A quick tour of differential
geometry
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There are two possible definitions of curves in 2 dimensions:

1. Level sets (implicit equations): for a given mapping f : [”;] — R,
f~*(e) is the set of all points that map to the same number, ¢, and this

set of points defines a curve. The only constraint is that v_’ f# [8] for

points on the curve.

e Example: for circles, [;I;] — 2 +y* = f71(25) is the set z°+y* =

25, which corresponds to a circle of radius 5

2. Parametric: we have z(t) and y(t), with the constraint that

T
. 0
y“ :

e Example: a circle of radius a is given as z(t) = acost and y(t) =
asint

e Example: an ellipse is given as z(t) = acost and y(t) = bsint



Use of osculating circle to determine curvature



Surfaces in 3D can be defined in two ways:

1. Implicitly - level set definition

X
For the mapping f : {Y} — R, f~!(c) is a set which we define to be a
Z

0
surface; the only constraint is that <7 f # {0 for points on the surface
0

2. Parametric _definition
X(u,v)
We define | Y (u,v)| to be a 2D surface in 3D, with the constraint that
Z(u.v)

the derivatives with respect to u and with respect to v should not be
in the same direction (so that the surface normal can be calculated).



Two ways of defining surfaces

Indeed we can use generalize these two ways of defining surfaces to n
dimensions:

Level set definition of surfaces: A surface of dimension n in R"t! is a
non-empty subset S of R"*! of the form S = f~!(¢) where f is a smooth
function U C R™! — R with the property that <7 f(p) # 0. Picking n = 1
above defines plane curves. Picking n = 2 defines 2-surfaces.

Parametrized patch definition of surfaces: A parametrized n-surface in
R™*! is the image of a smooth map ¢ : U — R"*!, where U is a connected
open set in R™ which is such that its derivative dip, is non-singular (has rank
n) for each p € U. The image dyp, is the tangent space to ¢ corresponding
to the point p € U.






The tangent space has two equivalent characterizations:

e The plane at point p which has perpendicular n.

e The space of tangent directions of curves on the surface that go through
p. To illustrate this characterization, consider the parameterized curve
a(t), where a(0) = p and ' (t) is in the direction of the tangent.
If you consider multiple such curves, you will obtain a set of tangent
vectors at p that all lie on a single plane.
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Defining normal curvature
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Principal curvatures for different

Plane

Cylinder

Sphere

Elliptic patch
Hyperbolic patch

surfaces



Principal curvatures for different
surfaces

Plane — both zero

Cylinder — one zero, otheris 1/r
Sphere — both are 1/r

Elliptic patch — both have same sign
Hyperbolic patch — have opposite signs



Gaussian and Mean Curvature

The Gaussian curvature at a point on an embedded smooth surface given locally by the equation
z=F(x,y)

in E3, is defined to be the product of the principal curvatures at the point;!%! the mean curvature is defined to be their average. The principal curvatures are
the maximum and minimum curvatures of the plane curves obtained by intersecting the surface with planes normal to the tangent plane at the point. If the
point is (0, 0, 0) with tangent plane z = 0, then, after a rotation about the z-axis setting the coefficient on xy to zero, F will have the Taylor series expansion

1 1

The principal curvatures are ky and k» in this case, the Gaussian curvature is given by
I( = I’Cl . :ICQ
and the mean curvature by
-~ _ 171 ..
-Km - 5('1\1 + LQ)



Surfaces of negative, zero and positive

Gaussian Curvature




