Deformable Part Models (DPM)
Felzenswalb, Girshick, McAllester & Ramanan (2010)
Slides drawn from a tutorial By R. Girshick

Part 1: modeling

Part 2: learning
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Person detection performance on PASCAL VOC 2007



The Dalal & Triggs detector
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The Dalal & Triggs detector
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Image yramid HOG feature pyramid

® Compute HOG of the whole image at multiple resolutions



The Dalal & Triggs detector

> score(l, P) = W ¢(Ia P)
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Imag ymid HOG feature pyramid

® Compute HOG of the whole image at multiple resolutions
® Score every window of the feature pyramid

How much does the window at p look like a pedestrian?



The Dalal & Triggs detector

> score(l, P) = W= ¢(Ia P)
P~>L\
]
Imagymid HOG feature pyramid

® Compute HOG of the whole image at multiple resolutions
® Score every window of the feature pyramid

® Apply non-maximal suppression
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Detection

number of locations p ~ 250,000 per image
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Detection

number of locations p ~ 250,000 per image

test set has ~ 5000 images

p-

>> 1.3x10° windows to classify

typically only ~ 1,000 true positive locations

Learn w as a Support Vector Machine
(SVM)

Extremely unbalanced binary classification



Dalal & Triggs detector on INRIA pedestrians

Recall Precision —— different descriptors on INRIA static person database
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Recall

® AP =75%
®\/ery good

® Declare victory and go home?




Dalal & Triggs on PASCAL VOC 2007

AP =12%

(using my implementation)




How can we do better?

Revisit an old idea: part-based models
“pictorial structures’

Fischler & Elschlager 73
Felzenszwalb & Huttenlocher '00
- Pictorial structures
- Weak appearance models
- Non-discriminative training

Combine with modern features and machine learning



DPM key idea

Port the success of Dalal & Triggs
iInto a part-based model




Example DPM (most basic version)

Deformation
costs

Root filter Part filters



Recall the Dalal & Triggs detector

" score(l, p) = w - ¢(1, p)

PN

S = = =

Image ymid

HOG feature pyramid

e HOG feature pyramid
e Linear filter / sliding-window detector

e SVM training to learn parameters w



DPM = D&T + parts

imim I

[FMR CVPR’'08]

Image pyramid HOG feature pyramid 'FGMR PAMI'10]

e Add parts to the Dalal & Triggs detector
- HOG features
- Linear filters / sliding-window detector
- Discriminative training




Sliding window detection with DPM
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DPM detection

test image




DPM detectlon

test image

feature map feature map at 2x resolution
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Root scale Part scale

repeat for each level in pyramid



DPM detectlon

feature map
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root filter

response of root filter

n n

score(/, pg) = max m;(1, p;) — Z di(po, pi)

P1y:++3Pn —0 —1



DPM detectlon

test image

feature map at 2x resolution
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1-st part filter n-th part filter
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responses of part filters

response of root filter

score(/, pg) = max
PLyeeesPn 4=




test image

feature map at 2x resolution
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1-st part filter n-th part filter

sew mi
responses of part filters
-mgx \m;(1, pi) — di(po, Pi)]

transformed responses Generalized distance transform
Felzenszwalb & Huttenlocher ‘00
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root filter

response of root filter



DPM detection

test image

feature map

nnnnn

feature map at 2x resolution
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DPM detection

test image

feature map

.....

feature map at 2x resolution

llllllllll

\\\\\\\\\\\\\\

model

1-st part fulter C?

........
...........

lllllll

n-th part filter

esponsesofpaF
-max \m;(1, pi) — di(po, Pi)]

transformed responses

root filter

My

response of root filter

All that’s left: combine evidence



test image

feature map at 2x resolution
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1-st part filter n-th part filter

root filter
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responses of part filters

response of root filter

max [m;(/, p;) — di(po, pi)]

Pi

downsample transformed responses downsample
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detection scores for
each root location




Person detection progress

Progress batr:

AP 12% 217 %
2005 2008



One DPM is not enough: What are the parts?




Aspect soup

general philosophy: enrich models to better represent the
ata



Mixture models

Data driven: aspect, occlusion modes, subclasses

AP 12% 2%
2005 2008



Pushmi—pullyu?

Good generalization properties on Doctor Dolittle’s farm

This was supposed to
detect horses



Latent orientation

horse AP

discovery

10N

Unsupervised left/right orientat

Progress bar

45%
2010

36%
2009

2%
2003

2005



[DT05]
AP 0.12

Summary of results
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Part 6

Occluder

Parts 1-6 (no occlusion) Parts |-4 & occluder Parts |-2 & occluder

[Girshick, Felzenszwalb, McAllester '11]
AP 0.49

Object detection with grammar models

Code at www.cs.berkeley.edu/~rbg/voc-releaseb




Part 2: DPM parameter learning

given fixed model structure
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Part 2: DPM parameter learning

given fixed model structure training images y
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Part 2: DPM parameter learning

given fixed model structure training images
?
?
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component 1 component 2

Parameters to learn:

— biases (per component)

— deformation costs (per part)
— filter weights

+1




Linear parameterization of sliding window score

Z = (pl,---,pn)
n n
score(l, pg) = p{??f:n ; m;i(/, pj) — ; di(Po, pi)
Filter scores Spring Costs

