Markov Random Fields in Vision

Many slides drawn from presentations by Simon Prince/UCL and
Kevin Wayne/Princeton



Image Denoising

Foreground Extraction

Stereo Disparity




Why study MRFs?

* Image denoising is based on modeling what
Kinds of images are more probable

* Foreground extraction is based on modeling
what spatial distribution of foreground pixels
is more probable

e Stereo disparity estimation is based on
modeling what kinds of disparity fields are
more probable



Modeling the joint probability
distribution

* Associate a random variable with each pixel
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Conditional independence
assumptions necessary for tractability

* Directed graphical models (a.k.a Bayes nets,
Belief networks)
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MRF Definition

A Markov Random Field is determined by

e a set of sites S = {1... N}. These will correspond to the N pixel locations,
e a set of random variables y = {y; ...yn} associated with each of the sites,

e a set of neighbors Nj_n at each of the N sites. The set N,, contains the
indices of the subset of random variables have an immediate probabilistic
connection to variable ,,.

To be a Markov random field, the model must obey the Markov property,

Pr(yn‘yS\n) — Pr(y’TZ’yNn) V. nes,



Example: Image with 4-connected pixels
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Hammersley Clifford Theorem

Any positive distribution that obeys the Markov property

P 7}(3/71’?/5\72) = Pr(ynlyn,.) vV nes,

can be written in the form
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Pr(y) = — exp

Where the c terms are maximal
cligues

Cliques = subsets of variables that all
connect to each other.

Maximal = cannot add any more
variables and still be a clique




MRF on a line which favors smoothness

Pr(yi.5) = %cbm(yl,y2)¢23(y2,y3)¢34(y3,y4)¢45(y4,y5)

Consider the case where variables are binary, so functions return 4 different
values depending on the combination of neighbours. Let’s choose

¢nm(07 O) = 1.0 ¢7L7n<07 1) = 0.1
Gnm(1,0) = 0.1 Prm(1,1) = 1.0

vi.5 | Pr(yi.s) vyi..5 | Pr(yi.s) vi..s | Pr(vi.s) vi..5 | Pr(yi.s)
00000 0.09877 01000 0.02469 10000 0.04938 11000 0.04938
00001 0.04938 01001 0.01235 10001 0.02469 11001 0.02469
00010 0.02469 01010 0.00617 10010 0.01235 11010 0.01235
00011 0.04938 01011 0.01235 10011 0.02469 11011 0.02469
00100 0.02469 01100 0.02469 10100 0.01235 11100 0.04938
00101 0.01235 01101 0.01235 10101 0.00617 11101 0.02469
00110 0.02469 01110 0.02469 10110 0.01235 11110 0.04938
00111 0.04938 01111 0.04938 10111 0.02469 11111 0.09877




Denoising with MRFs
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MAP Inference

arg max Pr(yi.~|X1..n)

N
arg max H Pr(x,|yn) Pr(yi. . n)

Y1...N —
N
arg max Z log|Pr(xy|yn)] + log|Pr(yi. .~N)]
Y1...N —

N
arg min Z Un, (yn) -+ Z P m.n (y'm: yn)

Yi...N
n=1 (m,n)eC

Unary terms Pairwise terms

(compatibility of data with label y) (compatibility of neighboring labels)



Graph Cuts Overview

Graph cuts used to optimise this cost function:

N
arg min » Uy (yn) + E P Yrms Yn)
Y1...N
n=1 (m,n)eC
Unary terms Pairwise terms
(compatibility of data with label y) (compatibility of neighboring labels)

Three main cases:

e binary MRFs (i.e. y; € {0,1}) where the costs for different combinations of
adjacent labels are “submodular”. Exact MAP inference is tractable here.

e multi-label MRFs (i.e. y; € {1,2...,K}) where the costs are “submodular”.
Once more, exact MAP inference is possible.

e multi-label MRFs where the costs are more general. Exact MAP inference is
intractable, but good approximate solutions can be found in some cases.



Graph Cuts Overview

Graph cuts used to optimise this cost function:

N
arg Umin g U, (y n) + E Pron (;l/ ms yn)
Y1...N
n=1 (m,n)eC
Unary terms Pairwise terms
(compatibility of data with label y) (compatibility of neighboring labels)

Approach:

Convert minimization into the form of a standard CS problem,
MAXIMUM FLOW or MINIMUM CUT ON A GRAPH

Low order polynomial methods for solving this problem are known
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Minimum Cut Problem

Flow network.
« Abstraction for material flowing through the edges.

« 6=(V, E)=directed graph, no parallel edges.
= Two distinguished nodes: s = source, t = sink.
« c(e) = capacity of edge e.
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths& A and t € B.

