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Viewpoint	
  Predic#on	
  

•  Viewpoint	
  is	
  described	
  by	
  eleva#on,	
  azimuth	
  and	
  cyclorota#on	
  
•  For	
  each	
  angle,	
  the	
  problem	
  is	
  treated	
  as	
  a	
  classifica#on	
  
among	
  fixed	
  bins	
  

•  We	
  train	
  a	
  VGG	
  based	
  CNN	
  where	
  fc-­‐8	
  does	
  predicts	
  the	
  bin	
  
for	
  each	
  euler	
  angle	
  

•  Some	
  tricks	
  used	
  to	
  jointly	
  train	
  a	
  network	
  for	
  all	
  classes	
  (loss	
  
computed	
  only	
  on	
  class	
  specific	
  fc8	
  units)	
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Keypoint	
  Predic#on	
  :	
  
Viewpoint	
  Based	
  Prior	
  

The	
  viewpoint	
  based	
  loca#on	
  prior	
  is	
  computed	
  using	
  keypoint	
  
loca#ons	
  of	
  training	
  instances	
  with	
  similar	
  views	
  



Examples	
  :	
  Viewpoint	
  Predic#on	
  

The columns show 15th, 30th, 45th, 60th, 75th and 90th percentile instances in terms of the error.	

Figure 3: Viewpoint predictions for unoccluded groundtruth instances using our algorithm. The columns show 15th, 30th,
45th, 60th, 75th and 90th percentile instances respectively in terms of the error. We visualize the predictions by rendering a
3D model using our predicted viewpoint.
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Acc⇡
6

(Pool5-TNet) 0.27 0.18 0.36 0.81 0.71 0.36 0.52 0.52 0.38 0.67 0.7 0.71 0.52

Acc⇡
6

(fc7-TNet) 0.5 0.44 0.39 0.88 0.81 0.7 0.39 0.38 0.48 0.44 0.78 0.65 0.57

Acc⇡
6

(ours-TNet) 0.78 0.74 0.49 0.93 0.94 0.90 0.65 0.67 0.83 0.67 0.79 0.76 0.76

Acc⇡
6

(ours-ONet) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.81

MedErr (Pool5-TNet) 42.6 52.3 46.3 18.5 17.5 45.6 28.6 27.7 37 25.9 20.6 21.5 32
MedErr(fc7-TNet) 29.8 40.3 49.5 13.5 7.6 13.6 45.5 38.7 31.4 38.5 9.9 22.6 28.4
MedErr(ours-TNet) 14.7 18.6 31.2 13.5 6.3 8.8 17.7 17.4 17.6 15.1 8.9 17.8 15.6
MedErr(ours-ONet) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6

Table 1: Viewpoint Estimation with Ground Truth box

threshold of the target viewpoint. We denote this met-
ric by Acc

✓

where ✓ is the threshold. We use ✓ = ⇡

6 .

Recently, Ghodrati et al. [9] achieved results compara-
ble to state-of-the art by using a linear classifier over layer
5 features of TNet. We denote this method as ’Pool5-TNet’
and implement it as a baseline. To study the effect of end-
to-end training of the CNN architecture, we use a linear
classifier on top of the fc7 layer of TNet as another base-
line (denoted as ’fc7-TNet’ ). With the aim of analyzing
viewpoint estimation independently, the evaluations were
restricted only to objects marked as non-occluded and non-
truncated and we defer the study of the effects of occlu-
sion/truncation in this setting to section 7.1. The perfor-
mance of our method and comparisons to the baseline are
shown in Table 2. The results clearly demonstrate that end-

to-end training improves results and that our method with
the TNet architecture performs significantly better than the
’Pool5-TNet’ method used in [9]. We also observe a signif-
icant improvement by using the ONet architecture and only
use this architecture for further experiments/analysis. In fig-
ure 3, we show our predictions sorted in terms of the error
and it can be seen that the predictions for most categories
are reliable even at the 90th percentile.

5.2. Detection and Viewpoint Estimation

Xiang et al. [37] introduced the AV P metric to measure
advances in the task of viewpoint estimation in the setting
where localizations are not known a priori. The metric is
similar to the AP criterion used for PASCAL VOC detec-
tion except that each detection candidate has an associated
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Visualization of keypoints predicted in the detection setting. We sort the 
keypoints detections by their prediction score and visualize every 15th 

detection for ’Nosetip’ of aeroplanes, ’Left Headlight’ of cars, 
’Crankcentre’ of bicycles and ‘Left Base’ of buses.	
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Viewpoint	
  Predic#on	
  (known	
  bounding	
  box)	
  