Filter scores m,-(l, p,') — Wi~ (b(la Pi)

spring costs di(po, pi) = d; - (db, dy?, dx, dly)

score(l, po) = maxw - ®(/, (po, 2))




Positive examples (y = +1)

X specifies an image and bounding box

We want

fw — - B(x,
() = max w- &(x2)

to score >= +1

Z(x) includes all zwith more than 70% overlap
with ground truth



Positive examples (y = +1)

X specifies an image and bounding box

person

We want

At least one
fw (%) = zfél%f) w - &(x, 2) configuration

scores high
to score >= +1

Z(x) includes all zwith more than 70% overlap
with ground truth



Negative examples (y = -1)

x specifies an image and a HOG pyramid location po
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fw — - O 9
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to score <= -1

Z(x) restricts the root to po and allows any
placement of the other filters



Negative examples (y = -1)

x specifies an image and a HOG pyramid location po
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We want

fw(X) = max w - ®(x, 2)
z€Z(x) All configurations

score low
to score <= -1

Z(x) restricts the root to po and allows any
placement of the other filters



Typical dataset

300 — 8,000 positive examples

500 million to 1 billion negative examples
(not including latent configurations!)

Large-scale optimization!



How we learn parameters: latent SVM

1
E(w) = §||w||2 + CZ max{0, 1 — yifw(x;)}



How we learn parameters: latent SVM

1

— 2 . .
E(w) = §||w|| + C E max{0, 1 — yifw(x;)}
1
E(w) = §||w||2 + C E max{0, 1— zrénzf)w - P(x;,2)}

icP

+ CZ max{0, 1+ max w- ®(x;, z)}
=y zeZ(x)

P: set of positive examples
N. set of negative examples



Latent SVM and Multiple Instance Learning via MI-SVM

Latent SVM is mathematically equivalent to MI-SVM
(Andrews et al. NIPS 2003)

Z3 \ > Xi3
Z2 > X2
latent labels for x bag of instances for x

Latent SVM can be written as a latent structural SVM
(Yu and Joachims ICML 2009)

— natural optimization algorithm is concave-convex procedure
— similar to, but not exactly the same as, coordinate descent



Step 1

Zpi = argmax wy - ®(x;,z) Vie P
zeZ(x;)

This is just detection:

{
[ . test image

feature map at 2x resolution

1-st part filter n-th part filter

root filter

T

Image pyramid HOG feature pyramid [FMR CVPR'08] b | ! .IT responses of part filters ‘
Z= (Pl, 000 apn) response of root filter
n n
score(l, po) = p{na}; E mi(l, P,) - 5 di(PO, P/) transformed responses |
T izo i=1 >(+)
Filter scores Spring costs color encoding of filter

response values

detection scores for
each root location
low value high value

We know how to do this!



Step 2

.1
min §||w||2 + CZ max{0, 1-w - ®(x;, Zp;) }

icP
+ C» max{0,1+ max w- ®(x; z
iEZN { zcZ(x) ( )}

Convex!



Step 2

m“i,n %||w||2 + CZ max{0, 1-w - ®(x;, Zp;) }

icP
+ C > max{0,1+ max w- ®(x;, z
iEZN { zcZ(x) ( )}

Convex!

Similar to a structural SVM



Step 2

T
min §||w|| + CZ max{0, 1-w - ®(x;, Zp;) }

i€P
+ CZ max{0, 1+ mza(x) w - ®(x;,2)}
zEL(X
iEN

Convex!
Similar to a structural SVM

But, recall 500 million to 1 billion negative examples!



Step 2

1y o
min §||w|| + CZ max{0, 1-w - ®(x;, Zpi) }

icP
+ CZ max{0, 1+ mZa,(x) w-®(x;,2)}
zE L(Xx
icN

Convex!
Similar to a structural SVM
But, recall 500 million to 1 billion negative examples!

Can be solved by a working set method

— “bootstrapping”

— “data mining” / “hard negative mining”

— “constraint generation”

— requires a bit of engineering to make this fast



What about the model structure?

Given fixed model structure training images
?
?
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component 1 component 2

Model structure

— # components

— # parts per component
— root and part filter shapes
— part anchor locations

+1




Learning model structure

1a. Split positives by aspect ratio
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(a) Car component 1 (Phase 1) (b) Car component 2 (Phase 1) (c¢) Car comp. 3 (Phase 1)

1b. Warp to common size

1c. Train Dalal & Triggs model for each aspect ratio on its own



Learning model structure
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(a) Car component 1 (Phase 1) (b) Car component 2 (Phase 1) (c¢) Car comp. 3 (Phase 1)

2a. Use D&T filters as initial w for LSVM training
Merge components

2b. Train with latent SVM
Root filter placement and component choice are latent

(d) Car component 1 (Phase 2) (e) Car component 2 (Phase 2) (f) Car comp. 3 (Phase 2)



Learning model structure
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(d) Car component 2 (trained parts)

3a. Add parts to cover high-energy areas of root filters

3b. Continue training model with LSVM



Learning model structure
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(a) Car component 1 (Phase 1) (b) Car component 2 (Phase 1) (c¢) Car comp. 3 (Phase 1)

without orientation clustering
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(a) Car component 1 (b) Car component 2 (c) Car component 3

with orientation clustering



Learning model structure

In summary
— repeated application of LSVM training to models of increasing complexity

— structure learning involves many heuristics — still a wide open problem!