Def. The capacity of a cut (A, B)is:  cap(4,B) = 3 c(e)

e out of 4
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Cuts

Def. Ans-t cutis a partition (A, B) of Vwiths € A and t € B.

Def. The capacity of a cut (A, B)is:  cap(4,B) = 3 c(e)

e out of 4
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Capacity =9+ 15+ 8 + 30
=62

17



Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.
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Flows

Def. An s-t flow is a function that satisfies:

= For eache€cE: 0 = f(e) = cle) (capacity)
« ForeachveV-{s,t}: JSfle) = 3 f(e) (conservation)
eintov eout of v

Def. The value of a flow fis: v(f) = Y f(e) .

eoutof s
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Flows

Def. An s-t flow is a function that satisfies:

= For eache€cE: 0 = f(e) = cle) (capacity)
« ForeachveV-{s,t}: JSfle) = 3 f(e) (conservation)
eintov eout of v

Def. The value of a flow fis: v(f) = Y f(e) .

eoutof s
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Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)

e out of A einto A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.
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2fle) = X fle) = v(f)

e out of A einto A

Value=6+0+8-1+11
=24

23



Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)

e out of A einto A
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Max-Flow Min-Cut Theorem

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

There are low order polynomial time algorithms known for determining
these, and associated software is available
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Graph Cuts: Binary MRF

Graph cuts used to optimise this cost function:

N
arg Ulllill E Un_, (;l/n,. ) + g Pm e <yr7'z s Un )
Y1...N
n=1 (m,n)eC
Unary terms Pairwise terms

(compatability of data with label y) (compatability of neighboring labels)

First work with binary case (i.e. True labelyis0or 1)

IH

Constrain pairwise costs so that they are “zero-diagona

P7n,n(07 O) =0 me,n(la O) — 6)10
Pm,n<07 1) — 6)01 Pm,n(la 1) — Y,



Graph Construction

* One node per pixel (here a 3x3 image)

* Edge from source to every pixel node

 Edge from every pixel node to sink

* Reciprocal edges between neighbours

Note that in the minimum cut
EITHER the edge connecting to
the source will be cut, OR the
edge connecting to the sink, but
NOT BOTH (unnecessary).

Sink

Which determines whether we
give that pixel label 1 or label 0.

Now a 1 to 1 mapping between
possible labelling and possible
minimum cuts

()

Source




Graph Construction

Source @ Now add capacities so that
minimum cut, minimizes our cost
U,(0) U,(0) function
Up(0)

Unary costs U(0), U(1) attached
to links to source and sink.

P,(1,0) Py.(1,0)
Qi 0O
Pap(0,1) Pyc(0,1) * Either one or the other is paid.

Up(1) Pairwise costs between pixel
Ua(1) Ue(1) nodes as shown.

Sink @ « Why? Easiest to understand
with some worked examples.
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Solution Cost

ol o Ua(0) + Up(0) + Uc(0)




Source @

Example 2

Source @

Solution Cost

Ua(1) + Us(0) + Uc(0)

0 O ‘|‘Pab(1a0)




Graph Cuts: Binary MRF

Graph cuts used to optimise this cost function:

N
arg Umin U, (y n ) + E Pron (;l/ my Yn )
Y1...N
n=1 (m,n)eC
Unary terms Pairwise terms

(compatability of data with label y) (compatability of neighboring labels)

Summary of approach

* Associate each possible solution with a minimum cut on a graph
e Set capacities on graph, so cost of cut matches the cost function
* This minimizes the cost function and finds the MAP solution



Image Denoising

Foreground Extraction

Stereo Disparity




The connection between graph cuts and
MRF inference was first made in this paper

J. R. Statist. Soc. B (1989)
51, No. 2, pp. 271-279

Exact Maximum A Posteriori Estimation for Binary Images

By D. M. GREIG, B. T. PORTEOUS and A. H. SEHEULTY
University of Durham, UK

[Received June 1987. Final revision September 1988]

SUMMARY

In this paper, for a degraded two-colour or binary scene, we show how the image with
maximum a posteriori (MAP) probability, the MAP estimate, can be evaluated exactly using
efficient variants of the Ford-Fulkerson algorithm for finding the maximum flow in a certain
capacitated network. Availability of exact estimates allows an assessment of the per-
formance of simulated annealing and of MAP estimation itself in this restricted setting.
Unfortunately, the simple network flow algorithm does not extend in any obvious way to
multicolour scenes. However, the results of experiments on two-colour images suggest that,
in general, simulated annealing, according to practicable ‘temperature’ schedules, can
produce poor approximations to the MAP estimate to which it converges.



