaction handling is Local Transaction. A Local Transaction does not integrate with
Spring transaction management services, but can be used to write Compass Dao beans that do not require
integration with an on going Spring or Jta transactions.

27.3. JTASyncTransaction

When using Spring's JtaTransactionManager, you have a choice to either use the SpringSycnTransacti on
(described next) or the JTASyncTransacti on provided by Compass::Core (where Spri ngSyncTransacti on iS
preferable).

27.4. SpringSyncTransaction

Compass::Spring integrates with Spring transaction synchronization services. This means that whichever
Spring transaction manager (Jta, Hiberante, ...) you are using, the Spri ngSyncTransacti on Will synchronize
with the transaction upon transaction completion.

If you are using the Spri ngSyncTransacti on, a Spring based transaction must already be started in order for
SpringSyncTransaction to join. If no transcation is started, Compass can start one (and will commit it
eventualy) if the Pl at f or nilr ansact i onManager is provided to the Local ConpassBean. The transaction must
support the transaction synchronization feature (which by default al of them do).

Note: you can use spring transaction management support to suspend and resumed transactions. In which case a
Compass provided transaction will be suspended and resumed also.

In order to configure Compass to work with the sSpringSyncTransaction, you must set the
conpass. transaction. factory tO org. conpass. spri ng. t ransacti on. Spri ngSyncTr ansact i onFactory.

27.5. CompassTransactionManager

Currently Compass::Spring does not provide a CompassTransactionManager. This means any CompassDao
objects with LocaTransaction, programmatic (Spring transction template) / declarative (Spring
I nterceptor/AOP transaction support) Spring transaction definition won't be applied to the Compass transaction.

Compass - Java Search Engine 128

Chapter 28. Hibernate 3 Gps Device Support

28.1. Deprecation Note

This device has been deprecated and moved to or g. conpass. spri ng. devi ce. hi ber nat e. dep package. Please
use the new Hi ber nat eGpsDevi ce Which allows for a pluggable native Hibernate extractor.

28.2. Introduction

The device is built on top of Spring ORM support for Hiberante 3, and Compass.:Gps support for Hibernate 3
device. It provides support for Spring generation of Hibernate Sessi onFact ory proxy.

28.3. SpringHibernate3GpsDevice

An extension of the Hi ber nat e3GpsDevi ce that can handle Spring's proxing the Hibernate Sessi onFactory in
order to register event listenersfor real time data changes mirroring.

Compass - Java Search Engine 129

Chapter 29. OJB Gps Device Support

29.1. Introduction

Compass OJB support is built on top of Spring ORM support for Apache OJB (Object Relational Broker) and
the Compass::Gps support for OJB device. This provides simpler integration with OJB. For a complete and
working sample, please see the petclinic sample.

29.2. SpringOjbGpsDevice

Spri ngQ bGpsDevi ce is an extension of the g bGpsDevi ce and utilizes Spring ojb features. This devices Uses
Spring Per si st enceBr oker Tenpl at e and g bFactoryUti | s to get the current Per si st enceBr oker for batch
indexing (thei ndex() operation).

Y ou can provide the Per si st enceBr oker Tenpl at e, though it is not required since it is created the same way the
Per si st enceBr oker DaoSupport does.

The device can be used with Spri ngg bGpsDevi cel nt er cept or to provide real-time data mirroring without the
need to write any code (described in the next section).

29.3. SpringOjbGpsDevicelnterceptor

SpringQ bGpsDevi cel nterceptor Uses Spring's AOP capabilities to attach and remove lifecycle event
listeners to the Per si st enceBr oker (the device acts as the listener). Uses g bGpsDevi celti | s to perform it on
the supplied spri ngQ bGpsDevi ce.

Mainly used as a post interceptor with transaction proxies that manage service layer operations on an OJB
enabled DAO layer.

Compass - Java Search Engine 130

Chapter 30. Jdbc Gps Device Support

30.1. Introduction

This section provides no additional implementation, only samples of using Jdbc Gps Device within Spring |OC
container.

The database structure is the same one as the one on the Jdbc Gps Device section, and is show here as well:

CREATE TABLE parent (
id | NTEGER NOT NULL | DENTI TY PRI MARY KEY
first_nane VARCHAR(30),
| ast _nane VARCHAR(30),
versi on BI G NT NOT NULL
DE
CREATE TABLE child (
id | NTEGER NOT NULL | DENTITY PRI MARY KEY,
parent _id | NTEGER NOT NULL,
first_nane VARCHAR(30),
| ast _name VARCHAR(30),
versi on BI G NT NOT NULL
DE
alter table child add constraint
fk_child_parent foreign key (parent _id) references parent(id);

30.2. ResultSet Mapping

A configuration sample of a the ResultSet mapping given at the Jdbc Gps Device section is shown here in a
Spring configuration file (taken from the unit tests):

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE beans PUBLI C "-//SPRI NG / DTD BEAN / EN'
"http://ww. springfranmework. org/ dt d/ spring- beans. dt d">

<beans>

<bean i d="rsMappi ng" cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Resul t Set ToResour ceMappi ng" >
<property name="al i as"><val ue>resul t - set </ val ue></ property>
<property name="i ndexUnMappedCol utms" ><val ue>t r ue</ val ue></ pr operty>
<property name="sel ect Query"><val ue>
select p.id as parent_id
p.first_nane as parent_first_nane,
p.l ast _nane as parent_| ast_nane,
p.version as parent_version
COALESCE(c.id, 0) as child_id,
c.first_name as child_first_nane,
c.last_nane child_| ast_nane,
COALESCE(c. version, 0) as child_version
from
parent p left join child c on p.id = c.parent_id
</ val ue></ property>
<property nanme="versi onQuery"><val ue>
select p.id as parent_id
COALESCE(c.id, 0) as child_id,
p.versi on as parent_version
COALESCE(c. version, 0) as child_version
from
parent p left join child ¢c on p.id = c.parent_id
</ val ue></ property>
<property nanme="i dMappi ngs">
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. | dCol uimToPr oper t yMappi ng" >
<property nanme="col utmNane" ><val ue>par ent _i d</ val ue></ property>
<property nanme="propertyNane"><val ue>parent _i d</val ue></property>
<property name="col utmNaneFor Ver si on" ><val ue>p. i d</ val ue></ pr operty>
</ bean>

Compass - Java Search Engine 131

Jdbc Gps Device Support

<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. | dCol umToPr oper t yMappi ng" >
<property name="col utmNane" ><val ue>chi | d_i d</val ue></ property>
<property name="propertyNanme"><val ue>chil d_i d</val ue></ property>
<property nanme="col utmNaneFor Ver si on" ><val ue>COALESCE(c.id, 0)</val ue></property>
</ bean>
</list>
</ property>
<property nanme="dat aMappi ngs" >
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Dat aCol uimToPr oper t yMappi ng" >
<property nanme="col utmNane" ><val ue>parent _first_nane</val ue></ property>
<property nanme="propertyNane"><val ue>parent_first_nanme</val ue></property>
</ bean>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Dat aCol umToPr oper t yMappi ng" >
<property name="col utmNane" ><val ue>chi | d_first_nanme</val ue></ property>
<property nanme="propertyNane"><val ue>chil d_first_nanme</val ue></property>
<property name="propertyStoreString"><val ue>conpress</val ue></ property>
</ bean>
</list>
</ property>
<property nanme="versi onMappi ngs" >
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Ver si onCol uimMappi ng" >
<property name="col utmNane" ><val ue>par ent _ver si on</ val ue></ property>
</ bean>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Ver si onCol utmMappi ng" >
<property nanme="col utmNane" ><val ue>chi | d_ver si on</ val ue></ property>
</ bean>
</list>
</ property>
</ bean>

<!-- Conpass-->
<bean i d="conpass" cl ass="org.conpass. spring. Local ConpassBean" >
<property name="nmappi ngResol vers" >
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. Resul t Set Resour ceMappi ngResol ver ">
<property name="mappi ng"><ref |ocal ="rsMappi ng" /></property>
<property name="dat aSource"><ref bean="dataSource" /></property>
</ bean>
</list>
</ property>
<property nanme="conpassSettings">

<pr ops>
<prop key="conpass. engi ne. connecti on">target/testindex</prop>
<l-- This is the default transaction handling (just explicitly setting it) -->

<prop key="conpass.transaction.factory">
or g. conmpass. core. transacti on. Local Transacti onFact ory
</ prop>
</ props>
</ property>
</ bean>

<bean i d="j dbcGpsDevi ce" cl ass="org. conpass. gps. devi ce. j dbc. Resul t Set JdbcGpsDevi ce" >
<property name="nane"><val ue>j dbcDevi ce</ val ue></ property>
<property name="dat aSource"><ref bean="dataSource" /></property>
<property nanme="m rror Dat aChanges" ><val ue>t rue</ val ue></ property>
<property nanme="nmappi ngs">
<list>
<ref |ocal ="rsMappi ng" />
</list>
</ property>
</ bean>

<bean i d="gps" class="org. conpass. gps.inpl.Si ngl eConpassGps"
init-nethod="start" destroy-nethod="stop">
<property name="conpass"><ref bean="conpass" /></property>
<property name="gpsDevi ces">

<list>
<ref |ocal ="jdbcGpsDevice" />
</list>

</ property>
<property nanme="del et el ndexBef or el ndex" ><val ue>t r ue</ val ue></ property>
</ bean>

</ beans>

Compass - Java Search Engine 132

Jdbc Gps Device Support

30.3. Table Mapping

A configuration sample of athe Table mapping given at the Jdbc Gps Device section is shown here in a Spring
configuration file (taken from the unit tests):

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE beans PUBLI C "-// SPRI NG / DTD BEAN / EN'
"http://ww. springfranmework. org/ dtd/ spring-beans. dtd">

<beans>

<bean i d="parent Mappi ng" cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Tabl eToResour ceMappi ng" >
<property name="al i as" ><val ue>par ent </ val ue></ property>
<property name="t abl eNane" ><val ue>PARENT</ val ue></ pr operty>
<property name="i ndexUnMappedCol utms" ><val ue>t r ue</ val ue></ pr operty>
<property name="versi onMappi ngs" >
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Ver si onCol utmMappi ng" >
<property nanme="col utmNane" ><val ue>ver si on</ val ue></ property>
</ bean>
</list>
</ property>
</ bean>

<bean id="chi | dMappi ng" cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Tabl eToResour ceMappi ng" >
<property name="al i as"><val ue>chi | d</val ue></ property>
<property nanme="t abl eNane" ><val ue>CHI LD</ val ue></ pr operty>
<property name="i ndexUnMappedCol utms" ><val ue>t r ue</ val ue></ pr operty>
<property name="versi onMappi ngs" >
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. mappi ng. Ver si onCol uimMappi ng" >
<property name="col utmNane" ><val ue>ver si on</ val ue></ property>
</ bean>
</list>
</ property>
</ bean>

<!-- Conpass-->
<bean i d="conpass" cl ass="org.conpass. spring. Local ConpassBean" >
<property nanme="mappi ngResol vers">
<list>
<bean cl ass="org. conpass. gps. devi ce. j dbc. Resul t Set Resour ceMappi ngResol ver ">
<property name="mappi ng"><ref | ocal ="parent Mappi ng" /></property>
<property name="dat aSource"><ref bean="dataSource" /></property>
</ bean>
<bean cl ass="org. conpass. gps. devi ce. j dbc. Resul t Set Resour ceMappi ngResol ver ">
<property name="mappi ng"><ref |ocal ="chil dMappi ng" /></property>
<property name="dat aSource"><ref bean="dataSource" /></property>
</ bean>
</list>
</ property>
<property nanme="conpassSettings">

<pr ops>
<prop key="conpass. engi ne. connecti on">target/testindex</prop>
<l-- This is the default transaction handling (just explicitly setting it) -->

<prop key="conpass.transaction.factory">
or g. conpass. core. transacti on. Local Transacti onFact ory
</ prop>
</ props>
</ property>
</ bean>

<bean i d="j dbcGpsDevi ce" cl ass="org. conpass. gps. devi ce.j dbc. Resul t Set JdbcGpsDevi ce" >
<property name="nane"><val ue>j dbcDevi ce</ val ue></ property>
<property name="dat aSource"><ref bean="dataSource" /></property>
<property name="m rror Dat aChanges" ><val ue>t rue</ val ue></ property>
<property nanme="nmappi ngs">

<list>
<ref |ocal ="parent Mappi ng" />
<ref |ocal ="chil dMappi ng" />
</list>

</ property>
<property nanme="snapshot Persister">
<bean cl ass="org. conpass. gps. devi ce. j dbc. snapshot . FSJdbcSnapshot Per si st er ">

Compass - Java Search Engine 133

Jdbc Gps Device Support

<property nanme="pat h"><val ue>t arget/testi ndex/ snapshot </ val ue></ property>
</ bean>
</ property>
</ bean>

<bean i d="gps" class="org. conpass. gps.i npl . Si ngl eConpassGps"
init-method="start" destroy-nmethod="stop">
<property name="conpass"><ref bean="conpass" /></property>
<property name="gpsDevi ces">

<list>
<ref |ocal ="jdbcGosDevice" />
</list>

</ property>
<property nanme="del et el ndexBef or el ndex" ><val ue>t r ue</ val ue></ property>
</ bean>

</ beans>

Framework (2.0.2)

Chapter 31. Spring AOP

31.1. Introduction

Compass provides a set of Spring AOP Advices which helps to mirror data changes done within a Spring
powered application. For applications with a data source or a tool with no gps device that works with it (or it
does not have mirroring capabilities - like iBatis), the mirror advices can make synchronizing changes made to
the data source and Compass index simpler.

31.2. Advices

The AOP support comes with three advices. ConpassCreateAdvice, ConpassSaveAdvice, and
ConpassDel et eAdvi ce. They can create, save, or delete a data Object respectively. The advices are of type
Af t er Ret ur ni ngAdvi ce, and will persist the change to the index after the method proxied/adviced returns.

