Estimating pose and locating
keypoints



Viewpoints and Keypoints

- Shubham Tulsiani, Jitendra Malik

We characterize the problem of pose estimation for rigid
objects in terms of determining viewpoint to explain coarse
pose and keypoint prediction to capture the finer details. We
address both these tasks in two different settings - the con-
strained setting with known bounding boxes and the more
challenging detection setting where the aim is to simulta-
neously detect and correctly estimate pose of objects. We
present Convolutional Neural Network based architectures
for these and demonstrate that leveraging viewpoint esti-
mates can substantially improve local appearance based
keypoint predictions. In addition to achieving significant
improvements over state-of-the-art in the above tasks, we
analyze the error modes and effect of object characteristics
on performance to guide future efforts towards this goal.



Overview

Viewpoint Conditioned
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Viewpoint Prediction

Viewpoint is described by elevation, azimuth and cyclorotation
For each angle, the problem is treated as a classification
among fixed bins

We train a VGG based CNN where fc-8 does predicts the bin
for each euler angle

Some tricks used to jointly train a network for all classes (loss
computed only on class specific fc8 units)



Keypoint Prediction :
Convolutional Responses

12 X 12 response map

12 X 12 response map
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224 X 224 image

6 X 6 response map



Keypoint Prediction :
Viewpoint Based Prior

The viewpoint based location prior is computed using keypoint
locations of training instances with similar views



Examples : Viewpoint Prediction

The columns show 15th, 30th, 45th, 60th, 75th and 90th percentile instances in terms of the error.



Examples : Keypoint Prediction

P = - — .
Visualization of keypoints predicted in the detection setting. We sort the
keypoints detections by their prediction score and visualize every 15t
detection for Nosetip’ of acroplanes, ’Left Headlight’ of cars,

"Crankcentre’ of bicycles and ‘Left Base’ of buses.




Results : Viewpoint Prediction

aero bike boat Dbottle bus car chair table mbike sofa train tv |mean

Acc% (Pool5-TNet) 0.27 018 0.36 0.81 071 036  0.52 0.52 0.38 0.67 0.7 0.71 0.52
Acc% (fc7-TNet) 0.5 044 0.39 0.88 0.81 0.7 0.39 0.38 0.48 044 078 065 | 057
Acc% (ours-TNet) 078 074 049 0.93 094 090 0.65 0.67 0.83 067 079 076 | 0.76
Acc% (ours-ONet) 081 077 0.59 0.93 098 0.89 0.80 0.62 0.88 082 080 0.80 | 0.81

MedErr (Pool5-TNet) 42.6 523 463 18.5 175 456  28.6 27.7 37 259 206 215 32

MedErr(fc7-TNet) 29.8 403 495 13.5 7.6 13.6 455 38.7 314 38.5 9.9 22.6 28.4
MedErr(ours-TNet) 147 186 312 13.5 6.3 8.8 17.7 17.4 17.6 15.1 8.9 17.8 15.6
M edErr(ours-ONet) 13.8 17.7 213 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 154 13.6

Viewpoint Prediction (known bounding box)

AV P AVP% ARP%

Number of bins 4 8 16 24 - -

Xiang et al. [37] 195 187 15.6 121 - -
Pepik et al. [30] 238 215 173 13.6 - -
Ghodratietal. [9] 24.1 223 173 13.7 - -
ours 49.1 445 36.0 31.1 50.7 46.5

Viewpoint Prediction (detection setting)



Results : Keypoint Prediction

PCK[o = 0.1] aero bike boat Dbottle bus car chair table mbike sofa train tv mean
Long et al. [25] 537 609 338 729 704 557 185 229 529 383 533 492 | 485
conv6 (coarse scale) 514 624 378 65.1 60.1 599 348 31.8 53.6 44 523 411 | 495
conv12 (fine scale) 549 668 326 602 805 593 351 37.8 58 416 593 53.8 | 533
conv6+convl2 619 746 436 728 843 700 450 @ 4438 66.7 512 66.8 56.8 | 61.5
conv6+convl2+pLikelihood 66.0 77.8  52.1 838 887 813 650 473 68.3 588 720 65.1 | 6838

Keypoint Localization (known bounding box)

APK[a = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv ‘mean

conv6+convl2 419 471 154 29.0 582 37.1 11.2 8.1 40.7 250 369 255 31.3
conv6+convl2+pLikelihood 449 483 17.0 30.0 60.8 40.7 14.6 8.6 42.8 257 383 262 | 33.2

Keypoint Detection (no bounding box)



Joint Training of a Convolutional Network and a
Graphical Model for Human Pose Estimation

Jonathan Tompson, Arjun Jain, Yann LeCun, Christoph Bregler
New York University
{tompson, ajain, yann, bregler}@cs.nyu.edu

Abstract

This paper proposes a new hybrid architecture that consists of a deep Convolu-
tional Network and a Markov Random Field. We show how this architecture is
successfully applied to the challenging problem of articulated human pose esti-
mation in monocular images. The architecture can exploit structural domain con-
straints such as geometric relationships between body joint locations. We show
that joint training of these two model paradigms improves performance and allows
us to significantly outperform existing state-of-the-art techniques.