Viewpoint	
  Predic#on	
  (detec#on	
  seZng)	
  

viewpoint and the detection is labeled correct if it has a cor-
rect predicted viewpoint bin as well as a correct localization
(bounding box IoU > 0.5). Xiang et al. [37] also compared
to Pepik et al. [30] on the AVP metric using various view-
point bin sizes and Ghodrati et al. [9] also showed com-
parable results on the metric. To evaluate our method, we
obtain detections from RCNN [10] using MCG [2] object
proposals and augment them with a pose predicted using
the corresponding detection’s bounding box. We note that
there are two issues with the AV P metric - it only evalu-
ates the prediction for the azimuth (�) angle and discretizes
viewpoint instead of treating it continuously. Therefore, we
also introduce two additional evaluation metrics which fol-
low the IoU > 0.5 criteria for localization but modify the
criteria for assigning a viewpoint prediction to be correct as
follows -

• AV P

✓

: �(�
gt

,�

pred

) < ✓

• ARP

✓

: �(R
gt

, R

pred

) < ✓

Note that ARP

✓

requires the prediction of all euler angles
instead of just � and therefore, is a stricter metric.

The performance of our CNN based approach for view-
point prediction is shown in Table 2 and it can be seen
that we significantly outperform the state-of-the-art meth-
ods across all categories. While it is not possible to compare
our pose estimation performance independent of detection
with DPM based methods like [37, 30], an indirect com-
parison results from the analysis using ground truth boxes
where we demonstrate that our pose estimation approach is
an improvement over [9] which in turn performs similar to
[37, 30] while using similar detectors.

AV P AV P⇡
6

ARP⇡
6

Number of bins 4 8 16 24 - -

Xiang et al. [37] 19.5 18.7 15.6 12.1 - -
Pepik et al. [30] 23.8 21.5 17.3 13.6 - -
Ghodrati et al. [9] 24.1 22.3 17.3 13.7 - -
ours 49.1 44.5 36.0 31.1 50.7 46.5

Table 2: Mean performance of our approach for various
metrics. We report the performance for individual classes
with the supplementary material

6. Experiments : Keypoint Prediction

The task of keypoint prediction is commonly studied in
the setting with known location of the object but some meth-
ods, restricted to specific categories like ’people’ recently
evaluated their performance in the more general detection

setting. We extend these metrics to generic categories and
evaluate our predictions in both the settings using the fol-
lowing metrics proposed by Yang and Ramanan [38] -

• PCK (Keypoint Localization) : For each annotated in-
stance, the algorithm predicts a location for each key-
point and a groundtruth keypoint is said to have been
found correctly if the corresponding prediction lies
within ↵ ⇤ max(h,w) of the annotated keypoint with
the corresponding object’s dimension being (h,w).
For each keypoint, we measure the fraction of objects
where it was found correctly.

• APK (Keypoint Detection) : A keypoint candidate is
deemed correct if it lies within ↵ ⇤ max(h,w) of a
groundtruth keypoint. Each keypoint hypothesis has
an associated score and the area under the precision-
recall curve is used as the evaluation criterion.

We use the keypoint annotations from [15] and use the PAS-
CAL VOC train set for training and the validation set im-
ages for evaluation.

6.1. Keypoint Localization

The performance of our system and comparison to
[25] are shown in Table 3. We denote by ’conv6’
(’conv12’) the predictions using only the 6 ⇥ 6 (12 ⇥
12) output size network, by ’conv6+conv12’ the predic-
tions using the multiscale convolutional response and by
’conv6+conv12+pLikelihood’ the predictions using our full
system. Our baseline system ( ’conv6+conv12’) performs
much better than [25], indicating the importance of end-to-
end training and multiscale response maps. We also see that
incorporating the viewpoint conditioned likelihood induces
a significant performance gain.

6.2. Keypoint Detection

Given an image, we use RCNN [10] combined with
MCG [2] object proposals to obtain detection candidates,
each comprising of a class label and location. We then
predict keypoints on each candidate using our system and
score each keypoint hypothesis by linearly combining the
keypoint log-likelihood score and the object detection sys-
tem score. Our results for the task of keypoint detection are
summarized in Table 4. The pose conditioned likelihood
consistently improves the local appearance based predic-
tions. Though the task of keypoint detection on PASCAL
VOC has not yet been analyzed for categories other than
person, we believe our results of 33.2% mean APK with a
reasonably strict threshold indicate a promising start.