The data object that will be used to be created/saved/deleted can be one of the adviced method parameters
(using the par anet er | ndex property), or it's return value (setting the useRet ur nval ue tO t r ue).

31.3. Dao Sample

The following is an example using Spring AOP to proxy the dao layer. The Dao layer usualy acts as an
abstraction layer on top of the actual data source interaction code. It is one of the most common places where
the Compass advices can be applied (the second is explained in the next section). The assumption here is that
the Dao have create/save/del ete methods.

<beans>

<bean i d="conpass" cl ass="org. conpass. spri ng. Local ConpassBean" >
. I/ configure a conpass instance
</ bean>

<!-- define the daos -->

<bean i d="user Dao" cl ass="eg. User Daol npl ">
</Béén>

<bean i d="cont act Dao" cl ass="eg. Cont act Daol npl ">
</Eéén>

<!-- Definen the advisors -->

<bean i d="conpassCreat eAdvi sor" class="org. springframewor k. aop. support. RegexpMet hodPoi nt cut Advi sor " >
<property nanme="advi ce">
<bean cl ass="org. conpass. spri ng. aop. ConpassCr eat eAdvi ce" >
<property name="conpass" ref="conpass" />
</ bean>
</ property>
<property name="pattern" value=".*create" />
</ bean>

<bean i d="conpassSaveAdvi sor" cl ass="org. spri ngframework. aop. support. RegexpMet hodPoi nt cut Advi sor" >
<property nanme="advi ce">
<bean cl ass="org. conpass. spri ng. aop. ConpassSaveAdvi ce" >
<property nanme="conpass" ref="conpass" />
</ bean>
</ property>
<property name="pattern" val ue=".*save" />

Compass - Java Search Engine 135

Spring AOP

</ bean>

<bean i d="conpassDel et eAdvi sor" cl ass="org. spri ngframewor k. aop. support. RegexpMet hodPoi nt cut Advi sor !>
<property nanme="advi ce">
<bean cl ass="org. conpass. spri ng. aop. ConpassDel et eAdvi ce" >
<property name="conpass" ref="conpass" />
</ bean>
</ property>
<property name="pattern" val ue=".*delete" />
</ bean>

<l-- Auto proxy the daos -->

<bean i d="proxyCreator" class="org.springfranmework. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property name="beanNanmes"><val ue>user Dao, contact Dao</val ue></property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>conpassCr eat eAdvi sor </ val ue>
<val ue>conpassSaveAdvi sor </ val ue>
<val ue>conpassDel et eAdvi sor </ val ue>
</list>
</ property>
</ bean>

</ beans>

31.4. Transactional Serivce Sample

The following is an example using Spring AOP to proxy the transactional service layer. The service layer is
already proxied by the TransactionProxyFactoryBean, and the Compass advices can be one of it's
post | nt er cept or s. The assumption here isthat the service layer have create/save/del ete methods.

<beans>

<bean i d="conpass" cl ass="org.conpass. spring. Local ConpassBean" >
/1 configure a conpass instance
</ bean>

<!-- Definen the advisors -->

<bean i d="conpassCreat eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. RegexpMet hodPoi nt cut Advi sor " >
<property nanme="advi ce">
<bean cl ass="org. conpass. spri ng. aop. ConpassCr eat eAdvi ce" >
<property name="conpass" ref="conpass" />
</ bean>
</ property>
<property name="pattern" value=".*create" />
</ bean>

<bean i d="conpassSaveAdvi sor" cl ass="org. spri ngfranmework. aop. support. RegexpMet hodPoi nt cut Advi sor" >
<property nanme="advi ce">
<bean cl ass="org. conpass. spri ng. aop. ConpassSaveAdvi ce" >
<property name="conpass" ref="conpass" />
</ bean>
</ property>
<property nanme="pattern" val ue=".*save" />
</ bean>

<bean i d="conpassDel et eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. RegexpMet hodPoi nt cut Advi sor ! >
<property nanme="advi ce">
<bean cl ass="org. conpass. spri ng. aop. ConpassDel et eAdvi ce" >
<property name="conpass" ref="conpass" />
</ bean>
</ property>
<property name="pattern" val ue=".*delete" />
</ bean>

<l-- the transaciton proxy tenplate -->

<bean i d="t xProxyTenpl ate" abstract="true"

Compass - Java Search Engine 136

Spring AOP

cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager"><ref bean="transacti onManager"/></property>
<property name="transactionAttri butes">
<props>
<prop key="create*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="save*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="del et e*" >PROPAGATI ON_REQUI RED</ pr op>
<prop key="*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

<bean i d="user Manager" parent ="t xProxyTenpl ate">
<property name="target">
<bean cl ass="org. appf use. servi ce. i npl . User Manager | npl ">
<property name="user DAO'><ref bean="user DAO'/ ></ property>
</ bean>
</ property>
<property name="postl|nterceptors">
<list>
<ref bean="conpassCreat eAdvi sor"/>
<ref bean="conpassSaveAdvi sor"/>
<ref bean="conpassDel et eAdvi sor"/>
</list>
</ property>
</ bean>

</ beans>

Compass - Java Search Engine 137

Chapter 32. Spring MVC Support

32.1. Introduction

Compass::Spring provides helper and support classes that build and integrate with Spring web MV C support. It
has several base class controller helpers, aswell as search and index controllers.

32.2. Support Classes

Two abstract command controllers are provided. The Abst r act ConpassConmandCont rol | er is a general base
class for Spring's MVC Command Controller that use Conpass. The Abst r act ConpassGpsConmandCont r ol | er
isageneral base class for the Command Controller that use ConpassGps.

32.3. Index Controller

Conpassl ndexControl | er isa Spring Command Controller that can handle i ndex() operations to perform on a
Conmpass(ps.

The controller command is Conpassl ndexCommand. The Conpassl ndexCont rol | er command controller will
perform thei ndex() operation only if the dol ndex parameter is set.

The controller has two views to be set. The i ndexVi ew is the view that holds the screen which initiates the
index operation, and thei ndexResul t sVi ew, which shows the results of the index operation.

The results of the index operation will be saved under the i ndexResul t sNane, which defaults to "indexResults".
The results use the Conpass! ndexResul t s class.

32.4. Search Controller

ConpassSear chControl | er isagenera Spring's MV C Controller that perform the search operation of Conpass.

The Controller performs the search operation on the Conpass instance using the query supplied by the
ConpassSear chConmand. The command holds the query that will be executed, as well as the page number
(using the pagination feature).

If you wish to enable the pagination feature, you must set the pageSi ze property on the controller, as well as
providing the page number property on the ConpassSear chCommand.

The controller has two views to be set, the sear chvi ew, which is the view that holds the screen which the user
will initiate the search operation, and the sear chResul t sVi ew, which will show the results of the search
operation (they can be the same page).

The results of the search operation will be saved under the searchResul t sName, which defaults to
"searchResults'. The results use the ConpassSear chResul t s class.

Note, that if using the SpringSyncTransacti onFactory, the transacti onvManager must be set. Since when
using the spring sync transaction setting, a spring managed transactions must be in progress aready. The
controller will start atranscation using the given transaction manager.

Compass - Java Search Engine 138

Part V. Compass Needle

Compass::Needle provides integration of Compass and Lucene with distributed frameworks. The integration
usually revolves around the ability to store the index within a distributed cache, as well as reflecting changes
done to the data grid using Compass OSEM into the index.

Compass - Java Search Engine 139

Chapter 33. GigaSpaces

33.1. Overview

The Compass Needle GigaSpaces integration allows to store a Lucene index within GigaSpaces. It also allows
to automatically index the data grid using Compass OSEM support and mirror changes done to the data grid
into the search engine.

33.2. Lucene Directory

Compass provides a G gaSpaceDi r ect ory Which is an implementation of Lucene Di rect ory alowing to store
the index within GigaSpaces data grid.

Hereisasimple example of how it can be used:

| JSpace space = SpaceFinder.find("jini://*/*/nySpace");
G gaSpaceDirectory dir = new G gaSpaceDi rectory(space, "test");
/1 ... (use the dir with IndexWiter and | ndexSearcher)

In the above example we created a directory on top of GigaSpace's Space with an index named "test". The
directory can now be used to create Lucene | ndexW i t er and | ndexSear cher .

The Lucene directory interface represents a virtual file system. Implementing it on top of the Space is done by
breaking filesinto afile header, called Fi | eEnt ry and one or more Fi | eBucket Entry. The Fi | eEnt ry holds the
meta data of the file, for example, its size and timestamp, while the Fi | eBucket Ent ry holds a bucket size of the
actual file content. The bucket size can be controlled when constructing the G gaSpacebi r ect or y, but note that
it must not be changed if connecting to an existing index.

Note, it is preferable to configure the directory not to use the compound index format as it yields better
performance.

The GigaSpaces integration can also use GigaSpaces just as a distributed lock manager without the need to
actually store the index on GigaSpaces. The G gaSpaceLockFact ory can be used for it.

33.3. Compass Store

Compass dlows for simple integration with G gaSpaceDirectory as the index storage mechanism. The
following example shows how Compass can be configured to work against a GigaSpaces based index with an
index named test:

<conpass nane="defaul t">
<connecti on>
<space indexName="test" url="jini://*/*/mySpace"/>
</ connecti on>
</ conpass>

The following shows how to configure it using properties based configuration:

conpass. engi ne. connecti on=space://test:jini://*/*/ mySpace

Compass - Java Search Engine 140

http://www.gigaspaces.com

GigaSpaces

By default, when using GigaSpaces as the Compass store, the index will be in an uncompound file format. It
will also automatically be configured with an expiration time based index deletion policy so multiple clients
will work correctly.

Compass can aso be configured just to used GigaSpaces as a distributed lock manager without the need to
actually store the index on GigaSpaces (note that when configuring GigaSpaces as the actua store, the
GigaSpaces lock factory will be used by default). Here is how it can be configured:

conpass. engi ne. store. | ockFactory. t ype=or g. conpass. needl| e. gi gaspaces. st or e. G gaSpacelLockFact or yProvi der
conpass. engi ne. store. | ockFactory. path=jini://*/*/ mySpace?groups=ki nchy

33.4. Searchable Space

The GigaSpaces integration comes with abuilt in external data source that can be used with GigaSpaces Mirror
Service. Basically, a mirror allows to mirror changes done to the Space (data grid) into the search engine in a
reliable asynchronous manner. The following is an example of how it can be configured within a mirror
processing unit (for more information see here)

<beans xm ns="http://ww. springframewor k. or g/ schema/ beans" ...

<bean i d="conpass" cl ass="org. conpass. spri ng. Local ConpassBean" >
<property name="cl assMappi ngs" >
<list>
<val ue>eg. Bl og</ val ue>
<val ue>eg. Post </ val ue>
<val ue>eg. Conment </ val ue>
</list>
</ property>
<property name="conpassSettings">

<pr ops>
<prop key="conpass. engi ne. connecti on">space://blog:jini://*/*/searchContent</prop>
<l-- Configure expiration time so other clients that
haven't refreshed the cache will still see deleted files -->

<prop key="conpass. engi ne. store.i ndexDel etionPolicy.type">expirationtine</prop>
<prop key="conpass. engi ne. store. i ndexDel etionPolicy. expirationTi nel nSeconds" >300</ pr op>
</ props>
</ property>
</ bean>

<bean i d="conpassDat aSour ce" cl ass="org. conpass. needl| e. gi gaspaces. ConpassDat aSour ce" >
<property name="conpass" ref="conpass" />
</ bean>

<os-core: space id="mrrodSpace" url="/./mrror-service" schema="mrror"
ext er nal - dat a- sour ce="conpassDat aSour ce" />
</ beans>

The above configuration will mirror any changes done in the data grid into the search engine through the
Compass instance. It will, further more, connect and store the index content on a specific Space called blog.

Compass - Java Search Engine 141

http://www.gigaspaces.com/wiki/display/GS6/Mirror+Service+-+6.0
http://www.gigaspaces.com/wiki/display/GS6/Mirror+Service+-+6.0
http://www.gigaspaces.com/wiki/display/GS6/Open+Spaces+Persistency+Scenarios+-+Mirror

Chapter 34. Coherence

34.1. Overview

The Compass Needle Coherence integration allows to store a Lucene index within Coherence Data Grid.

34.2. Lucene Directory

Compass provides two types of Lucene Directory implementations using Coherence,
Dat aGr i dCoher enceDi rect ory and | nvocabl eCoher enceDi rectory.

Hereisasimple example of how it can be used:

CoherenceDirectory dir = new I nvocabl eCoherencebDirectory("cacheNane", "indexNane")
Il ... (use the dir with IndexWiter and | ndexSearcher)
dir.close();

In the above example we created the invocable Coherence directory on top of Coherence's Data Grid with an
index named "test". The directory can now be used to create Lucene | ndexW i t er and | ndexSear cher .

The Lucene directory interface represents a virtual file system. Implementing it on top of Coherence is done by
breaking files into a file header, caled FileEntryKey/FileEntryvalue and one or more
Fi | eBucket Key/Fi | eBucket Val ue. The file header holds the meta data of the file, for example, its size and
timestamp, while the file bucket holds a bucket size of the actual file content. The bucket size can be controlled
when constructing the coherence directory, but note that it must not be changed if connecting to an existing
index.

The Dat aGri dCoher enceDbi rect ory Uses coherence features that are supported by al of coherence editions. It
uses coherence lock API and plain Map remove APIs. The | nvocabl eCoher encebi rect ory Uses coherence
invocation service support alowing to delete files (header and buckets) in parallel (without returning results),
and use Fi | eLockKey existence as an indicator for locking (conditional put) which results in better performance
(for remove operations) and better lock API implementation.

Note, it is preferable to configure the directory not to use the compound index format as it yields better
performance.

The Coherence integration can also use Coherence just as a distributed lock manager without the need to
actually store the index on Coherence. Either the Invocabl eCoherencelLockFactory Of
Def aul t Coher encelLockFact ory can be used for it.

