Detection, Segmentation and Fine-grained Localization

Bharath Hariharan, Pablo Arbeláez, Ross Girshick and Jitendra Malik UC Berkeley

What is image understanding?

Object Detection

Detect every instance of the category and localize it with a bounding box.

Semantic Segmentation

Label each pixel with a category label

Simultaneous Detection and Segmentation

Detect and segment every instance of the category in the image

Simultaneous Detection, Segmentation and Part Labeling

Detect and segment every instance of the category in the image and label its parts

Goal

A detection system that can describe detected objects in excruciating detail

- Segmentation
- Parts
- Attributes
- 3D models

• • •

Outline

- Define Simultaneous Detection and Segmentation (SDS) task and benchmark
- SDS by classifying object proposals
- SDS by predicting figure-ground masks
- Part labeling and pose estimation
- Future work and conclusion

Papers

- B. Hariharan, P. Arbeláez, R. Girshick and J. Malik. Simultaneous
 Detection and Segmentation. ECCV 2014
- B. Hariharan, P. Arbeláez, R. Girshick and J. Malik.
 Hypercolumns for Object Segmentation and Fine-grained Localization. CVPR 2015

SDS: DEFINING THE TASK AND BENCHMARK

Background: Evaluating object detectors

- Algorithm outputs ranked list of boxes with category labels
- Compute overlap between detection and ground truth box

Background: Evaluating object detectors

- Algorithm outputs ranked list of boxes with category labels
- Compute overlap between detection and ground truth box

Background: Evaluating object detectors

- Algorithm outputs ranked list of boxes with category labels
- Compute overlap between detection and ground truth box
- If overlap > thresh, correct
- Compute precision-recall (PR) curve
- Compute area under PR curve : Average Precision (AP)

Evaluating segments

- Algorithm outputs ranked list of segments with category labels
- Compute region overlap of each detection with ground truth instances

Evaluation metric

- Algorithm outputs ranked list of segments with category labels
- Compute region overlap of each detection with ground truth instances

Evaluation metric

- Algorithm outputs ranked list of segments with category labels
- Compute region overlap of each detection with ground truth instances

Evaluating segments

- Algorithm outputs ranked list of segments with category labels
- Compute region overlap of each detection with ground truth instances
- If overlap > thresh, correct
- Compute precision-recall (PR) curve
- Compute area under PR curve : Average Precision (APr)

Region overlap vs Box overlap

Slide adapted from Philipp Krähenbühl

SDS BY CLASSIFYING BOTTOM-UP CANDIDATES

Background: Bottom-up Object Proposals

- Motivation: Reduce search space
- Aim for recall
- Many methods
 - Multiple segmentations (Selective Search)
 - Combinatorial grouping (MCG)
 - Seed/Graph-cut based (CPMC GOP)
 - Contour based (Edge Boxes)

Background: CNN

- Neocognitron Fukushima, 1980
- Learning Internal Representations by Error Propagation Rumelhart, Hinton and Williams, 1986
- Backpropagation applied to handwritten zip code recognition
 Le Cun et al., 1989

• • • •

 ImageNet Classification with Deep Convolutional Neural Networks Krizhevsky, Sutskever and Hinton, 2012

Background: R-CNN

From boxes to segments
Step 1: Generate region proposals

P. Arbeláez*, J. Pont-Tuset*, J. Barron, F. Marques and J. Malik. Multiscale Combinatorial Grouping. In CVPR 2014

From boxes to segments Step 2: Score proposals

From boxes to segments Step 2: Score proposals

Network training

Joint task-specific training

Network training

Baseline 1: Separate task specific training

Train Box CNN using bounding box labels

Train Region CNN using *region* labels

Network training

Baseline 2: Copies of single CNN trained on bounding boxes

Train Box CNN using bounding box labels

Copy the weights into Region CNN

Experiments

- Dataset: PASCAL VOC 2012 / SBD [1]
- Network architecture: [2]

	AP ^r at 0.5	AP ^r at 0.7
Joint	47.7	22.9
Baseline 1	47.0	21.9
Baseline 2	42.9	18.0

- Joint, task-specific training works!
- B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji and J. Malik. Semantic contours from inverse detectors. ICCV (2011)
- 2. A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional networks. NIPS(2012)

Results

Error modes

SDS BY TOP-DOWN FIGURE-GROUND PREDICTION

The need for top-down predictions

- Bottom-up processes make mistakes.
- Some categories have distinctive shapes.

