Deformable Part Models (DPM) Felzenswalb, Girshick, McAllester & Ramanan (2010) Slides drawn from a tutorial By R. Girshick

Part 1: modeling

Part 2: learning

Person detection performance on PASCAL VOC 2007

Image pyramid

Compute HOG of the whole image at multiple resolutions

- Compute HOG of the whole image at multiple resolutions
- Score every window of the feature pyramid

How much does the window at *p* look like a pedestrian?

- Compute HOG of the whole image at multiple resolutions
- Score every window of the feature pyramid
- Apply non-maximal suppression

number of locations $p \sim 250,000$ per image

number of locations $p \sim 250,000$ per image

test set has ~ 5000 images

>> 1.3x10⁹ windows to classify

number of locations $p \sim 250,000$ per image

test set has ~ 5000 images

>> 1.3x10⁹ windows to classify

typically only ~ 1,000 true positive locations

number of locations $p \sim 250,000$ per image

test set has ~ 5000 images

>> 1.3x10⁹ windows to classify

typically only ~ 1,000 true positive locations

Extremely unbalanced binary classification

number of locations $p \sim 250,000$ per image

test set has ~ 5000 images

>> 1.3x10⁹ windows to classify

typically only ~ 1,000 true positive locations

Learn w as a Support Vector Machine (SVM)

Extremely unbalanced binary classification

Dalal & Triggs detector on INRIA pedestrians

- AP = 75%
 - Very good
 - Declare victory and go home?

Dalal & Triggs on PASCAL VOC 2007

AP = 12%
(using my implementation)

How can we do better?

Revisit an old idea: part-based models "pictorial structures"

Fischler & Elschlager '73 Felzenszwalb & Huttenlocher '00

- Pictorial structures
- Weak appearance models
- Non-discriminative training

Combine with modern features and machine learning

DPM key idea

Port the success of Dalal & Triggs into a part-based model

DPM D&T PS

Example DPM (most basic version)

Root filter

Part filters

Deformation costs

Recall the Dalal & Triggs detector

- HOG feature pyramid
- Linear filter / sliding-window detector
- SVM training to learn parameters w

DPM = D&T + parts

- Add parts to the Dalal & Triggs detector
 - HOG features
 - Linear filters / sliding-window detector
 - Discriminative training

Sliding window detection with DPM

$$z = (p_1, \dots, p_n)$$

$$score(I, p_0) = \max_{p_1, \dots, p_n} \sum_{i=0}^n m_i(I, p_i) - \sum_{i=1}^n d_i(p_0, p_i)$$
Filter scores

Spring costs

test image

model

mode

Root scale Part scale

repeat for each level in pyramid

Generalized distance transform Felzenszwalb & Huttenlocher '00

$$score(\textit{I},\textit{p}_0) = \max_{\textit{p}_1,...,\textit{p}_n} \sum_{i=0}^{n} m_i(\textit{I},\textit{p}_i) - \sum_{i=1}^{n} d_i(\textit{p}_0,\textit{p}_i) \\ = m_0(\textit{I},\textit{p}_0) + \sum_{i=1}^{n} \max_{\textit{p}_i} \left[m_i(\textit{I},\textit{p}_i) - d_i(\textit{p}_0,\textit{p}_i) \right]$$

All that's left: combine evidence

Person detection progress

Progress bar:

One DPM is not enough: What are the parts?

Aspect soup

General philosophy: enrich models to better represent the data

Mixture models

Data driven: aspect, occlusion modes, subclasses

Progress bar:

Pushmi-pullyu?

Good generalization properties on Doctor Dolittle's farm

This was supposed to detect horses

Latent orientation

Unsupervised left/right orientation discovery

Progress bar:

Summary of results

[Girshick, Felzenszwalb, McAllester '11] AP 0.49

Object detection with grammar models

Code at www.cs.berkeley.edu/~rbg/voc-release5

Part 2: DPM parameter learning

given fixed model structure

Part 2: DPM parameter learning

given fixed model structure

training images

У

Part 2: DPM parameter learning

given fixed model structure

component 1

component 2

training images

-1

y

Part 2: DPM parameter learning

given fixed model structure

component 1

component 2

Parameters to learn:

- biases (per component)
- deformation costs (per part)
- filter weights

У

Linear parameterization of sliding window score

$$z = (p_1, \dots, p_n)$$

$$score(I, p_0) = \max_{p_1, \dots, p_n} \sum_{i=0}^n m_i(I, p_i) - \sum_{i=1}^n d_i(p_0, p_i)$$
Filter scores Spring costs