34.3. Compass Store

Compass allows for simple integration with Dat aGr i dCoher enceDi rect ory and
I nvocabl eCoher enceDi rect ory as the index storage mechanism. The following example shows how Compass
can be configured to work against an invocable coherence directory based index with an index named test and
cache name named testcache:

<conpass nanme="defaul t">
<connecti on>
<coherence i ndexName="t est" cacheNane="t estcache"/>

Compass - Java Search Engine 142

http://www.tangosol.com

Coherence

</ connect i on>
</ conpass>

The following shows how to configure it using properties based configuration:

conpass. engi ne. connect i on=coherence://test:testcache

By default, when using Coherence as the Compass store, the index will be in an uncompound file format. It will

also automatically be configured with an expiration time based index deletion policy so multiple clients will
work correctly.

Compass can aso be configured just to used Coherence as a distributed lock manager without the need to
actually store the index on Coherence (note that when configuring Cohernece as the actual store, the Coherence
lock factory will be used by default). Here is how it can be configured:

conpass. engi ne. store. | ockFact ory. t ype=or g. conpass. needl e. coher nece. | nvocabl eCoher enceLockFact or yPr ovi der
conpass. engi ne. store. | ockFact ory. pat h=cacheNane

Compass - Java Search Engine 143

Chapter 35. Terracotta

35.1. Overview

The Compass Needle Terracotta integration allows to store a Lucene index in a distributed manner using
Terracottaas well as provide seamless integration with Compass.

35.2. Lucene Directory

Compass provides a Terracotta optimized directory (similar to Lucene RAM directory) caled
Terracottabirect ory. When using it with pure Lucene applications, the directory needs to be defined as a
"root" Terracotta object and then used when constructing | ndexwiter and | ndexReader . See the Compass
Store on how to use compass jar file as a Terracotta Integration Module (TIM).

Terracotta is a shared memory (referred to as "network attached memory”). The terracotta directory makes use
of that and stores the directory in memory alowing for terracotta to distribute changes of it to al relevant nodes
connected to the terracotta server. The actual content of a "file" in the directory is broken down into one or
more byte arrays, which can be controlled using the bufferSize parameter. Note, once an index is created with a
certain bufferSize, it should not be changed. By default, the buffer sizeis set to 4096 bytes.

Terracotta will automatically fetch required content from the server, and will evict content if memory
thresholds break for an application. When constructing large files, the directory allows to set a flush rate when
the file content will be flushed (and be allowed to be evicted) during its creation. The formula is that every
bufferSize * flushRate bytes, it will be released by Compass and allow terracotta to move it to the server
and reclaim the memory. The default flush rate is set to 10.

35.3. Compass Store

When using Compass, it is very simple to configure Compass to store the index using Terracotta. Compass jar
file aready comes in the format of a Terracotta Integration Module (TIM) alowing to simply drop it into
TC_HOME/ nodul es and it already comes pre-configured with a terracotta configuration of both locks and roots
(terracotta. xnl file within the root of the compass jar file). Another option is to tell Terracotta where to look
for more TIMs within the application t c- confi g file and point it to where the compass jar is located.

Once the TIM is setup, Compass has a specia Terracotta connection that alows it to use the
TerracottaDirectory called TerracottaDirectoryStore. The TerracottabDirectoryStore iS where
terracottais configured to have its root (note, thisis all defined for you already since compassisa T TIM).

Hereis a properties/settings based configuration

conpass. engi ne. connecti on=t c: // nyi ndex

default val ues, just showi ng how it can be configured
conpass. engi ne. store. tc. bufferSi ze=4096

conpass. engi ne. store. tc. fl ushRat e=10

And hereisan xml based configuration:

<conpass nanme="defaul t">
<connecti on>
<t c i ndexNanme="nyi ndex" bufferSize="4096" flushRate="10" />
</ connecti on>

Compass - Java Search Engine 144

http://www.terracotta.org

Terracotta

</ conpass>

The "client application” will need to run using Terracotta bootclasspath configuration, and have the following
initstc-config. xm :

<clients>
<nmodul es>
<nmodul e group-id="org. conpass-project" nanme="conpass" version="2.0.0-RC1" />
</ nodul es>
</clients>

For more information on how to run it in different ways/environments, please refer to the terracotta
documentation.

Compass - Java Search Engine 145

Part VI. Compass Samples

The Samples section lists and explains al the different samples that come with Compass.

Compass - Java Search Engine 146

Chapter 36. Library Sample

36.1. Introduction

Compass::Samples [library] is a basic example, that highlights the main features of Compass::Core. The
application contains asmall library domain model, containing Aut hor, Arti cl e and Book Objects.

You can find most of Compass:.:Core features used within the library sample, such as OSEM and Common
Metadata. It executes as a unit test, using JUnit and can be used to search a predefined set of data. Modify the
Li braryTests class to add your own test data and experiment with how easy it is to work with Compass.
Enjoy.

36.2. Running The Sample

Running the library sample, you will need to have Apache Ant installed and have ANT_HOME/bin on your
path. The following table lists the avail able ant targets.

Table 36.1.

Target Description

usage (al so the default target) Listsal the available targets.

test Runs the tests defined in the Li braryTest s, also compiles sample
(see the compile target).

compile Compiles the tests and the source code into the build/classes
directory. Also executes the common meta data task to generate the
Library class out of the library.cnd. xm file into the source
directory.

search Executes the Li br aryTest s main method, which pre-populates the

index with data. You can interactivly provide a search query to
execute a search on the index.

Compass - Java Search Engine 147

http://junit.org
http://ant.apache.org

Chapter 37. Petclinic Sample

37.1. Introduction

Compass::Samples [petclinic] is the Spring petclinic sample powered by Compass. The main aim of the sample
isto show how simpleit isto add compass to an application, especially if one of the frameworks the application
usesis one of the ones compass seamlessly integrates with.

Integrating compass into the petclinic sample, did not require any Java code to be written. Although severa
unit tests were added (good programming practice). Integration consisted of extending the Spring configuration
files and writing a search and index jsp pages. The following sections will explain how integration was
achieved.

The Compass petclinic sample shows how to integrate Compass with Spring and other frameworks. An
important note, of course, is that Compass can be integrated with applications that do not use the Spring
framework. Although Spring does make integration a bit simpler (and building applications much simpler).

37.2. Running The Sample

To run the petclinic sample, you will to install Apache Ant and have ANT_HOME/bin on your path. The
following table lists the available ant targets.

Table37.1.
Target Description
usage (al so the default target) Listsal the available targets.
clean Clean all the output dirs.
build Compile main Java sources and copy libraries.
docs Create complete Javadoc documentation.
warfile Build the web application archive.
setupDB Initialize the database.
tests Run the tests (a database does not have to be running).
all Clean, build, docs, warfile, tests.

37.3. Data Model In Petclinic

Petclinic data model is based on POJOs (Plain Old Java Objects), including Pet , Vet , Oaner, and Vi si t among
others. The model aso includes the base classesent i ty (which holds theid of an entity), NanedEnti ty (holdsa
name as well), and Per son (holds person information).

37.3.1. Common Meta-data (Optional)

Compass - Java Search Engine 148

http://ant.apache.org

Petclinic Sample

As we explained in the Common Meta-data section, Common meta-data provides a global lookup mechanism
for meta-data and alias definitions. It integrates with OSEM definitions and Gps::Jdbc mappings, externalising
(and centralising) the actual semantic lookup keys that will be stored in the index. It also provides an Ant task
to provides a constant Java class definitions for al the common meta-data definitions which can be used by
Java application to lookup and store Compass Resour ce.

Defining a common meta-data definition is an optional step when integrating Compass. Though taking the time
and creating one can provides valuable information and centralisation of the system (or systems) semantic
definitions.

In the petclinic sample, the Common meta-data file is located in the or g. conpass. sanpl e. pet ¢l i ni ¢ package,
andiscalled petclinic.cnd. xm . A fragment of it is shown here:

<?xm version="1.0"?>
<! DOCTYPE conpass-cor e-neta-data PUBLIC
"-// Conpass/ Conpass Core Meta Data DTD 2.0//EN'
"http://ww. compass- proj ect. or g/ dt d/ conpass- cor e- net a- dat a- 2. 0. dtd" >

<conpass- cor e- et a- dat a>
<met a- dat a-group i d="petclinic" displayName="Petclinic Meta Data">

<description>Petclinic Meta Data</description>
<uri>http://conpass/sanpl e/ petclinic</uri>

<alias id="vet" displayName="Vet">
<description>Vet alias</description>
<uri>http://conpass/sanpl e/ petclinic/alias/vet</uri>
<name>vet </ nane>

</alias>

<l-- ... nore alias definitions -->

<meta-data id="birthdate" di spl ayNane="Birthdate">
<descri pti on>The birthdate</description>
<uri>http://conpass/ sanpl e/ petclinic/birthdate</uri>
<nane fornat="yyyy- M\ dd" >bi rt hdat e</ nane>

</ et a- dat a>

<l-- ... nore neta-data definitions -->

</ nmet a- dat a- gr oup>

</ conpass- cor e- net a- dat a>

The above fragment of the common meta-data definitions, declares an alias called vet and meta-data called
birthdate. The birthdate meta-data example shows one of the benefits of using common meta-data. The format
of the date field is defined in the meta-data, instead of defining it in every mapping of birtdate meta-data (in
OSEM for example).

37.3.2. Resource Mapping

One of the features of the search engine abstraction layer is the use of Resource and Property. As well as
simple and minimal Resource Mapping definitions.

Although it is not directly used, the Jdbc implementation of the data access layer uses Search Engine AP,
based on Resources and resource mappings (the Jdbc device of Compass::Gps can automatically generate
them).

Compass - Java Search Engine 149

Petclinic Sample

37.3.3. OSEM

One of the main features of Compass is OSEM (Object / Search Engine Mapping), and it is heavily used in the
petclinic sample. OSEM maps Java objects (domain model) to the underlying search engine using simple
mapping definitions.

The petclinic sample uses most of the features provided by OSEM, among them are: cont r act , with mappings
defined for the Enti ty, NamedEnt i ty, and Person (al are "abstract" domain definitions), Cyclic references are
defined (for example between pet and owner), and many more. The OSEM definitions can be found at the
petclinic.cpmxm file

37.4. Data Access In Petclinic

Petclinic provides an abstraction layer on top of the actual implementation of the data access layer. The
Petclinic can use Hibernate, Apache ORB, or JDBC for database access. Compass can seamlessly integrate
with each of the mentioned layers.

The main concern with the data access layer (and Compass) is to synchronise each data model change made
with Compass search engine index. Compass provides integration support for indexing the data using any of the
actual implementation of the data access layer.

37.4.1. Hibernate

Compass::Gps comes with the Hibernate device. The device can index the data mapped by Hibernate, and
mirror any data changes made by Hibernate to the search engine index. Since we are using Hibernate with
Spring, the device used is the Spring Hibernate device.

The integration uses the OSEM definitions, working with Compass object level API to interact with the
underlying search engine. The spring application context bean definitions for the conpass (required by the
Hibernate Gps device) instance is defined with OSEM definitions and spring based transaction support. The
appl i cati onCont ext - hi ber nat e. xni in the test package, and the appl i cat i onCont ext - hi ber nat e. xni in the
WEB-INF directory define all the required definitions to work with hibernate and compass. Note, that only the
mentioned configuration has to be created in order to integrate compass to the data access layer.

37.4.2. Apache OJB

Compass::Gps comes with the OJB device. The device can index the data mapped by OJB, and mirror any data
changes made by OJB to the search engine index. Since we are using OJB with Spring, the device used is the
Spring OJB device, which offers even simpler integration with OJB.

The integration uses the OSEM definitions, and works with Compass object level API to work with the search
engine. The spring application context bean definitions for the conpass (required by the OJB Gps device)
instance is defined with OSEM definitions and spring based transaction support. The
appl i cati onCont ext - oj b. xm in the test package, and the appl i cati onCont ext - oj b. xnl in the WEB-INF
directory define all the required definitions to work with OJB and compass. Note, that only the mentioned
configuration hasto be created in order to integrate compass to the data access layer.

37.4.3. JDBC

Compass::Gps comes with the JDBC device. The Jdbc device can connect to a database using jdbc, and based

Compass - Java Search Engine 150

Petclinic Sample

on different mappings defentions, index it's content and mirror any data changes. When using the Jdbc device,
the mapping is made on the Resour ce level (cannot use OSEM).

It is important to understand the different options for integrating Compass for a Jdbc (or a Jdbc helper
framework like Spring or iBatis) data access implementation. If the system has no domain model, than
Resour ce level APl and mapping must be used. The Jdbc device can automate most of the actions needed to
index and mirror the database. If the system has a domain model (such as the petclinic sample), two options are
available: working on the Resour ce level and again using the Jdbc device, or using OSEM definitions, and
plumb Compass cals to the data access API's (i.e. save the Vet in compass when the Vet is saved to the
database). In the petclinic sample, the Jdbc device option was taken in order to demonstrate the Jdbc device
usage. An API level solution should be simple, especially if the system has decent and centralized data access
layer (whichin our caseit does).

The integration uses the Jdbc Gps Device mapping definitions and works with Compass object level API to
work with the search engine. The spring application context bean definitions for the conpass (required by the
Jdbc Gps device) instance are defined with Jdbc mapping resolvers, and Local transactions. The
appl i cati onCont ext -j dbc. xm in the test package, and the appl i cati onCont ext - j dbc. xni in the WEB-INF
directory define all the required definitions to work with jdbc and compass. Note, that only the mentioned
configuration hasto be created in order to integrate compass to the data access layer.

The petclinic sample using the Jdbc Gps Device and defines several Jdbc mappings to the database. Some of
the mappings use the more complex Result Set mappings (for mappings that require a join operation) and some
use the simple Table mapping. The mapping definitions uses the common meta-data to lookup the actual
meta-data val ues.