Key ideas

* Convolutional net based part detector
predicts heat maps for keypoints.

e Use these as unary potentials for a MRF with
binary potentials that constrain joint inter-
connectivity and global pose consistency (e.g.
a face detector peak should not be very far
from a shoulder detector peak)



3.1 Convolutional Network Part-Detector

Image Patches 64x64x3

Conv + ReLU + Pool (3 Stages)

30x30x128 13x13x128

9x9x128

_

_J

O

. LCN

5x5 Conv
+ ReLU + + ReLU +

Pool

5xb Conv

5xb Conv +
ReLU

LCN

Pool

64x64x3

30x30x128 13x13x128

9x9x128

0x9x256

Fully-Connected

.. Layers
L0 E ‘E
SIS =
1 H-7256
H 512
9x9x256

Figure 1: Multi-Resolution Sliding-Window With Overlapping Receptive Fields
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Figure 2: Efficient Sliding Window Model with Single Receptive Field
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Figure 3: Efficient Sliding Window Model with Overlapping Receptive Fields
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Convolutional priors

jgiven that body part B is located at the center pixel, the convolution prior Py (3, j) is the

likelihood of the body part A occurring in pixel location (i, 7). For a body part A, we calculate the
final marginal likelihood p 4 as:

1
PA = 7 H (pA|v * Py + bv—>A) (D

veV
where v is the joint location, p4|, is the conditional prior described above, b, _,, is a bias term used
to describe the background probability for the message from joint v to A

b 3 o) — i — @
Face Unary f|f :i/® Face »Shoulder s|f Face Unary
b 3 @ = = ° b 3
Shoulder Unary fs Shoulder + Face i Shoulder Shoulder + Shoulder s|s Shoulder Unary

Figure 5: Didactic Example of Message Passing Between the Face and Shoulder Joints



€4 = exp Z [log (SoftPlus (eA|v) x ReLLU (e, ) + SoftPlus (bv_m))] (2)
veV

where: SoftPlus (z) = 1/glog (1 +exp (Bx)),l2 < B <2
ReLlU () = max (z,€),0 < € < 0.01
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Figure 6: Single Round Message Passing Network



Detection rate
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Figure 7: Model Performance
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Recognizing Solid Objects by Alignment with an Image

DANIEL P. HUTTENLOCHER
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Technology, Cambridge, MA 02139

Abstract

In this paper we consider the problem of recognizing solid objects from a single two-dimensional image of a three-
dimensional scene. We develop a new method for computing a transformation from a three-dimensional model
coordinate frame to the two-dimensional image coordinate frame, using three pairs of model and image points.
We show that this transformation always exists for three noncollinear points, and is unique up to a reflective ambigu-
ity. The solution method is closed-form and only involves second-order equations. We have implemented a recognition
system that uses this transformation method to determine possible alignments of a model with an image. Each
of these hypothesized matches is verified by comparing the entire edge contours of the aligned object with the
image edges. Using the entire edge contours for verification, rather than a few local feature points, reduces the
chance of finding false matches. The system has been tested on partly occluded objects in highly cluttered scenes.
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This paper investigates the problem of recovering information about the configura-
tion of an articulated object, such as a human figure, from point correspondences in a
single image. Unlike previous approaches, the proposed reconstruction method does
not assume that the imagery was acquired with a calibrated camera. An analysis 1s
presented which demonstrates that there 1s a family of solutions to this reconstruction
problem parameterized by a single variable. A simple and effective algorithm 1s pro-
posed for recovering the entire set of solutions by considering the foreshortening of
the segments of the model in the image. Results obtained by applying this algorithm
to real 1images are presented. @ 2000 Academic Press




FIG.1. (a) An image containing a figure to be recovered. The 12 crosses represent the estimated locations
of the joints which are passed to the reconstruction procedure. (b) The recovered 3D model viewed from a novel
vantage point.

Key observation: Lengths of various body segments are known



refercnce
plane

The projection of a line segment onto an image under scaled orthographic projection

P = (X, — X2 + (¥ — Y2)* +(Z) — Z5)°
(i —uz) = s(X1 — X»)
(v1 —vy) = 5(¥Y; — Y»)
dZ = (Z, — Z»)
= dZ = /1> — (11 — u2)* + (v1 — v2)?)/5°




FIG. 5. This figure indicates how the reconstructions computed from the point correspondences obtained
from the image in (a) vary as a function of the scale parameter s. The reconstructions shown 1n (b), (c), and
(d) correspond to scale factor values of 2.3569, 2.9461, and 3 5353, respectively.



FIG. 5. This figure indicates how the reconstructions computed from the point correspondences obtained
from the image in (a) vary as a function of the scale parameter s. The reconstructions shown 1n (b), (c), and
(d) correspond to scale factor values of 2.3569, 2.9461, and 3 5353, respectively.