Filter scores
$$m_i(I, p_i) = \mathbf{w}_i \cdot \phi(I, p_i)$$

Spring costs
$$d_i(p_0, p_i) = \mathbf{d}_i \cdot (dx^2, dy^2, dx, dy)$$

$$score(I, p_0) = \max_{z} \mathbf{w} \cdot \Phi(I, (p_0, z))$$

Positive examples (y = +1)

x specifies an image and bounding box

We want

$$f_{\mathbf{w}}(x) = \max_{z \in Z(x)} \mathbf{w} \cdot \Phi(x, z)$$

to score
$$>= +1$$

Z(x) includes all z with more than 70% overlap with ground truth

Positive examples (y = +1)

x specifies an image and bounding box

We want

$$f_{\mathbf{w}}(x) = \max_{z \in Z(x)} \mathbf{w} \cdot \Phi(x, z)$$

At least one configuration scores high

to score >= +1

Z(x) includes all z with more than 70% overlap with ground truth

Negative examples (y = -1)

x specifies an image and a HOG pyramid location p_0

$$f_{\mathbf{w}}(x) = \max_{z \in Z(x)} \mathbf{w} \cdot \Phi(x, z)$$

to score <= -1

Z(x) restricts the root to p_0 and allows *any* placement of the other filters

Negative examples (y = -1)

x specifies an image and a HOG pyramid location p_0

 $f_{\mathbf{w}}(x) = \max_{z \in Z(x)} \mathbf{w} \cdot \Phi(x, z)$

to score <= -1

All configurations score low

Z(x) restricts the root to p_0 and allows *any* placement of the other filters

Typical dataset

300 – 8,000 positive examples

500 million to 1 billion negative examples (not including latent configurations!)

Large-scale optimization!

How we learn parameters: latent SVM

$$E(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \max\{0, 1 - y_i f_{\mathbf{w}}(x_i)\}$$

How we learn parameters: latent SVM

$$E(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \max\{0, 1 - y_i f_{\mathbf{w}}(x_i)\}$$

$$E(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i \in P} \max\{0, 1 - \max_{\mathbf{z} \in Z(x)} \mathbf{w} \cdot \Phi(x_i, \mathbf{z})\}$$
$$+ C \sum_{i \in N} \max\{0, 1 + \max_{\mathbf{z} \in Z(x)} \mathbf{w} \cdot \Phi(x_i, \mathbf{z})\}$$

P: set of positive examples

N: set of negative examples

Latent SVM and Multiple Instance Learning via MI-SVM

Latent SVM is mathematically equivalent to MI-SVM (Andrews et al. NIPS 2003)

Latent SVM can be written as a latent structural SVM (Yu and Joachims ICML 2009)

- natural optimization algorithm is concave-convex procedure
- similar to, but not exactly the same as, coordinate descent

$$Z_{Pi} = \operatorname*{argmax}_{z \in Z(x_i)} \mathbf{w}_{(t)} \cdot \Phi(x_i, z) \quad \forall i \in P$$

This is just detection:

We know how to do this!

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i \in P} \max\{0, 1 - \mathbf{w} \cdot \Phi(x_{i}, Z_{P_{i}})\}
+ C \sum_{i \in N} \max\{0, 1 + \max_{\mathbf{z} \in Z(x)} \mathbf{w} \cdot \Phi(x_{i}, \mathbf{z})\}$$

Convex!

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i \in P} \max\{0, 1 - \mathbf{w} \cdot \Phi(x_{i}, Z_{Pi})\}
+ C \sum_{i \in N} \max\{0, 1 + \max_{\mathbf{z} \in Z(x)} \mathbf{w} \cdot \Phi(x_{i}, \mathbf{z})\}$$

Convex!

Similar to a structural SVM

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i \in P} \max\{0, 1 - \mathbf{w} \cdot \Phi(x_{i}, Z_{Pi})\}
+ C \sum_{i \in N} \max\{0, 1 + \max_{\mathbf{z} \in Z(\mathbf{x})} \mathbf{w} \cdot \Phi(x_{i}, \mathbf{z})\}$$

Convex!

Similar to a structural SVM

But, recall 500 million to 1 billion negative examples!

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i \in P} \max\{0, 1 - \mathbf{w} \cdot \Phi(x_{i}, Z_{P_{i}})\} + C \sum_{i \in N} \max\{0, 1 + \max_{z \in Z(x)} \mathbf{w} \cdot \Phi(x_{i}, z)\}$$

Convex!

Similar to a structural SVM

But, recall 500 million to 1 billion negative examples!

Can be solved by a working set method

- "bootstrapping"
- "data mining" / "hard negative mining"
- "constraint generation"
- requires a bit of engineering to make this fast

What about the model structure?

Given fixed model structure

component 1

component 2

training images

Model structure

- # components
- # parts per component
- root and part filter shapes
- part anchor locations

_ ^

У

1a. Split positives by aspect ratio

(b) Car component 2 (Phase 1)

(c) Car comp. 3 (Phase 1)

- 1b. Warp to common size
- 1c. Train Dalal & Triggs model for each aspect ratio on its own

2a. Use D&T filters as initial **w** for LSVM training Merge components

2b. Train with latent SVM

Root filter placement and component choice are latent

- 3a. Add parts to cover high-energy areas of root filters
- 3b. Continue training model with LSVM

with orientation clustering

(b) Car component 2

(c) Car component 3

(a) Car component 1

In summary

- repeated application of LSVM training to models of increasing complexity
- structure learning involves many heuristics still a wide open problem!