Note, that an important change made to the original petclinic sample was the addition the Version column. The
version column is needed for automatic data mirroring (some databases, like Oracle, provides a "version
column” by default).

The Resource mapping definition are automatically generated using mapping resolvers, and conpass use them.

Note, that the Jdbc support currently only works with Hsgl database (since the sql queries used in the Result Set
mappings use hsgl functions).

37.5. Web (MVC) in Petclinic

The petclinic sample uses Spring MV C framework for web support. Compass::Spring module comes with
special support for the Spring MV C framework.

The only thing required when using the Compass and Spring mvc integration is writing the view layer for the
search / index operations. These arethei ndex. j sp, search. j sp and ser achResour ce. j sp Jstl view based files.

The i ndex. j sp is responsible for both initiating the index operation for ConpassGps (and it's controlled
devices), aswell as displaying the results for the index operation.

The search. j sp and the sear chResour ce. j sp are responsible for initiating the search operation as well as
displaying the results. The difference between them is the search. j sp works with OSEM enabled petclinic
(when using Hibernate or Apache OJB), and the sear chResource. j sp wWorks with resource mapping and
resource level petclinic (when using Jdbc).

Note, that when using Jdbc, remember to change the vi ews. proeprties file under the WEB-INF/classes
directory and have both the searchview.url and the searchResultsView url referring to
sear chResour ce. j sp View. And when using either Hibernate or OJB, change it to point to sear ch. j sp.

Framework (2.0.2)

Part VII. Appendixes

Compass - Java Search Engine 152

Appendix A. Configuration Settings

A.l. Compass Configuration Settings

Compass's various settings have been logicaly grouped in the following section, with a short description of
each setting. Note: the only mandatory setting is the index file location specified in
conpass. engi ne. connecti on.

Note, that configuring Compass is simpler when using a schema based configuration file. But in its core, all of
Compass configuration is driven by the following settings. You can use only settings to configure Compass
(either programatically or using the Compass configuration based on DTD).

A.1.1. compass.engine.connection

Sets the Search engine index connecion string.

TableA.l1

Connection Description

file:// prefix or no prefix The path to the file system based index path, using default file
handling. ThisisaJVM level setting for all the file based prefixes.

map: // prefix Uses Java 1.4 nio MMAPp class. Considered slower than the general
file system one, but might have memory benefits (according to the
Lucene documentation). Thisis a JVM level setting for al the file
based prefixes.

ram// prefix Creates a memory based index, follows the Conpass life-cycle.
Created when the Conpass is created, and disposed when Conpass
isclosed.

jdbc:// prefix Holds the Jdbc url or Jndi (based on the Dat aSour ceProvi der
configured). Allows storing the index within a database. This
setting requires additional mandatory settings, please refer to the
Search Engine Jdbc section. It is very IMPORTANT to read the
Search Engine Jdbc section, especialy in term of performance
considerations.

A.1.2. INDI

Controls Conpass registration through JNDI, using Compass JNDI lookups.

TableA.2.
Setting Description
compass.name The name that conpass will be registered under. Note that you can

specify it at the XML configuration file with a name attribute at the

Compass - Java Search Engine 153

Configuration Settings

Setting

compass.jndi.enable

compass.jndi.class
compass.jndi.url

compass.jndi.*

Description

compass element.

Enables JNDI registration of compass under the given name.
Default tof al se.

JNDI initial context class, Cont ext . | NI TI AL_CONTEXT_FACTORY.

JNDI provider URL, Cont ext . PROVI DER_URL

prefix for arbitrary JINDI | ni ti al Cont ext properties

A.1.3. Property

Controls Conpass automatic properties, and property names.

TableA.3.

Setting

Description

compass.property.alias

compass.property.extendedAlias

compass.property.all

The name of the "dias" property that Compass will use (a
property that holds the alias property value of a resource).
Defaults to al i as (set it only if one of your mapped meta
dataiscalled aias).

The name of the property that extended aliased (if exists) of
a given Resource will be stored. This allows for poly alias
gueries where one can query on a "base" alias, and get all
the aliases the are extending it. Defaults to ext endedAl i as
(set it only if one of your mapped meta data is caled
extendedAlias).

The name of the "al" property that Compass will use (a
property that accumulates al the properties/meta-data).
Defaultsto al | (set it only if one of your mapped meta data
is called all). Note that it can be overriden in the mapping
files.

compass.property.all.termVector
no)

(defaults to

The default setting for the term vector of the all property.
Can be one of no, yes, positions, offsets, Of
posi tions_of fsets.

A.1.4. Transaction Level

Compass supports severa transaction isolation levels. More information about them can be found in the Search

Engine chapter.

TableA 4.

Transaction Level

Description

none

Not supported, upgraded tor ead_commi t t ed.

Compass - Java Search Engine 154

Configuration Settings

Transaction Level Description

read_uncommitted Not supported, upgraded tor ead_commi t t ed.

read_committed The same read committed from data base systems. As fast for read
only transactions.

repeatable read Not supported, upgraded to seri al i zabl e.

seridizable The same as serializable from data base systems. Performance

killer, basically results in transactions executed sequentially.

lucene (batch_insert) A special transaction level, 1ucene (previously known as
batch_i nsert) isolation level is similar to the read_conmitted
isolation level except dirty operations done during a transaction are
not visible to get/load/find operations that occur within the same
transaction. This isolation level is very handy for long running
batch dirty operations and can be faster thanr ead_conmi t t ed. Most
usage patterns of Compass (such as integration with ORM tools)
can work perfectly well with thel ucene isolation level.

Please read more about how Compass::Core implements it's transaction management in the Search Engine
section.

A.1.5. Transaction Strategy

When using the Compass::Core transaction API, you must specify a factory class for the ConpassTransacti on
instances. Thisis done by setting the property conpass. transacti on. f act ory. The ConpassTransacti on API
hides the underlying transaction mechanism, allowing Compass.:Core code to run in a managed and
non-managed environments. The two standard strategies are:

Table A5
Transaction Strategy Description
0rg.Ccompass.core. Manages a local transaction which does not interact with other

transaction.L ocal TransactionFactory transaction mechanisms.

org.compass.core. Uses the JTA synchronization support to synchronize with the JTA

transaction.JT A SyncTransactionFactory | transaction (not the same as two phase commit, meaning that if the
transaction fails, the other resources that participate in the
transaction will not roll back). If there is no existing JTA
transaction, a new one will be started.

0rg.compass.core. Uses the JTA Transaction to enlist a Compass implemented

transaction.X ATransactionFactory XAResour ce This allows for Compass to participate in a two phase
commit operation. Note, the JTA implementation should
automatically delist the resource when the transaction
commit/rollback. If there is no existing JTA transaction, a new one
will be started.

An important configuration setting is the conpass. transacti on. commi t Bef or eConpl et i on. It is used when
using transaction factories that uses synchronization (like JTA and Spring). If set to true, will commit the

Compass - Java Search Engine 155

Configuration Settings

transaction in the bef or eConpl et i on stage. It is very important to set it to t r ue when using a jdbc based index
storage, and set it to f al se otherwise. Defaultsto f al se.

Although the J2EE specification does not provide a standard way to reference a JTA Tr ansact i onManager , tO
register with a transaction synchronization service, Compass provides several lookups which can be set with a
conpass. transacti on. manager Lookup Setting (thanks hibernate!). The setting is not required since Compass
will try to auto-detect the JTA environment.

The following table lists them all:

Table A.6.

Transaction Manager L ookup Application Server
org.compass.core.transaction.manager.JBoss JBoss
org.compass.core.transaction.manager.Weblogic Weblaogic
org.compass.core.transaction.manager.WebSphere WebSphere
org.compass.core.transaction.manager.Orion Orion
org.compass.core.transaction.manager.JOTM JOTM
org.compass.core.transaction.manager.JOnaAS JONAS
org.compass.core.transaction.manager.JRun4 JRun4
org.compass.core.transaction.manager.BEST Borland ES

The JTA transaction mechanism will use the JNDI configuration to lookup the JTA User Transacti on. The
transaction manager lookup provides the JINDI name, but if you wish to set it yourself, you can set the
conpass. transacti on. user Transact i onName Setting. Also, the User Transacti on will be cached by default
(fetched from JINDI on Compass startup), the caching can be controlled by
conpass. transacti on. cacheUser Tr ansact i on.

A.1.6. Property Accessor

Property accessors are used for reading and writing Class properties. Compass comes with two
implementations, field and property. field is used for directly accessing the Class property, and property is used
for accessing the class property using the property getters/setters. Compass allows for registration of custom
PropertyAccessor implementations under a lookup name, as well as changing the default property accessor
used (which is property).

The configuration uses Compass support for group properties, with the conpass. propert yAccessor group
prefix. The name the property accessor will be registered under is the group name. In order to set the default
property accessor, the def aul t group name should be used.

Custom implementations of PropertyAccessor can optionally implement the ConpassConfi gur abl e interface,
which allows for additional settings to be injected into the implementations.

Table A.7. Property Accessor Settings

Framework (2.0.2)

Configuration Settings

Setting Description

compass.propertyA ccessor.[property The fully qualified class name of the property accessor.
accessor namej.type

A.1.7. Converters

Compass uses converters to convert al the different OSEM mappings into Resour ces. Compass comes with a
set of default converters that should be sufficient for most applications, but does alow the extendibility to
define custom converters for all aspects related to marshaling Objects and Mappings (Compass internal
mapping definitions) into a search engine.

Compass uses a registry of Converters. All Converters are registered under a registry name (converter lookup
name). Compass registers all it's default Converters under lookup names (which alows for changing the default
converters settings), and allows for registration of custom Converters.

The following lists all the default Converters that comes with Compass. The lookup name is the lookup name
the Converter will be registered under, the Converter class is Compass implementation of the Converter, and
the Converter Type acts as shorthand string for the Converter implementation (can be used with the
conpass. converter.[converter nane].type instead of the fully qualified class name). The default mapping
converters are responsible for converting the meta-data mapping definitions.

Table A.8. Default Compass Converters

Javatype L ookup Converter Class Converter Notes
Name Type
javalang.Boolean, boolean org.compass.core.converter. boolean
boolean simple.BooleanConveter
javalang.Byte, byte byte org.compass.core.converter. byte
simple.ByteConveter
javalang.Charecter, | char 0rg.compass.core.converter. char
char simple.CharConveter
javalang.Float, float org.compass.core.converter. float Format-table
float simple.FloatConveter converter
javalang.Double, double 0rg.compass.core.converter. double Format-table
double simple.DoubleConveter converter
javalang.Short, short org.compass.core.converter. short Format-table
short simple.ShortConveter converter
javalang.Integer, int org.compass.core.converter. int Format-table
int simple.IntConveter converter
javalang.Long, long org.compass.core.converter. long Format-table
long simple.LongConveter converter
javalang.Date date org.compass.core.converter. date Format-table
simple.DateConveter converter, defaults
to

yyyy- Mt dd- HH mm ss- S-a

Framework (2.0.2)

Configuration Settings

Javatype

javalang.Calendar

javalang.String

L ookup
Name

caendar

string

javalang.StringBufferstringbuffer

java.math.BigDecimalbigdecimal

javamath.Biglnteger biginteger

java.net.URL

javaio.File

javaio.InputStream

javaio.Reader

java.util.Locale

java.sgl.Date

java.sgl.Time

java.sgl.Timestamp

bytef]

Byte[]

url

file

inputstream

reader

locale

sgldate

sgltime

sgltimestamp

Converter Class

org.compass.core.converter.
simple.CalendarConveter

0rg.compass.core.converter.
simple.StringConveter

0rg.compass.core.converter.
simple.StringBufferConveter

org.compass.core.converter.
simple.BigDecimal Conveter

0rg.compass.core.converter.
simple.BiglntegerConveter

0rg.compass.core.converter.
simple. URL Conveter

org.compass.core.converter.
extended.FileConveter

org.compass.core.converter.

extended.InputStreamConveter

org.compass.core.converter.
extended.ReaderConverter

org.compass.core.converter.
extended.L ocaleConveter

0rg.compass.core.converter.
extended.SqglDateConveter

org.compass.core.converter.
extended.Sgl TimeConveter

org.compass.core.converter.

extended.Sqgl TimestampConveter

primitivebyteawsy.compass.core.converter.
extended.PrimitiveByteArrayConverter

objectbytearrayorg.compass.core.converter.

extended.ObjectByteArrayConverter

Converter
Type

caendar

string

stringbuffer

bigdecimal

biginteger

url

file

inputstream

reader

locale

sgldate

sgltime

sgltimestamp

Notes

Format-table

converter, defaults

to

yyyy- Mt dd- HH- mm ss- S-a

Uses the
URL#t oSt ri ng

Uses the file name

Stores the content
of the I nput Stream
without performing
any other search
related operations.

primitivebytearsiyres the content

of the byte array
without performing
any other search
related operations.

objectbytearrayStores the content

of the byte array
without performing
any other search
related operations.

Compass - Java Search Engine

158

Configuration Settings

Table A.9. Compass M apping Converters

Mapping type

0rg.compass.core.mapping.
osem.ClassMapping

0rg.compass.core.mapping.
osem.ClassldPropertyMapping

0rg.compass.core.mapping.
osem.ClassPropertyMapping

Lookup Name @ Converter Class Notes

classMapping org.compass.core.converter.
mapping.ClassM appingConverter

classldProperty M appr@pmpass.core.converter.
mapping.ClassPropertyMappingConverter

classProperty M apmrggcompass.core.converter.
mapping.ClassPropertyM appingConverter

0rg.compass.core.mapping.
osem.ComponentM apping

0rg.compass.core.mapping.
osem.ReferenceMapping

componentM appingrg.compass.core.converter.
mapping.ComponentM appingConverter

referenceM apping org.compass.core.converter.
mapping.ReferenceM appingConverter

0org.compass.core.mapping.
osem.CollectionMapping

0rg.compass.core.mapping.
osem.ArrayMapping

0rg.compass.core.mapping.
osem.ConstantM apping

0rg.compass.core.mapping.
osem.ParentM apping

collectionM appingorg.compass.core.converter.
mapping.CollectionMappingConverter

arrayMapping org.compass.core.converter.
mapping.ArrayMappingConverter

constantMapping org.compass.core.converter.
mapping.ConstantM appingConverter

parentMapping = org.compass.core.converter.
mapping.ParentM appingConverter

Defining a new converter can be done using Compass support for group settings. conpass. converter is the
prefix for the group. In order to define new converter that will be registered under the "converter name" |ookup,
the conpass. converter.[converter nane] Setting prefix should be used. The following lists al the settings
that can apply to a converter definition.

