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Examples of actions

e Movement and posture change

e.g. run, walk, crawl, jump, hop, swim, dance, sit

e Object manipulation

e.g. pick, carry, hold, push, pull, touch, drive, bike, play musical
instrument

e Conversational gesture

e.g. point ...

e Sign Language



Key cues for action recognition

e Morpho-kinetics of action
shape and movement of the body

e |dentity of objects

e Activity context
scene or other people performing actions



Action recognition

e Static action recognition
from 2D images

e Video action recognition
from videos



Static Action Recognition - Datasets

PASCAL VOC Action
e 10 actions [ jumping, phoning, riding bike...]
e 12000 instances for train & test




Static Action Recognition - Datasets

MPIll Human Dataset
e 410 actions
e 40000 instances for train & test
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Static Action Recognition - Approach

CNN for action recognition:

-> Input: Region containing the actor

-> Output: One of A action labels

-> Loss during CNN training: log loss of
softmax probabilities

mean AP (%) 8-layer CNN 16-layer CNN

CNN 68.2 77.8




Static Action Recognition - Approach

Observations:
e Some regions in the image matter more than
others

e Max pooling layers hide important cues from
subsequent layers



Static Action Recognition - Approach

Riding Horse
Is male
Wears hat
Wears T-Shirt

Fine Grained
Classification Engine

(a) Given an instance hypothesis, (b) The instance and its parts are fed into our
we detect parts classification engine

[1] G. Gkioxari, R. Girshick and J. Malik, Actions and Attributes from Wholes and Parts, arXiv 2014



Part detectorsl!'!

Definition: Parts should capture human body
parts of distinct pose and viewpoint

Collection: Given locations of landmarks on the
human body (e.g. nose, shoulder) we can obtain
examples of pose clusters



Part detectorsl!'!

Learning: Train models (e.g. SVM) for each
pose cluster on features (e.g. pool5)

Pose
clusters for
torso
(collection)

Part
detections
on test set




Static Action Recognition - Approach

Fine Grained
Classification Engine
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(a) Given an instance hypothesis, (b) The instance and its parts are fed into our
we detect parts classification engine
mean AP (%) 8-layer CNN 16-layer CNN
CNN 68.2 77.8

Whole & Parts CNNI'I 71.5 80.4




Static Action Recognition - Approach

e Object Context: The objects surrounding the actor, e.g. horse,
bike

e Action Context: Actions other people in the image perform, e.g.
running in a marathon

e Scene: The scene the action is taking place, e.g. swimming pool

mean AP (%) 8-layer CNN 16-layer CNN
CNN 68.2 77.8
Whole & Parts CNNI 71.5 80.4
Whole & Parts CNNI 73.5 82.6
with context rescoring




Attribute Recognition

(a) Given an instance hypothesis,
we detect parts

. . /Riding Horse
Fine Grained  [Ts male
Classification Engine Wears hat
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(b) The instance and its parts are fed into our

classification engine

mean AP (%)

8-layer CNN

16-layer CNN

CNN

79.1

88.4

Whole & Parts CNNI'I

86.0

89.5




Video action recognition

Freestyle swimming Sailing



Video action recognition - Datasets

UCF 101 HMDB
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Video action recognition

e Motion cues play important role in videos
e \We capture motion with optical flow

Optical flow between frames no.8 - no.9




Video action recognition - approachl’]

Dense sampling Tracking in each spatial scale separately Trajectory description

in each spatial scale

Accuracy (%) UCF 101 HMDB
Dense 85.9 57.2
Trajectories

[1] Wang et al, Action Recognition by Dense Trajectories, CVPR 2011



Video action recognition - approachl?]

Spatial stream ConvNet

conv1 || conv2 (| conv3 || conv4 || conv5 || full6 full7 |[softmax
7x7x96 ||5x5x256 [|3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
i norm. norm. pool 2x2
single frame [P0 2x2 ]| pool 2x2

e
3

Temporal stream ConvNet

conv1 || conv2 || conv3 (| conv4 || conv5 fullé full7 oftmax
7x7x96 || 5x5x256 [|3x3x512 || 3x3x512 || 3x3x512 || 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. ||pool 2x2 pool 2x2

input -
video multi-frame (50 2x2

. optical flow

[2] Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014



Video action recognition - approachl?]

Accuracy (%) UCF 101 HMDB
Dense Trajectories 85.9 57.2
Spatial stream CNN 73.0 40.5

Temporal stream CNN 83.7 54.6
Two-stream CNN 88.0 59.4

[2] Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014



Video action recognition - problems

e Scene bias

most videos can be classified correctly solely based on
the scene
e Multiple actions

the tasks assigns one label to the whole video, what if
more actions are being performed?

e | ocalization
the location of the predicted action is not specified



Action detection in videol3!

e Task: Given a video, localize the action(s) being
performed in the video
e Method

o Start from regions (prune based on motion saliency)

o Classify each region based shape and motion cues
(spatial- & motion- CNNs and fusion)

o Link detections across frames (dynamic programming)

[3] Gkioxari and Malik, Finding Action Tubes, CVPR 2015



Action detection in videol3!
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[3] Gkioxari and Malik, Finding Action Tubes, CVPR 2015



Action detection in videol3!
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[3] Gkioxari and Malik, Finding Action Tubes, CVPR 2015



Action detection in videol3!

Action classification can be benefited from
analyzing an action wrt the actor

Accuracy (%)

Wang et al.l"l

Two-stream CNNI2l

Action Tubest?!

J-HMDB

56.6

56.5

62.5

[3] Gkioxari and Malik, Finding Action Tubes, CVPR 2015




Questions?



Heider & Simmel 1944