Top-down figure-ground prediction

- Pixel classification
 - For each p in window, does it belong to object?
- Idea: Use features from CNN

CNNs for figure-ground

- Idea: Use features from CNN
- But which layer?
 - Top layers lose localization information
 - Bottom layers are not semantic enough
- Our solution: use all layers!

Layer 5

Layer 2

Hypercolumns*

*D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1), 1962.

Also called jets: J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. Biological cybernetics, 55(6), 1987.

Also called skip-connections: J. Long, E. Schelhamer and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. arXiv preprint. arXiv:1411.4038

Analogy with image pyramids

Hard: large coarse displacements

Easy: small fine deformations

Easy: large coarse displacements
Hard: small fine deformations

Analogy with image pyramids

Hard: large coarse displacements

Easy: small fine deformations

Easy: large coarse displacements
Hard: small fine deformations

Analogy with image pyramids

High resolution "vertical bar" detector

Medium resolution "animal leg" detector

High resolution "horse" detector

Hypercolumns

- Layer outputs are feature maps
- Concatenate to get hypercolumn feature maps
- Feature maps are of coarser resolution
 - Resize (bilinear interpolate) to image resolution

Efficient pixel classification

- Upsampling large feature maps is expensive!
- Linear classification (bilinear interpolation) =
 bilinear interpolation (linear classification)
- Linear classification = 1x1 convolution
 - extension : use nxn convolution
- Classification = convolve, upsample, sum, sigmoid

Using pixel location

Using pixel location

- Separate classifier for each location?
 - Too expensive
 - Risk of overfitting
- Interpolate into coarse grid of classifiers

$$f(\mathbf{x}) = \alpha f_2(\mathbf{x}) + (1 - \alpha) f_1(\mathbf{x})$$

$$f_1(\bullet) \qquad \mathbf{x} \qquad f_2(\bullet) \qquad f_3(\bullet) \qquad f_4(\bullet)$$

Representation as a neural network

Using top-down predictions

- For refining bottom-up proposals
 - Start from high scoring SDS detections
 - Use hypercolumn features + binary mask to predict figure-ground
- For segmenting bounding box detections

Refining proposals

	AP ^r at 0.5	AP ^r at 0.7	
No refinement	47.7	22.8	
Top layer (layer 7)	49.7	25.8	

)

Refining proposals: Using multiple layers

Image

Bottom-up candidate

Layer 7

Layers 7, 4 and 2

Refining proposals: Using multiple layers

Image

Bottom-up candidate

Layer 7

Layers 7, 4 and 2

Refining proposals: Using location

Grid size	AP ^r at 0.5	AP ^r at 0.7
1x1	50.3	28.8
2x2	51.2	30.2
5x5	51.3	31.8
10x10	51.2	31.6

Refining proposals: Using location

1 x 1

5 x 5

Refining proposals: Finetuning and bbox regression

	AP ^r at 0.5	AP ^r at 0.7
Hypercolumn	51.2	31.6
+Bbox Regression	51.9	32.4
+Bbox Regression+FT	52.8	33.7

Segmenting bbox detections

Segmenting bbox detections

	Network	APr at 0.5	APr at 0.7
Classify segments	T-net[1]	51.9	32.4
+ Refine			

- 1. A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional networks. NIPS(2012)
- 2. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014

Segment + Rescore

Segmenting bbox detections

	Network	APr at 0.5	APr at 0.7
Classify segments + Refine	T-net[1]	51.9	32.4
Segment bbox detections	T-net	49.1	29.1
Segment bbox detections	O-net[2]	56.5	37.0

- 1. A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional networks. NIPS(2012)
- 2. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014

Qualitative results

Qualitative results

Error modes

Multiple objects

Occlusion

Non-prototypical poses

Summary of SDS

Part Labeling

• Same (hypercolumn) features, different labels!

Part Labeling - Experiments

- Dataset: PASCAL Parts [1]
- Evaluation: Detection is correct if #(correctly labeled pixels) / union > threshold

	Bird	Cat	Cow	Dog	Horse	Person	Sheep
Layer 7	15.4	19.2	14.5	8.5	16.6	21.9	38.9
Layers 7, 4 and 2	14.2	30.3	21.5	14.2	27.8	28.5	44.9

1. X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun and A. Yuille. Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts . CVPR 2014

Error modes

Disjointed parts

Wrong figure/ground

Misclassification

Conclusion

- A detection system that can
 - Provide pixel accurate segmentations
 - Provide part labelings and pose estimates
- A general framework for fine-grained localization using CNNs.