Table A.10. Converter Settings

Setting

compass.converter.[converter
name].type

compass.converter.[converter
name].format

compass.converter.[converter
name].format.locale

compass.converter.[converter
name].format.minPool Size

compass.converter.[converter

Description

The type of the org.conpass.converter. Converter
implementation. Should either be the fully qualified class name, or
the Converter Type (shorthand version for compass internal
converter classes, defined in the previous table).

Applies to format-able converters. The format that will be used to
format the data converted (see Javaj ava. t ext . Deci mal For mat and
j ava. t ext . Si npl eDat eFor mat).

The Local e to be used when formatting.

Compass pools the formatters for greater performance. The value of
the minimum pool size. Defaultsto 4.

Compeass pools the formatters for greater performance. The value of

Compass - Java Search Engine 159

Configuration Settings

Setting Description

name].format.maxPool Size the maximum pool size. Defaults to 20.

Note, that any other setting can be defined after the conpass. converter. [converter nane]. If the Converter
implements the or g. conpass. cor e. confi g. ConpassConf i gur abl e, it will be injected with the settings for the
converter. The converter will get al the settings, with settings names without the
conpass. converter.[converter nane] prefix.

For example, defining a new Date converter with a specific format can be done by setting two settings:
conpass. converter. nydate.type=date (same as
conpass. convert er. nydat e. t ype=or g. conpass. cor e. conver t er . basi c. Dat eConvert er), and
conpass. convert er. nydat e. f or mat =yyyy- H#dd. The converter will be registered under the "mydate"
converter lookup name. It can than be used as alookup name in the OSEM definitions.

In order to change the default converters, simply define a setting with the [converter name] of the default
converter that comes with compass. For example, in order to override the format of al the dates in the system
to "yyyy-HH-dd", smple set: conpass. converter. dat e. f or mat =yyyy- H+ dd.

A.1.8. Search Engine

Controls the different settings for the search engine.

Table A.11. Search Engine Settings

Setting Description
compass.engine.connection The index engine file system location.
compass.engine.defaultsearch When searching using a query string, the default property/meta-data

that compass will use for non prefixed strings. Defaults to
conpass. property. al | vaue.

compass.engine.all.analyzer The name of the analyzer to use for the al property (see the next
section about Search Engine Analyzers).

compass.transaction.lockDir The directory where the search engine will maintain it's locking file
mechanism for inter and outer process transaction synchronization.
Defaults to the java.io. tnpdir Java system property. This is a
JVM level property.

compass.transaction.lock Timeout The amount of time a transaction will wait in order to obtain it's
specific lock (in seconds). Defaultsto 10 seconds.

compass.transaction.lockPollInterval The interval that the transaction will check to seeif it can obtain the
lock (in milliseconds). Defaults to 100 milliseconds. Thisisa JVM
level proeprty.

compass.engine.optimizer.type The fully qualified class name of the search engine optimizer that
will be used. Defaults to org. conpass. core. |l ucene. engi ne.
optim zer. AdaptiveQptimi zer. Please see the following section
for alist of optimizers.

compass.engine.optimizer.schedule Determines if the optimizer will be scheduled or not (true or
fal se), defaultsto t rue. If it is scheduled, it will run each period of
time and check if the index need optimization, and if it does, it will

Framework (2.0.2)

Configuration Settings

Setting

compass.engine.optimizer.
schedule.period

Description
optimizeit.

The period that the optimizer will check if the index need
optimization, and if it does, optimize it (in seconds, can be a float
number). Defaults to 10 seconds. The setting applies if the
optimizer is scheduled.

compass.engine.optimizer.
schedule.fixedRate

compass.engine.optimizer.
adaptive.mergeFactor

Determines if the schedule will run in afixed rate or not. If it is set
to false each execution is scheduled relative to the actual
execution of the previous execution. If it is set to true each
execution is scheduled relative to the execution time of the initia
execution.

For the adaptive optimizer, determines how often the optimizer will
optimize the index. With small values, the faster the searches will
be, but the more often that the index will be optimized. Larger
values will result in slower searches, and less optimizations.

compass.engine.optimizer.
aggressive.mergeFactor

compass.engine.mergeFactor

For the aggressive optimizer, determines how often the optimizer
will optimize the index. With small values, the faster the searches
will be, but the more often that the index will be optimized. Larger
values will result in slower searches, and |ess optimizations.

With smaller values, less RAM is used, but indexing is slower.
With larger values, more RAM is used, and the indexing speed is
faster. Defaultsto 10.

compass.engine.maxBufferedDocs

Determines the minimal number of documents required before the
buffered in-memory documents are flushed as a new Segment.
Large values generdly gives faster indexing. When this is set, the
writer will flush every maxBufferedDocs added documents. Passin
-1 to prevent triggering a flush due to number of buffered
documents. Note that if flushing by RAM usage is aso enabled,
then the flush will be triggered by whichever comes first. Disabled
by default (writer flushes by RAM usage).

compass.engine.maxBufferedDel eted Terni3etermines the minimal number of delete terms required before the

compass.engine.ramBufferSize

compass.engine.termlndexInterval

buffered in-memory delete terms are applied and flushed. If there
are documents buffered in memory at the time, they are merged and
a new segment is created. Disabled by default (writer flushes by
RAM usage).

Determines the amount of RAM that may be used for buffering
added documents before they are flushed as a new Segment.
Generaly for faster indexing performance it's best to flush by RAM
usage instead of document count and use as large a RAM buffer as
you can. When this is set, the writer will flush whenever buffered
documents use this much RAM. Pass in -1 to prevent triggering a
flush due to RAM usage. Note that if flushing by document count is
also enabled, then the flush will be triggered by whichever comes
first. The default value is 16 (M).

Expert: Set the interval between indexed terms. Large values cause
less memory to be used by IndexReader, but slow random-access to
terms. Small vaues cause more memory to be used by an

Framework (2.0.2)

Configuration Settings

Setting Description

IndexReader, and speed random-access to terms. This parameter
determines the amount of computation required per query term,
regardiess of the number of documents that contain that term. In
particular, it is the maximum number of other terms that must be
scanned before a term is located and its frequency and position
information may be processed. In a large index with user-entered
query terms, query processing timeis likely to be dominated not by
term lookup but rather by the processing of frequency and
positional data. In a small index or when many uncommon query
terms are generated (e.g., by wildcard queries) term lookup may
become a dominant cost. In particular, numUniqueTermg/interval
terms are read into memory by an IndexReader, and, on average,
interval/2 terms must be scanned for each random term access.

compass.engine.maxFieldLength The number of terms that will be indexed for a single property in a
resource. This limits the amount of memory required for indexing,
so that collections with very large resources will not crash the
indexing process by running out of memory. Note, that this
effectively truncates large resources, excluding from the index
terms that occur further in the resource. Defaults to 10,000 terms.

compass.engine.useCompoundFile Turn on (true) or off (fal se) the use of compound files. If used
lowers the number of files open, but have very small performance
overhead. Defaults to t rue. Note, when compass starts up, it will
validate that the current index structure maps the configured setting,
and if it is not, it will automatically try and convert it to the correct
structure.

compass.engine.cachel nterval InvalidationSets how often (in milliseconds) the index manager will check if
the index cache needs to be invalidated. Defaults to 5000
milliseconds. Setting it to 0 means that the cache will check if it
needs to be invalidated all the time. Setting it to - 1 means that the
cache will not check the index for invalidation, it is perfectly fine if
a single instance is working with the index, since the cache is
automatically invalidated upon a dirty operation.

compass.engine.indexM anager Schedul el nfdnealndex manager schedule interval (in seconds) where different
actions related to index manager will happen (such as global cache
interval invalidation checks - See
Sear chEngi nel ndexManager #not i f yAl | Tod ear Cache and
Sear chEngi nel ndexManager #checkAndd ear | f Not i fi edAl | Tod ear Cache).
Defaults to 60 seconds.

compass.engine.waitForCachel nvalidati orisibndiex @pdraisen If set to true, will cause the index manager
operation (including replace index) to wait for all other compass
instances to invalidate their cache. The time to wait will be the
indexManagerScheduledinterval configuration setting.

The following section lists the different optimizers that are available with Compass::Core. Note that all the
optimizers can be scheduled or not.

Compass - Java Search Engine 162

Configuration Settings

Table A.12.

Optimizer

or g. conpass. cor e. | ucene. engi ne.

optim zer. AdaptiveOptim zer

or g. conpass. core. | ucene. engi ne.

optim zer. Aggressi veOpti m zer

or g. conpass. core. | ucene. engi ne.

optimzer.Null Optimzer

Description

When the number of segments exceeds that specified mer geFact or,
the segments will be merged from the last segment, until a segment
with a higher resource count will be encountered.

When the number of segments exceeds that specified ner geFact or,
all the segments are merged into a single segment.

Does no optimization, starts no threads.

A.1.9. Search Engine Jdbc

Compass alows storing the index in a database using Jdbc. When using Jdbc storage, additional settings are
mandatory except for the connection setting. The value after the Jdbc:// prefix in the
conpass. engi ne. connecti on Setting can be the Jdbc url connection or the Jndi name of the Dat aSour ce,
depending on the configured Dat aSour cePr ovi der .

It is important also to read the Jdbc Directory Appendix. Two sections that should be read are the supported
dialects, and the performance considerations (especially the compound structure).

Thefollowing isalist of all the Jdbc settings:

Table A.13. Search Engine Jdbc Settings

Setting Description

compass.engine.store.jdbc. dialect Optional. The fully qualified class name of the dialect (the database
type) that the index will be stored at. Please refer to Lucene Jdbc
Directory appendix for a list of the currently supported diaects. If
not set, Compass will try to auto-detect it based on the Database

meta-data.

Optional. If set to t r ue, no database schemalevel operations will be
performed (drop and create tables). When deleting the data in the
index, the content will be deleted, but the table will not be dropped.
Default tof al se.

compass.engine.store.jdbc.
disableSchemaOperations

Optional (defaults to fal se). If the connection is managed or not.
Basically, if set to fal se, compass will commit and rollback the
transaction. If set to t rue, compass will not perform it. Defaults to
fal se. Should be set to t r ue if using external transaction managers
(like JTA or Spring Pl at f or mTr ansact i onManager), and f al se if
using compass Local Transacti onFactory. Note as well, that if
using externd transaction managers, the
conpass. transacti on. commi t Bef or eConpl eti on should be set to
true. If the connection is not managed (set to f al se), the created
Dat aSource Will be wrapped with Compass Jdbc directory
Transact i onAwar eDat aSour cePr oxy. Please refer to Lucene Jdbc
Directory appendix for more information.

compass.engine.store.jdbc. managed

Compass - Java Search Engine 163

Configuration Settings

Setting

compass.engine.store.jdbc.
connection.provider.class

compass.engine.store.jdbc.
useCommitLocks

compass.engine.store.jdbc.
deleteMarkDeletedDelta

compass.engine.store.jdbc. lockType

compass.engine.store.jdbc.
ddl.name.name

Description

The fully qualified name of the DataSourceProvider. The
Dat aSour ceProvi der S responsible for getting/creating the Jdbc

Dat aSour ce that will be used. Defaults to
or g. conpass. core. | ucene. engi ne
.store.jdbc. Driver Manager Dat aSour cePr ovi der (POOI’

performance). Please refer to next section for alist of the available
providers.

Optional (defaults to fal se). Determines if the index will use
Lucene commit locks. Setting it to true makes sense only if the
system will work in aut oConmi t mode (which is not recommended
anyhow).

Optiona (defaults to an hour). Some of the entries in the database
are marked as deleted, and not actually gets to be deleted from the
database. The setting controls the delta time of when they should be
deleted. They will be deleted if they were marked for deleted
"delta’ time ago (base on database time, if possible by dialect).

Optional (defaults to Phant onReadLock). The fully qualified name
of the Lock implementation that will be used.

Optional (defaultsto name_). The name of the name column.

compass.engine.store.jdbc.
ddl.name.size

compass.engine.store.jdbc.
ddl.value.name

compass.engine.store.jdbc.
ddl.value.size

compass.engine.store.jdbc.
ddl.size.name

Optional (defaultsto 50). The size (charecters) of the name column.
Optional (defaultsto val ue_). The name of the value column.
Optional (defaults to 500 * 1000 K). The size (in K) of the value

column. Only applies to databases that requireit.

Optional (defaultsto si ze_). The name of the size column.

compass.engine.store.jdbc.
ddl.lastModified.name

compass.engine.store.jdbc.
ddl.deleted.name

Optional (defaultsto | f_). The name of the last modified column.

Optional (defaultsto del et ed_). The name of the deleted column.

A.1.9.1. Data Source Providers

Compass comes with several built

in DataSourceProviders. They are al located a the

org. conpass. core. | ucene. engi ne. st ore. j dbc package. The following table lists them:

Table A.14. Search Engine Data Source

Data Source Provider Class

DriverManagerDataSourceProvider

Providers

Description

The default data source provider. Creates a Smple Dat aSour ce that
returns a new Connecti on for each request. Performs very poorly,

Framework (2.0.2)

Configuration Settings

Data Source Provider Class Description
and should not be used.
DbcpDataSourceProvider Uses Jakarta Commons DBCP Connection pool. Compass provdes

several additional configurations settings to configure DBCP,
please refer to LuceneEnvironment #Dat aSour ceProvi der #Dbcp
javadoc.