The above results support our three main assertions - a
global prior obtained in the form of a viewpoint conditioned
likelihood improves the local appearance based predictions,

Figure 3: Viewpoint predictions for unoccluded groundtruth instances using our algorithm. The columns show 15th, 30th,
45th, 60th, 75th and 90th percentile instances respectively in terms of the error. We visualize the predictions by rendering a
3D model using our predicted viewpoint.
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threshold of the target viewpoint. We denote this met-
ric by Acc
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where ✓ is the threshold. We use ✓ = ⇡
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Recently, Ghodrati et al. [9] achieved results compara-
ble to state-of-the art by using a linear classifier over layer
5 features of TNet. We denote this method as ’Pool5-TNet’
and implement it as a baseline. To study the effect of end-
to-end training of the CNN architecture, we use a linear
classifier on top of the fc7 layer of TNet as another base-
line (denoted as ’fc7-TNet’ ). With the aim of analyzing
viewpoint estimation independently, the evaluations were
restricted only to objects marked as non-occluded and non-
truncated and we defer the study of the effects of occlu-
sion/truncation in this setting to section 7.1. The perfor-
mance of our method and comparisons to the baseline are
shown in Table 2. The results clearly demonstrate that end-

to-end training improves results and that our method with
the TNet architecture performs significantly better than the
’Pool5-TNet’ method used in [9]. We also observe a signif-
icant improvement by using the ONet architecture and only
use this architecture for further experiments/analysis. In fig-
ure 3, we show our predictions sorted in terms of the error
and it can be seen that the predictions for most categories
are reliable even at the 90th percentile.

5.2. Detection and Viewpoint Estimation

Xiang et al. [37] introduced the AV P metric to measure
advances in the task of viewpoint estimation in the setting
where localizations are not known a priori. The metric is
similar to the AP criterion used for PASCAL VOC detec-
tion except that each detection candidate has an associated
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Keypoint	
  Localiza#on	
  (known	
  bounding	
  box)	
  

Keypoint	
  Detec#on	
  (no	
  bounding	
  box)	
  

APK[↵ = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv mean

conv6+conv12 41.9 47.1 15.4 29.0 58.2 37.1 11.2 8.1 40.7 25.0 36.9 25.5 31.3
conv6+conv12+pLikelihood 44.9 48.3 17.0 30.0 60.8 40.7 14.6 8.6 42.8 25.7 38.3 26.2 33.2

Table 4: Keypoint Detection

PCK[↵ = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv mean

Default 66.0 77.8 52.1 83.8 88.7 81.3 65.0 47.3 68.3 58.8 72.0 65.1 68.8
Occluded Objects 55.2 56.6 38.7 68.8 64.4 62.8 48.1 40.5 53.1 59.6 68.6 47.3 55.3
Small Objects 51.6 66.4 48.1 81.2 85 67.4 57.4 48.2 57.9 53.8 57.4 56.8 60.9
Large Objects 74.6 87.4 57.2 86.3 90.9 90.6 65.1 37.7 76.1 68.5 74.1 65.3 72.8

left/right 71.1 80.2 53.4 84.4 90.9 84.1 74.7 49.2 69.8 63.4 75.0 68.2 72.0
PCK[↵ = 0.2] 79.9 88.7 69.1 95.2 92 88.3 79.6 67.5 87.3 72.2 82.2 78.1 81.7

Table 7: Analysis of Keypoint Prediction

us to analyze our pose estimation method independent of
the detection system. We denote as ’large objects’ the top
third of instances and by ’small objects’ the bottom third
of instances. The label ’occluded’ describes all the objects
marked as truncated or occluded according to the PASCAL
VOC annotations. We summarize our observations below.

7.1. Viewpoint Prediction

Object Characteristics : Table 5 shows the effect of ob-
ject characteristics by reporting the mean across the classes
of the median viewpoint error and accuracy. We can see that
the method performs worse for occluded objects. There is
also a significant difference between the performance for
small and large objects - while such error trends are accept-
able in the robotic setting where ambiguity for the farther
objects is tolerable, one may need to capture more context
to perform well without higher resolution input.

Error Modes: Since it is difficult to characterize error
modes for generic rotations, we restrict the analysis to only
the predicted azimuth. Assuming the image plane to be XY,
we denote by Z � ref the pose for the instance reflected
along the XY plane and by ⇡�flip a rotation of ⇡ along the
Z axis. Table 6 reports the percentage of instances whose
pose predicted pose corresponds to various modes. We ob-
serve that these error modes are equally common and that
only about 3% of the errors are not explained by these.

Note that we exclude ’diningtable’ and ’bottle’ cate-
gories from the above analysis due to small number of un-
occluded instances and insignificant variations respectively.

7.2. Keypoint Prediction

We use the PCK metric (section 6.2) to characterize
our algorithm’s performance for various settings. Our re-

sults using the full method (local appearance combined with
viewpoint conditioned likelihood) are reported in Table 7.
We report the analysis using various components (single
scale prediction, purely local appearance etc.) in the sup-
plementary material.