C3P0DataSourceProvider Uses C3P0 Connection pool. Configring additional properties for
the C3PO connection pool uses C3p0 internal support for a
c3p0. properti es that should reside as a top-level resource in the
same CLASSPATH / classloader that loads c3p0'sjar file.

JndiDataSourceProvider Gets a Dat aSour ce from JNDI. The JNDI name is the value after
thej dbc: // prefix in Compass connection setting.

External DataSourceProvider A data source provider that can use an externally configured data
source. In order to set the external DataSource to be used, the
Ext er nal Dat aSour cePr ovi der #set Dat aSour ce(Dat aSour ce)
static method needs to be caled before the Conpass instance if
created.

The Dri ver Manager Dat aSour cePr ovi der, DbcpDat aSour cePr ovi der, and C3P0Dat aSour cePr ovi der use the
value after the j dbc: 7/ prefix in Compass connection setting as the Jdbc connection url. They also require the
following settings to be set:

Table A.15. Internal Data Sour ce Provider s Settings
Setting Description

compass.engine.store.jdbc. The Jdbc driver class.
connection.driverClass

compass.engine.store.jdbc. The Jdbc connection user name.
connection.username

compass.engine.store.jdbc. The Jdbc connection password.
connection.password

A.1.9.2. File Entry Handlers

Configuring the Jdbc store with Compass also allows defining Fi | eEnt ryHandl er settings for different file
entries in the database. Fi | eEnt ryHandl er s are explained in the Lucene Jdbc Directory appendix (and require
some Lucene knowledge). The Lucene Jdbc Directory implementation already comes with sensible defaults,
but they can be changed using Compass configuration.

One of the things that come free with Compass it automatically using the more performant
Fet chPer Tr ansact oi nJdbcl ndex! nput if possible (based on the dialect). Special care need to be taken when
using the mentioned index input, and it is done automatically by Compass.

Setting file entry handlers is done using the following setting prefix: conpass. engi ne. store. j dbc. fe. [nane] .
The name can be either __defaul t __ which is used for al unmapped files, it can be the full name of the file
stored, or the suffix of the file (the last 3 charecters). Some of the currently supported settings are:

Framework (2.0.2)

Configuration Settings

Table A.16. File Entry Handler Settings

Setting Description

compass.engine.store.jdbc.fe. The fully qualified class name of the file entry handler.
[name].type

compass.engine.store.jdbc.fe. The fully qualified class name of the | ndex! nput implementation.

[name].indexInput.type

compass.engine.store.jdbc.fe. The fully qualified class name of the | ndex! nput implementation.
[name].indexQutput.type

compass.engine.store.jdbc.fe. The RAM buffer size of the index input. Note, it applies only to
[name].indexI nput.bufferSize some of the | ndex! nput implementations.
compass.engine.store.jdbc.fe. The RAM bhuffer size of the index output. Note, it applies only to
[name].indexOutput.bufferSize some of the | ndexQut put implementations.
compass.engine.store.jdbc.fe. The threshold value (in bytes) after which data will be temporarly
[name].indexOutput.threshold written to afile (and them dumped into the database). Applies when

using RAMANdFi | eJdbcl ndexcut put (which is the default one).
Defaultsto 16 * 1024 bytes.

A.1.10. Search Engine Analyzers

With Compass, multiple Analyzers can be defined (each under a different analyzer name) and than referenced
in the configuration and mapping definitions. Compass defines two internal analyzers names called: def aul t
and search. The def aul t analyzer is the one used when no other analyzer can be found, it defaults to the
st andar d analyzer with English stop words. The sear ch is the analyzer used to analyze search queries, and if
not set, defaults to the def aul t analyzer (Note that the search analyzer can aso be set using the ConpassQuery
APl). Changing the settings for the default anayzer can be done using the
conpass. engi ne. anal yzer . def aul t . * Settings (as explained in the next table). Setting the sear ch analyzer (so
it will differ from the def aul t analyzer) can be done using the conpass. engi ne. anal yzer . sear ch. * settings.
Also, you can set a list of filter to be applied to the given anayzers, please see the next section of how to
configure analyzer filters, especially the synonym one.

Table A.17. Search Engine Analyzer Settings

Setting Description

compass.engine.analyzer.[analyzer The type of the search engine analyzer, please see the available
name].type analyzerstypes later in the section.
compass.engine.analyzer.[analyzer A comma separated list of LuceneAnal yzer TokenFi | t er Provi der S
name].filters registered under compass, to be applied for the given analyzer. For

example, adding a synonym anayzer, you should register a
synonym LuceneAnal yzer TokenFi | t er Provi der under your own
choice for filter name, and add it to the list of filters here.

compass.engine.anayzer.[analyzer A comma separated list of stop words to use with the chosen
name].stopwords analyzer. If the string starts with +, the list of stop-words will be
added to the default set of stop words defined for the analyzer.

Compass - Java Search Engine 166

Configuration Settings

Setting Description

Note, that not all the analyzers type support this feature.
compass.engine.analyzer.[analyzer If the conpass. engi ne. anal yzer. [anal yzer nane].type Setting
name] .factory is not enough to configure your analyzer, use it to define the fully

gualified class name of your analyzer factory which implements
LuceneAnal yzer Fact ory class.

Compass comes with core analyzers (Which are part of the | ucene-core jar). They are: standard, sinpl e,
whi t espace, and st op. See the Analyzers Section.

Compass aso alows simple configuration of the snowbal | anayzer type (which comes with the
| ucene-snowbal | jar). An additional setting that must be set when using the snowbal | analyzer, is the
conpass. engi ne. anal yzer. [anal yzer nane].nanme Setting. The settings can have the following values:
Dani sh, Dutch, English, Finnish, French, German, Gernman2, Italian, Kp, Lovins, Norwegi an, Porter,
Por t uguese, Russi an, Spani sh, and Swedi sh.

Another set of analyer types comes with the | ucene- anal yzers jar. They are: brazi | i an, cj k, chi nese, czech,

ger man, gr eek, french, dut ch, and r ussi an.

A.1.11. Search Engine Analyzer Filters

Y ou can specify a set of analyzer filters that can then be applied to all the different analyzers configured. It uses
the group settings, so setting the analyzer filter need to be prefixed with conpass. engi ne. anal yzerfil ter, and
the value after it isthe analyzer filter name, and then the setting for the analyzer filter.

Filters are provided for simpler support for additional filtering (or enrichment) of analyzed streams, without the
hassle of creating your own analyzer. Also, filters, can be shared across different analyzers, potentially having
different analyzer types.

Table A.18.

Setting Description

compass.engine.anayzerfilter.[analyzer The type of the search engine analyzer filter provider, must

filter name].type implement the
or g. conpass. core. |l ucene. engi ne. anal yzer. LuceneAnal yzer TokenFi | t er Pr
interface. Can aso be the value synonym which will automatically

map to the
org. conpass. core. | ucene. engi ne. anal yzer. synonym SynonymAnal yzer Tokel
class.

compass.engine.analyzerfilter.[analyzer Only applies for synonym filters. The class that implements the
filter name].lookup org. conpass. core. | ucene. engi ne. anal yzer. synonym SynonyniookupPr ovi d
for providing synonyms for a given term.

A.1.12. Search Engine Highlighters

With Compass, multiple Highlighters can be defined (each under a different highlighter name) and than
referenced when using ConpassHi ghl i ght er . Within Compass, an internal def aul t highlighter is defined, and

Compass - Java Search Engine 167

Configuration Settings

can be configured when using def aul t as the highlighter name.

Table A.19.
Setting

compass.engine.highlighter.[highlighter
name] .factory

compass.engine.highlighter.[highlighter
name].textTokenizer

compass.engine.highlighter.[highlighter
name].rewriteQuery

Description

Low level. Optional (defaults to
Def aul t LuceneHi ghl i ght er Fact ory). The fully qualified name of
the class that creates highlighters settings. Must implement the
LuceneHi ghl i ght er Fact ory interface.

Optional (default to aut o). Defines how a text will be tokenized to
be highlighted. Can be anal yzer (use an anayzer to tokenize the
text), term vect or (use the term vector info stored in the index), or
aut o (Will first try t erm vect or, and if no info is stored, will try to
use anal yzer).

Low level. Optional (defaults to true). If the query used to
highlight the text will be rewritten or not.

compass.engine.highlighter.[highlighter
name].computel df

compass.engine.highlighter.[highlighter
name].maxNumFragments

compass.engine.highlighter.[highlighter
name].separator

compass.engine.highlighter.[highlighter
name].maxBytesToAnalyze

compass.engine.highlighter.[highlighter
name].fragmenter.type

compass.engine.highlighter.[highlighter
name].fragmenter.simple.size

compass.engine.highlighter.[highlighter
name].encoder.type

Low level. Optional (set according to the formatter used).

Optional (default to 3). Sets the maximum number of fragments that
will be returned.

Optional (defaults to ...). Sets the separator string between
fragments if using the combined fragments highlight option.

Optional (defaults to 50*1024). Sets the maximum byes of text to
anayze.

Optional (default to si npl e). The type of the fragmenter that will
be used, can be si npl e, nul I, or the fully qualified class name of
the fragmenter (implements the
org. apache. | ucene. sear ch. hi ghl i ght. Fragment er).

Optional (defaults to 100). Sets the size (in bytes) of the fragments
for the si npl e fragmenter.

Optional (default to def aul t). The type of the encoder that will be
used to encode fragmented text. Can be defaul t (does nothing),
htm (escapes html tags), or the fully qualifed class name of the
encoder (implements
or g. apache. | ucene. sear ch. hi ghl i ght. Encoder).

compass.engine.highlighter.[highlighter
name].formatter.type

compass.engine.highlighter.[highlighter
name].formatter.simple.pre

Optional (default to si npl e). The type of the formatter that will be
used to highlight the text. Can be sinple (Simply wraps the
highlighted text with pre and post strings), htnl SpanG adi ent
(wraps the highlighted text with an html span tag with an optional
background and foreground gradient colors), or the fully qualified
class name of the formatter (implements
org. apache. | ucene. sear ch. hi ghl i ght . For mat t er).

Optional (default to). In case the highlighter uses the si npl e
formatter, controlls the text that is appened before the highlighted
text.

Framework (2.0.2)

Configuration Settings

Setting Description

compass.engine.highlighter.[highlighter Optional (default to </ b>). In case the highlighter uses the si npl e

name].formatter.simple.post formatter, controlls the text that is appened after the highlighted
text.

compass.engine.highlighter.[highlighter In case the highlighter uses the ht m SpanGr adi ent formatter, the
name].formatter.html SpanGradient.maxSsm@ e that above it is displayed as max color.

compass.engine.highlighter.[highlighter ' Optional (if not set, foreground will not be set on the span tag). In
name].formatter.html SpanGradi ent.mi nFotegedined@glorghter uses the ht ml SpanG adi ent formatter, the hex
color used for representing | DF scores of zero eg #FFFFFF (white).

compass.engine.highlighter.[highlighter Optional (if not set, foreground will not be set on the span tag). In

name].formatter.html SpanGradi ent.max Faragg ol @odbéighter uses the ht ml SpanGradi ent formatter, the
largest hex color used for representing IDF scores eg #000000
(black).

compass.engine.highlighter.[highlighter Optional (if not set, background will not be set on the span tag). In
name].formatter.html SpanGradi ent.minB achgr doediGghbghter uses the ht m SpanG adi ent formatter, the hex
color used for representing | DF scores of zero eg #FFFFFF (white).

compass.engine.highlighter.[highlighter Optional (if not set, background will not be set on the span tag). In

name].formatter.html SpanGradient.maxBaelsgrobeddgtdighter uses the htni SpanGr adi ent formatter, The
largest hex color used for representing IDF scores eg #000000
(black).

A.1.13. Other Settings

Several other settings that control compass.

Table A.20.

Setting Description

compass.osem.managed! d.index Can be either un_t okeni zed or no (defaults to no). It is the index
setting that will be used when creating an internal managed id for a
class property mapping (if it is not a property id, if it is, it will
always be un_t okeni zed).

compass.osem.supportUnmarshall Controls if the default support for un-marshalling within the class

mappings will default to true or fal se (unlessit is explicitly set in
the class mapping). Defaults to true. Controls if the searchable
class will support unmarshalling from the search engine or using
Resour ce is enough. Un-marshalling is the process of converting a
raw Resour ce into the actual domain object. If support un-marshall
is enabled extra information will be stored within the search engine,
aswell as consumes extra memory

Framework (2.0.2)

Appendix B. Lucene Jdbc Directory

B.1. Overview

A Jdbc based implementation of Lucene bi rect ory alowing the storage of a Lucene index within a database.
Enables existing or new Lucene based application to store the Lucene index in a database with no or minimal
change to typical Lucene code fragments.

The JdbeDi rectory is highly configurable, using the optional JdbcDi rectorySettings. All the settings are
described in the javadoc, and most of them will be made clear during the next sections.

There are severa optionsto instantiate a Jdbc directory, they are:

Table B.1. Jdbc Directory Constructors

Parameters

Dat aSour ce, Di al ect, t abl eNane

Description

Creates a new Jdbchirectory using the given data source and
dialect. JdbcTabl e and JdbcDirectorySettings are created based

on default values.

Dat aSour ce,

JdbcDi rectorySettings,tabl eNane

D al ect,

Dat aSour ce, JdbcTabl e

Creates a new JdbcDi rect ory using the given data source, diaect,

and JdbcDi rect orySetti ngs. The JdbcTabl e is created internally.

Creates a new JdbcDirectory using the given diaect, and
JdbcTabl e. Creating a new JdbcTabl e requires a Di al ect and
JdbcDi rectorySettings.