Object Characteristics : The effect of object charac-
teristics is similar to the viewpoint prediction setting - oc-
cluded objects are not handled well and there is a significant
performance gap between small and large objects.

Error Modes : In the ’left/right’ setting, we label a pre-
diction to be correct if it was in the vicinity of the corre-
sponding or the laterally inverted keypoint. Surprisingly,
the performance is similar to the base performance - indicat-
ing that laterally symmetric keypoints are not a significant
error mode. The difference between the base performance
and PCK[↵ = 0.2] analyzes the inaccurate localizations
which we find to be the main source of error.

8. Conclusion

We have presented an algorithm which leverages CNN
architectures to predict viewpoint, and combines multiscale
appearance with a viewpoint conditioned likelihood to pre-
dict keypoints. We demonstrated that our approach signifi-
cantly improve state-of-the-art in settings with and without
annotated bounding boxes for both viewpoint and keypoint
prediction tasks. We also present evaluations for the key-
point detection setting alongwith a detailed ablation study
of our performance on various tasks and hope that these
will contribute towards progress on the task of pose estima-
tion for generic objects. We will make our code and trained
models publicly available.

Figure 4: Visualization of keypoints predicted in the detection setting. We visualize every 15th detection, sorted by score, for
’Nosetip’ of aeroplanes, ’Crankcentre’ of bicycles, ’Left Headlight’ of cars and ’Right Base’ of buses.

PCK[↵ = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv mean

Long et al. [25] 53.7 60.9 33.8 72.9 70.4 55.7 18.5 22.9 52.9 38.3 53.3 49.2 48.5
conv6 (coarse scale) 51.4 62.4 37.8 65.1 60.1 59.9 34.8 31.8 53.6 44 52.3 41.1 49.5
conv12 (fine scale) 54.9 66.8 32.6 60.2 80.5 59.3 35.1 37.8 58 41.6 59.3 53.8 53.3
conv6+conv12 61.9 74.6 43.6 72.8 84.3 70.0 45.0 44.8 66.7 51.2 66.8 56.8 61.5
conv6+conv12+pLikelihood 66.0 77.8 52.1 83.8 88.7 81.3 65.0 47.3 68.3 58.8 72.0 65.1 68.8

Table 3: Keypoint Localization

that end-to-end trained CNNs can effectively model part ap-
pearances and combining responses from multiple scales
significantly improves performance.

6.3. Generalization to Articulated Pose

While the focus of our work is pose prediction for rigid
objects, we note that our multiscale convolutional response
based approach is also applicable for articulated pose esti-
mation. To demonstrate this, we trained our convolutional
response map system to detect keypoints for the category
’person’ in PASCAL VOC 2012 and achieved an APK =
0.22 which is a significant improvement compared to the
state-of-the-art method [12] which achieves APK = 0.15.
We refer the reader to [12] for further details on the evalua-
tion metrics for the task of articulated pose estimation.

7. Analysis
An understanding of failure cases and effect of object

characteristics on performance can often suggest insights
for future directions. Hoeim et al. [18] suggested some
excellent diagnostics for object detection systems and we
adapt those for the task of pose estimation. We evaluate

Setting Mean Error Mean Accuracy

Default 13.5 0.81
Small Objects 15.1 0.75
Large Objects 12.7 0.87
Occluded Objects 19.9 0.65

Table 5: Object characteristics vs viewpoint prediction error

Setting Accuracy

Error< ⇡
9 83.7

⇡
9 <Error < 2⇡

9 5.7
Error> ⇡

9 & Error(⇡ � flip)< ⇡
9 5.8

Error> ⇡
9 & Error(z � ref )< ⇡

9 6.5
Other 2.9

Table 6: Analysis of error modes for viewpoint prediction

our system’s output for both the task of viewpoint predic-
tion as well as keypoint prediction but restrict our analy-
sis to the setting with known bounding boxes - this enables
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•  Convolu#onal	
  net	
  based	
  part	
  detector	
  
predicts	
  heat	
  maps	
  for	
  keypoints.	
  

•  Use	
  these	
  as	
  unary	
  poten#als	
  for	
  a	
  MRF	
  with	
  
binary	
  poten#als	
  that	
  constrain	
  joint	
  inter-­‐
connec#vity	
  and	
  global	
  pose	
  consistency	
  (e.g.	
  
a	
  face	
  detector	
  peak	
  should	
  not	
  be	
  very	
  far	
  
from	
  a	
  shoulder	
  detector	
  peak)	
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