The Jdbc directory works against a single table (where the table name must be provided when the directory is

created). The table schemais described in the following table:

Table B.2. Jdbc Directory Table Schema

Column Name

Name

Vaue

Size

Last Modified

Column Type

VARCHAR

BLOB

NUMBER

TIMESTAMP

Default Column | Description

Name

name_

value

size

The file entry name. Similar to a file name
within a file system directory. The column size
is configurable and defaults to 50.

A binary column where the content of the fileis
stored. Based on Jdbc Bl ob type. Can have a
configurable size where appropriate for the
database type.

The size of the current saved data in the Vaue
column. Similar to the size of a file in a file
system.

The time that file was last modified. Similar to
the last modified time of a file within a file
system.

Compass - Java Search Engine 170

Lucene Jdbc Directory

Column Name Column Type Default Column | Description
Name
Deleted BIT deleted If the file is deleted or not. Only used for some

of the file types based on the Jdbc directory.
More isexplained in later sections.

The Jdbc directory provides the following operations on top of the ones forced by the Di r ect ory interface:

Table B.3. Extended Jdbc Directory Operations

Operation Name Description

create Creates the database table (with the above mentioned schema). The create
operation drops the table first.

del ete Drops the table from the database.

del et eCont ent Deletes all the rows from the table in the database.

t abl eExi st's Returnsif the table exists or not. Only supported on some of the databases.

del et eMar kDel et ed Deletes al the file entries that are marked to be deleted, and they were

marked, and they were marked "delta’ time ago (base on database time, if
possible by dialect). The delta is taken from the JdbcDi rect orySet ti ngs, Of
provided as a parameter to the deleteM arkDel eted operation.

The Jdbc directory requires a bi al ect implementation that is specific to the database used with it. The
following is atable listing the current dialects supported with the Jdbc directory:

Table B.4. Jdbc Directory SQL Dialects

Dialect RDBMS Blob Locator Support*
org. apache. | ucene. store. j dbc. di al ect. Or acl dDratlect Oracle Jdbc Driver - Yes

org. apache. | ucene. store. j dbc. di al ect . SQLSerMéemsofect SQL jTds 1.2 - No. Microsoft Jdbc Driver -

Server Unknown
org. apache. | ucene. store. j dbc. di al ect . MySQLIVIYISQL MySQL Connector J 3.1/5 - Yes with
emul at eLocat or s=true in connection
string.
org. apache. | ucene. store. j dbc. di al ect. MySQLIMyERD al ecwith | See MySQL
InnoDB.
org. apache. | ucene. store. j dbc. di al ect. MySQUNWIYS®OI al ecwith | See MySQL
MyISAM
org. apache. | ucene. store. j dbc. di al ect . Post griRERgDESQct Postgres Jdbc Driver - Yes.
org. apache. | ucene. store. j dbc. di al ect. Sybaséfyladset/ Sybase Unknown.
Anywhere
org. apache. | ucene. store. j dbc. di al ect . | nt er Haeagesct Unknown.
org. apache. | ucene. store. j dbc. di al ect . Fi r ebifri#ebinidect Unknown.

Compass - Java Search Engine 171

Lucene Jdbc Directory

Dialect RDBMS Blob Locator Support*

org. apache. | ucene. store. j dbc. di al ect. DB2Di dDB& / DB2 Unknown.
AS4A00 / DB2
0S390

org. apache. | ucene. store. j dbc. di al ect . Der byDeflayt Derby Jdbc Driver- Unknown.

org. apache. | ucene. store. j dbc. di al ect . HSQLDiHYpersonicSQL HSQL Jdbc Driver - No.

* A Blob locator is a pointer to the actual data, which allows fetching only portions of the Blob at a time.
Databases (or Jdbc drivers) that do not use locators usually fetch al the Blob data for each query (which makes
using them impractical for large indexes). Note, the support documented here does not cover al the possible
Jdbc drivers, please refer to your Jdbc driver documentation for more information.

B.2. Performance Notes

Minor performance improvements can be gained if JdbcTable is cached and used to create different
JdbcDi rect ory instances.

It is best to use a pooled data source (like Jakarta Commons DBCP), so Connect i ons won't get created every
time, but be pooled.

Most of the time, when working with Jdbc directory, it is best to work in a non compound index format. Since
with databases there is no problem of too many files open, it won't be an issue. The package comes with a set of
utilities to compound or uncompund an index, located in the or g. apache. | ucene. i ndex. LuceneUtil s class,
just in case you already have an index and it isin the wrong structure.

When indexing data, a possible performance improvement can be to index the data into the file system or
memory, and then copy over the contents of the index to the database.
org. apache. | ucene. i ndex. Lucenelt i | s comes with a utility to copy one directory to the other, and changing
the compound state of the index while copying.

B.3. Transaction Management

JdbeDi rect ory performs no transaction management. All database related operations WITHIN IT work in the
following manner:

Connection conn = DataSourceltils. get Connecti on(dat aSource);
/| perform any database rel ated operation using the connection
Dat aSour celti | s. rel easeConnecti on(conn);

As you can see, no commit Or rol | back are called on the connection, alowing for any type of transaction
management done outside of the actual Jdbchi rect ory related operations. Also, the fact that we are using the
Jdbc Dat aSour ce, alows for plug able transaction management support (usually based on Dat aSour ce delegate
and Connect i on proxy). Dat aSourceltils isa utility class that comes with the Jdbc directory, and it's usage
will be made clear in the following sections.

There are severa options when it comes to transaction management, and they are:

B.3.1. Auto Commit Mode

Compass - Java Search Engine 172

Lucene Jdbc Directory

When configuring the Dat aSource or the Connection to use autoCommit (set it to true), no transaction
management is required. Additional benefit is that any existing Lucene code will work as is with the
JdbeDi rect ory (assuming that the bi r ect ory class was used instead of the actual implementation type).

The main problems with using the Jdbc directory in the autoCommit mode are: performance suffers because of
it, and not al database allow to use Blobs with autoCommit. As you will see later on, other transaction
management are simple to use, and the Jdbc directory comes with a set of helper classes that make the
transition into a " Jdbc directory enabled code" simple.

B.3.2. DataSource Transaction Management

When the application does not use any transaction managers (like JTA or Spring's
Pl at f or nilr ansact i onManager), the Jdbc directory comes with a simple local transaction management based
on Connect i on proxy and thread bound Connect i ons.

The Transact i onAwar eDat aSour cePr oxy Can wrap a Dat aSour ce, returning Jdbc Connecti on only if thereis
no existing Connecti on that was opened before (within the same thread) and not closed yet. Any call to the
cl ose method on this type of Connecti on (which we call a"not controlled" connection) will result in a no op.
The Dat aSourcelti | s#rel easeConnection Will also take care and not close the Connection if it is not
controlled.

So, how do we rollback or commit the Connection? DataSourceltils has two methods,
commi t Connect i onl f Possi bl e and rol | backConnecti onl f Possi bl e, which will only commit/rollback the
Connect i on if it was proxied by the Tr ansact i onAwar eDat aSour cePr oxy, and it isa controlled Connect i on.

A simple code that performs the above mentioned:

JdbcDirectory jdbcDir = // ... create the jdbc directory
Connection conn = DataSourceltils. get Connecti on(dat aSource);
try {

| ndexReader indexReader = new | ndexReader (jdbcDir); // you can al so use an already open |ndexReader
...
Dat aSour ceUti | s. conmi t Connecti onl f Possi bl e(conn); // will commt the connection if controlling it
} catch (I OException e) {
Dat aSour ceUt i | s. saf eRol | backConnect i onl f Possi bl e(conn) ;
throw e;
} finnaly {
Dat aSour celti |l s. rel easeConnecti on(conn);
}

Note, that the above code will also work when you do have a transaction manager (as described in the next
section), and it formsthe basis for the bi r ect or yTenpl at e (described later) that comes with Jdbc directory.

B.3.3. Using External Transaction Manager

For environments that use external transaction managers (like JTA or Spring Pl at f or milr ansact i onManager),
the transaction management should be performed outside of the code that use the Jdbc directory. Do not use
Jdbc directory Tr ansact i onAwar eDat aSour cePr oxy.

For JTA for example, if Container Managed transaction is used, the executing code should reside within it. If
not, JTA transaction should be executed programmatically.

When using Spring, the executing code should reside within a transactional context, using either transaction
proxy (AOP), or the PlatforniransactionManager and the TransactionTenplate programmaticaly.
IMORTANT: When wusing Spring, you should wrap the DataSource with Spring's own

Transact i onAwar eDat aSour cePr oxy.

Framework (2.0.2)

Lucene Jdbc Directory

B.3.4. DirectoryTemplate

Since transaction management might require specific code to be written, Jdbc directory comes with a
DirectoryTenpl ate class, which alows writing Directory implementation and transaction management
vanilla code. The directory template perform transaction management support code only if the Di rect ory is of
type JdbcDhi rect ory and the transaction management is alocal one (Data Source transaction management).

Each directory based operation (done by Lucene | ndexReader, | ndexSear cher and | ndexW it er) should be
wrapped by the Di r ect or yTenpl at e. An example of using it:

DirectoryTenpl ate tenplate = new DirectoryTenplate(dir); // use a pre-configured directory
t enpl at e. execut e(new Di rectoryTenpl ate. Direct oryCal | backW t hout Resul t () {
protected void dolnDirectoryWthoutResult(Directory dir) throws | OException {
IndexWiter witer = new IndexWiter(dir, new SinpleAnal yzer(), true);
/! index wite operations
write.close();
}
1)

/1 or, for exanple, if we have a cached | ndexSearcher

tenpl at e. execut e(new DirectoryTenpl ate. DirectoryCal | backW t hout Resul t () {
protected void dolnDirectoryWthoutResult(Directory dir) throws | OException {
/'l indexSearcher operations
}

1)

B.4. File Entry Handler

A Fil eEntryHandl er is an interface used by the Jdbc directory to delegate file level operations to it. The
JdbcDirectorySettings has a default file entry handler which handles all unmapped file names. It aso
provides the ability to register a Fi | eEnt ryHandl er against either an exact file name, or a file extension (3
characters after the'.").

When the JdbcDi rect ory is created, al the different file entry handlers that are registered with the directory
settings are created and configured. They will than be used to handle files based on the file names.

When registering a new file entry handler, it must be registered with JdbcFil eEntrySettings. The
JdbcFi l eEntrySettings is a fancy wrapper around java pProperties in order to provide an open way for
configuring file entry handlers. When creating a new JdbcFi | eEntrySettings it already has sensible defaults
(refer to the javadoc for them), but of course they can be changed. One important configuration setting is the
type of the FileEntryHandl er, which should be set under the constant setting name:
JdbcFi | eEnt rySet ti ngs#FI LE_ENTRY_HANDLER TYPE and should be the fully qualified class name of the file
entry handler.

The Jdbc directory package comes with three different Fi | eEnt r yHand! er s. They are:

Table B.5. File Entry Handler Types

Type Description

or g. apache. | ucene. st ore. j dbc. handl ePerforms no operations.
NoOpFi | eEnt r yHandl er

org. apache. | ucene. st ore. j dbc. handl ePerforms actual delete from the database when the different delete
Act ual Del et eFi | eEnt ryHandl er operations are called. Also support configurable 1 ndex! nput and

Framework (2.0.2)

Lucene Jdbc Directory

Type Description
I ndexCut put (described later).

org. apache. | ucene. st ore. j dbc. handl eMarks entries in the database as deleted (using the deleted column)
Mar kDel et eFi | eEnt ryHandl er when the different delete operations are caled. Also support
configurable I ndex! nput and | ndexcut put (described later).

Most of the files use the warkbDel et eFil eEntryHandl er, since there might be other currently open
I ndexReader SOr | ndexSear cher Sthat use the files. The JdbcDi rect ory provide the del et eMar kDel et ed() and
del et eMar kDel et ed(del t a) to actualy purge old entries that are marked as deleted. It should be scheduled and
executed once in awhile in order to keep the database table compact.

When creating new JdbcDi rect orySettings, it already registers different file entry handlers for specific files
automatically. For example, the del et ed file is registered against a NoQpFi | eEnt ryHandl er since we will
always be able to delete entries from the database (the del et ed file is used to store files that could not be
deleted from the file system). This results in better performance since no operations are executed against the
deleted (or deleted related files). Another example, is registering the Act ual Del et eFi | eEnt r yHandl er against
the segnent s file, since we do want to delete it and replace it with a new one when it is written.

B.4.1. IndexInput Types

Each file entry handler can be associated with an implementation of | ndexI nput. Setting the | ndex! nput
should be set under the constant JdbcFil eEntrySettings#l NDEX_| NPUT_TYPE_SETTING and be the fully
qualified class name of the | ndex! nput implementation.

The Jdbc directory comes with the following I ndex! nput types:

Table B.6. Index Input Types

Type Description

org. apache. | ucene. store. j dbc. i ndex. Fetches and caches all the binary data from the database when the

Fet chOnOpenJdbcl ndex! nput I ndex!I nput is opened. Perfect for small sized file entries (like the
segmentsfile).

org. apache. | ucene. store. j dbc. i ndex. Extends the JdbcBuf f er edl ndexI nput class, and fetches the data

Fet chOnBuf f er ReadJdbcl ndex! nput from the database every time the internal buffer need to be refilled.
The JdbcBuf f er edl ndexI nput allows setting the buffer size using
the JdbcBuf f er edl ndex!| nput #BUFFER_SI ZE_SETTI NG. Remember,
that you can set different buffer size for different files by
registering different file entry handlers with the
JdbcDirectorySettings.

org. apache. | ucene. store. j dbc. i ndex, Caches blobs per transaction. Only supported for dialects that
Fet chPer Transact i onJdbcl ndexI nput supports blobs per transaction. Note, using this index input requires
calling the
Fet chPer Tr ansact i onJdbcl ndex| nput #r el easeBl obs(j ava. sql . Connecti on)
when the transaction ends. It is automatically taken care of if using
Transact i onAwar eDat aSour ceProxy. If using JTA for example, a
transcation synchronization should be registered with JTA to clear
the blobs. Extends the JdbcBuf f er edl ndex! nput class, and fetches
the data from the database every time the internal buffer need to be

Compass - Java Search Engine 175

Lucene Jdbc Directory

Type

Description

refilled. The JdbcBuf f er edl ndex! nput allows setting the buffer
size using the JdbcBuf f er edl ndex! nput #BUFFER_SI ZE_SETTI NG.
Remember, that you can set different buffer size for different files
by registering different file entry handlers with the
JdbcDirectorySettings.

The JdbcDirectorySetti ngs automatically registers sensible defaults for the default file entry handler and
specific ones for specific files. Please refer to the javadocs for the defaults.

B.4.2. IndexOutput Types

Each file entry handler can be associated with an implementation of | ndexcut put . Setting the | ndexQut put
should be set under the constant JdbcFil eEnt rySet ti ngs#l NDEX_OUTPUT_TYPE_SETTI NG and be the fully
qualified class name of the | ndexQut put implementation.

The Jdbc directory comes with the following | ndexQut put types:

Table B.7. Index Output Types

Type

org. apache. | ucene. store. jdbc. i ndex,
RAMIdbcl ndexCut put

org. apache. | ucene. store. jdbc. i ndex,.
Fi | eJdbcl ndexCut put

org. apache. | ucene. store. jdbc. i ndex.
RAMANdFi | eJdbcl ndexQut put

Description

Extends the JdbcBuf f er edl ndexQut put class, and stores the data to
be written in memory (within a growing list of bufferSize sized
byte arrays). The JdbcBuf f er edl ndexQut put allows setting the
buffer Size using the
JdbcBuf f er edl ndexQut put #BUFFER_SI ZE_SETTING. Perfect for
small sized file entries (like the segmentsfile).

Extends the JdbcBuf f er edl ndexQut put class, and stores the data to
be written in a temporary file. The JdbcBuf f er edl ndexQut put

alows setting the buffer size using the
JdbcBuf f er edl ndexQut put #BUFFER_SI ZE_SETTING (a write is
performed every time the buffer is flushed).

A specia index output, that first starts with a RAM based index
output, and if a configurable threshold is met, switches to file based
index output. The threshold setting cab be configured using
RAMANdFi | eJdbcl ndexQut put #1 NDEX_OUTPUT_THRESHOLD_SETTI NG.

The JdbcDirectorySettings automaticaly registers sensible defaults for the default file entry handler and
specific ones for specific files. Please refer to the javadocs for the defaults.

Compass - Java Search Engine 176

	Compass - Java Search Engine Framework
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. I use ...
	1.2.1. ... Lucene
	1.2.2. ... Domain Model
	1.2.3. ... Xml Model
	1.2.4. ... No Model
	1.2.5. ... ORM Framework
	1.2.6. ... Spring Framework

	Part I. Compass Core
	Chapter 2. Introduction
	2.1. Overview
	2.2. Session Lifecycle
	2.3. Template and Callback

	Chapter 3. Configuration
	3.1. Programmatic Configuration
	3.2. XML Configuration
	3.2.1. Schema Based Configuration
	3.2.2. DTD Based Configuration

	3.3. Obtaining a Compass reference
	3.4. Configuring Callback Events

	Chapter 4. Connection
	4.1. File System Store
	4.2. RAM Store
	4.3. Jdbc Store
	4.3.1. Managed Environment
	4.3.2. Data Source Provider
	4.3.2.1. Driver Manager
	4.3.2.2. Jakarta Commons DBCP
	4.3.2.3. c3p0
	4.3.2.4. JNDI
	4.3.2.5. External

	4.3.3. File Entry Handler
	4.3.4. DDL

	4.4. Lock Factory
	4.5. Local Directory Cache
	4.6. Lucene Directory Wrapper
	4.6.1. SyncMemoryMirrorDirectoryWrapperProvider
	4.6.2. AsyncMemoryMirrorDirectoryWrapperProvider

	Chapter 5. Search Engine
	5.1. Introduction
	5.2. Alias, Resource and Property
	5.2.1. Using Resource/Property

	5.3. Analyzers
	5.3.1. Configuring Analyzers
	5.3.2. Analyzer Filter
	5.3.3. Handling Synonyms

	5.4. Query Parser
	5.5. Index Structure
	5.6. Transaction
	5.6.1. Locking
	5.6.2. Isolation
	5.6.2.1. read_committed
	5.6.2.2. serializable
	5.6.2.3. lucene

	5.6.3. Transaction Log
	5.6.3.1. Ram Transaction Log
	5.6.3.2. FS Transaction Log

	5.7. All Support
	5.8. Sub Index Hashing
	5.8.1. Constant Sub Index Hashing
	5.8.2. Modulo Sub Index Hashing
	5.8.3. Custom Sub Index Hashing

	5.9. Optimizers
	5.9.1. Scheduled Optimizers
	5.9.2. Aggressive Optimizer
	5.9.3. Adaptive Optimizer
	5.9.4. Null Optimizer

	5.10. Merge
	5.10.1. Merge Policy
	5.10.2. Merge Scheduler

	5.11. Index Deletion Policy
	5.12. Spell Check / Did You Mean
	5.12.1. Spell Index

	5.13. Direct Lucene
	5.13.1. Wrappers
	5.13.2. Searcher And IndexReader

	Chapter 6. OSEM - Object/Search Engine Mapping
	6.1. Introduction
	6.2. Searchable Classes
	6.2.1. Alias
	6.2.2. Root
	6.2.3. Sub Index

	6.3. Searchable Class Mappings
	6.3.1. Searchable Id and Searchable Meta Data
	6.3.2. Searchable Id Component
	6.3.3. Searchable Parent
	6.3.4. Searchable Property and Searchable Meta Data
	6.3.5. Searchable Constant
	6.3.6. Searchable Dynamic Meta Data
	6.3.7. Searchable Reference
	6.3.8. Searchable Component
	6.3.9. Searchable Cascade
	6.3.10. Searchable Analyzer
	6.3.11. Searchable Boost

	6.4. Specifics
	6.4.1. Handling Collection Types
	6.4.2. Managed Id
	6.4.3. Handling Inheritance
	6.4.4. Polymorphic Relationships
	6.4.5. Cyclic Relationships
	6.4.6. Annotations and Xml Combined
	6.4.7. Support Unmarshall
	6.4.8. Configuration Annotations

	6.5. Searchable Annotations Reference
	6.6. Searchable Xml Reference
	6.6.1. compass-core-mapping
	6.6.2. class
	6.6.3. contract
	6.6.4. id
	6.6.5. property
	6.6.6. analyzer
	6.6.7. boost
	6.6.8. meta-data
	6.6.9. dynamic-meta-data
	6.6.10. component
	6.6.11. reference
	6.6.12. parent
	6.6.13. constant

	Chapter 7. XSEM - Xml to Search Engine Mapping
	7.1. Introduction
	7.2. Xml Object
	7.3. Xml Content Handling
	7.4. Raw Xml Object
	7.5. Mapping Definition
	7.5.1. xml-object
	7.5.2. xml-id
	7.5.3. xml-property
	7.5.4. xml-analyzer
	7.5.5. xml-boost
	7.5.6. xml-content

	Chapter 8. RSEM - Resource/Search Engine Mapping
	8.1. Introduction
	8.2. Mapping Declaration
	8.2.1. resource
	8.2.2. resource-contract
	8.2.3. resource-id
	8.2.4. resource-property
	8.2.5. resource-analyzer
	8.2.6. resource-boost

	Chapter 9. Common Meta Data
	9.1. Introduction
	9.2. Commnon Meta Data Definition
	9.3. Using the Definition
	9.4. Commnon Meta Data Ant Task

	Chapter 10. Transaction
	10.1. Introduction
	10.2. Session Lifecycle
	10.3. Local Transaction
	10.4. JTA Synchronization Transaction
	10.5. XA Transaction

	Chapter 11. Working with objects
	11.1. Introduction
	11.2. Making Object/Resource Searchable
	11.3. Loading an Object/Resource
	11.4. Deleting an Object/Resource
	11.5. Searching
	11.5.1. Query String Syntax
	11.5.2. Query String - Range Queries Extensions
	11.5.3. CompassHits, CompassDetachedHits & CompassHitsOperations
	11.5.4. CompassQuery and CompassQueryBuilder
	11.5.5. Terms and Frequencies
	11.5.6. CompassSearchHelper
	11.5.7. CompassHighlighter

	Part II. Compass Vocabulary
	Chapter 12. Introduction
	Chapter 13. Dublin Core

	Part III. Compass Gps
	Chapter 14. Introduction
	14.1. Overview
	14.2. CompassGps
	14.2.1. SingleCompassGps
	14.2.2. DualCompassGps

	14.3. CompassGpsDevice
	14.3.1. MirrorDataChangesGpsDevice

	14.4. Programmatic Configuration
	14.5. Parallel Device
	14.6. Building a Gps Device

	Chapter 15. JDBC
	15.1. Introduction
	15.2. Mapping
	15.2.1. ResultSet Mapping
	15.2.2. Table Mapping

	15.3. Mapping - MirrorDataChanges
	15.3.1. ResultSet Mapping
	15.3.2. Table Mapping
	15.3.3. Jdbc Snapshot

	15.4. Resource Mapping
	15.5. Putting it All Together

	Chapter 16. Embedded Hibernate
	16.1. Introduction
	16.2. Configuration
	16.3. Transaction Management

	Chapter 17. Hibernate
	17.1. Introduction
	17.2. Configuration
	17.2.1. Deprecated Hibernate Devices
	17.2.1.1. Configuration

	17.3. Index Operation
	17.4. Real Time Data Mirroring
	17.5. HibernateSyncTransaction
	17.6. Hibernate Transaction Interceptor

	Chapter 18. JPA (Java Persistence API)
	18.1. Introduction
	18.2. Configuration
	18.3. Index Operation
	18.4. Real Time Data Mirroring

	Chapter 19. Embedded OpenJPA
	19.1. Introduction
	19.2. Configuration
	19.3. Index Operation
	19.4. Real Time Data Mirroring
	19.5. OpenJPA Helper

	Chapter 20. Embedded TopLink Essentials
	20.1. Introduction
	20.2. Configuration
	20.3. Transaction Management

	Chapter 21. Embedded EclipseLink
	21.1. Introduction
	21.2. Configuration
	21.3. Transaction Management

	Chapter 22. JDO (Java Data Objects)
	22.1. Introduction
	22.2. Configuration
	22.3. Index Operation
	22.4. Real Time Data Mirroring

	Chapter 23. OJB (Object Relational Broker)
	23.1. Introduction
	23.2. Index Operation
	23.3. Real Time Data Mirroring
	23.4. Configuration

	Chapter 24. iBatis
	24.1. Introduction
	24.2. Index Operation
	24.3. Configuration

	Part IV. Compass Spring
	Chapter 25. Introduction
	25.1. Overview
	25.2. Compass Definition in Application Context

	Chapter 26. DAO Support
	26.1. Dao and Template

	Chapter 27. Spring Transaction
	27.1. Introduction
	27.2. LocalTransaction
	27.3. JTASyncTransaction
	27.4. SpringSyncTransaction
	27.5. CompassTransactionManager

	Chapter 28. Hibernate 3 Gps Device Support
	28.1. Deprecation Note
	28.2. Introduction
	28.3. SpringHibernate3GpsDevice

	Chapter 29. OJB Gps Device Support
	29.1. Introduction
	29.2. SpringOjbGpsDevice
	29.3. SpringOjbGpsDeviceInterceptor

	Chapter 30. Jdbc Gps Device Support
	30.1. Introduction
	30.2. ResultSet Mapping
	30.3. Table Mapping

	Chapter 31. Spring AOP
	31.1. Introduction
	31.2. Advices
	31.3. Dao Sample
	31.4. Transactional Serivce Sample

	Chapter 32. Spring MVC Support
	32.1. Introduction
	32.2. Support Classes
	32.3. Index Controller
	32.4. Search Controller

	Part V. Compass Needle
	Chapter 33. GigaSpaces
	33.1. Overview
	33.2. Lucene Directory
	33.3. Compass Store
	33.4. Searchable Space

	Chapter 34. Coherence
	34.1. Overview
	34.2. Lucene Directory
	34.3. Compass Store

	Chapter 35. Terracotta
	35.1. Overview
	35.2. Lucene Directory
	35.3. Compass Store

	Part VI. Compass Samples
	Chapter 36. Library Sample
	36.1. Introduction
	36.2. Running The Sample

	Chapter 37. Petclinic Sample
	37.1. Introduction
	37.2. Running The Sample
	37.3. Data Model In Petclinic
	37.3.1. Common Meta-data (Optional)
	37.3.2. Resource Mapping
	37.3.3. OSEM

	37.4. Data Access In Petclinic
	37.4.1. Hibernate
	37.4.2. Apache OJB
	37.4.3. JDBC

	37.5. Web (MVC) in Petclinic

	Part VII. Appendixes
	Appendix A. Configuration Settings
	A.1. Compass Configuration Settings
	A.1.1. compass.engine.connection
	A.1.2. JNDI
	A.1.3. Property
	A.1.4. Transaction Level
	A.1.5. Transaction Strategy
	A.1.6. Property Accessor
	A.1.7. Converters
	A.1.8. Search Engine
	A.1.9. Search Engine Jdbc
	A.1.9.1. Data Source Providers
	A.1.9.2. File Entry Handlers

	A.1.10. Search Engine Analyzers
	A.1.11. Search Engine Analyzer Filters
	A.1.12. Search Engine Highlighters
	A.1.13. Other Settings

	Appendix B. Lucene Jdbc Directory
	B.1. Overview
	B.2. Performance Notes
	B.3. Transaction Management
	B.3.1. Auto Commit Mode
	B.3.2. DataSource Transaction Management
	B.3.3. Using External Transaction Manager
	B.3.4. DirectoryTemplate

	B.4. File Entry Handler
	B.4.1. IndexInput Types
	B.4.2. IndexOutput Types

