Scene Understanding from RGB-D Images

Object Detection, Semantic and Instance Segmentation

Pose Estimation

Saurabh Gupta, Ross Girshick, Pablo Arbeláez, Jitendra Malik

UC Berkeley

Scene Understanding

Motivation

Object Detection

Semantic Segm.

Good first steps

But we want to know much more

Instance Segmentation

Object Parsing

Sub categorization

Material Properties How to manipulate/ grasp?

Pose

Detailed 3D Understanding

All these tasks are related, doing one will help the other

Detailed 3D Understanding

All these tasks are related, doing one will help the other Estimating the 3D model explains all of these

Overview

Input

Color and Depth Image Pair

Re-organization

Contour Detection

Region Proposal Generation

Recognition

Semantic Segm.

Object Detection

Detailed 3D Understanding

Instance Segm.

Object Detection, Segmentation and Pose Estimation for RGB-D Images

- S. Gupta, P. Arbeláez and J. Malik
 Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images,
 CVPR 2013 (oral)
- S. Gupta, R. B. Girshick, P. Arbeláez, and J. Malik
 Object Detection and Segmentation using Semantically Rich Image and Depth Features
 ECCV 2014
- S. Gupta, P. Arbeláez, R. B. Girshick, and J. Malik
 Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object
 Detection and Semantic Segmentation
 IJCV 2014
- S. Gupta, P. Arbeláez, R. B. Girshick, and J. Malik
 Aligning 3D Models to RGB-D Images of Cluttered Scenes
 CVPR 2015, available on arXiv

Overview

Input

Color and Depth Image Pair

Re-organization

Contour Detection

Region Proposal Generation

Recognition

Semantic Segm.

Object Detection

Detailed 3D Understanding

Instance Segm.

Pose Estimation

Local Gradients on Depth Images

Input Depth Image

Depth Gradient, **DG**

Concave Normal Gradient, **NG-**

Multi-scale Local Gradients from Depth Images

Important to differentiate between convex and concave normal gradients

Using Local Gradients for Contour Detection

Use with gPb-UCM

Use with Dollar et al.'s structured edges

Method		max F
gPb-UCM	RGB	63.15
Silberman et al.	RGB-D	65.77
Dollar et al.	RGB-D	68.96
Our (gPb-UCM + our cues)	RGB-D	68.66
Our (Dollar et al. + our cues++)	RGB-D	70.36

Arbeláez et al. Contour Detection and Hierarchical Image Segmentation, PAMI 2011

- P. Dollar and L. Zitnick Structured Forests for fast edge detection, ICCV 2013
- S. Gupta, P Arbeláez, J. Malik Perceptual Organization and Recognition in Indoor RGB-D Images, CVPR 2013
- S. Gupta, R. Girshick, P Arbeláez, J. Malik, Object Detection and Segmentation using Semantically Rich Image and Depth Features, ECCV 2014

Results

Results

Depth
Discontinuities
(Red)

Convex Normal Discontinuities (Blue)

Concave Normal Discontinuities (Green)

Examples

GT Mask

GT Mask

Overview

Input

Color and Depth Image Pair

Re-organization

Contour Detection

Region Proposal Generation

Recognition

Semantic Segm.

Object Detection

Detailed 3D Understanding

Instance Segm.

Pose Estimation

Related Work [RGB-D, Robotics]

Lai et al. ICRA 2011, A Large-Scale Hierarchical Multi-View RGB-D Object Dataset: RGB-D DPM, but instances and small table-top objects

Janoch et al. ICCV-W 2011, A Category-Level 3-D Object Dataset: Putting the Kinect to Work,

Absolute size based pruning and re-scoring with

DPMs

Tang et al. ICRA 2012, A Textured Object Recognition Pipeline for Color and Depth Image Data: Appearance matching, geometric verification

Kim et al. CVPR 2013, Accurate Localization of 3D Objects from RGB-D Data using Segmentation Hypotheses, Extension to DPMs to model deformations in 3D

State of the Art in RGB Recognition

Improvements in Object Detection

(Slide from D. Hoiem)

PASCAL Visual Object Challenge (Everingham et al)

Dining Table

Dog

Horse

Motorbike

Person

Potted Plant

Sheep

Sofa

Train

TV/Monitor

R-CNN: Regions with CNN features

Girshick, Donahue, Darrell & Malik (CVPR 2014)

Input image

Extract region proposals (~2k / image)

Compute CNN features

Classify regions (linear SVM)

CNN features are inspired by the architecture of the visual system

CNN Features?

Convolutional Neural Network

How to learn features for RGB-D Images ??

Generic representation useful for for a variety of tasks

LeCun et al., Backpropagation applied to handwritten zip code recognition. Neural Computation (1989) Krizhevsky et al., ImageNet classification with deep convolutional neural networks. In NIPS (2012)

Object Detection in RGB-D images

Key Insights

Depth Images are **image-like enough** to use Convolutional Neural Network models

Geocentric embedding into Horizontal Disparity, Height Above Ground, and Angle with Gravity (HHA) works better than just raw disparity

Synthetic depth data can help

Test Set

	mean	bath tub	peq	book shelf	ход	chair	counter	desk	door	dresser	garbage bin	lamp	monitor	night stand	wollid	sink	sofa	table	television	toilet
RGB DPM	9	1	28	9	0	8	7	1	3	1	7	22	10	9	4	6	9	6	6	34
RGBD DPM	24	19	56	18	1	24	24	6	10	16	27	27	35	33	21	23	34	17	20	45
RGB RCNN	22	17	45	28	1	26	30	10	16	19	16	28	32	17	11	17	29	13	27	44
Our	39	36	71	35	4	47	47	15	23	39	44	38	53	41	42	44	52	22	38	48

For Semantic Segmentation

Use output from object detectors to compute additional features for superpixels

Feature Computation

- 1. Highest scoring detection
- 2. Use as features for the superpixel
 - detection score
 - overlap
 - difference in mean depth of superpixel and detection
 - non-linear combinations

For Semantic Segmentation (Performance)

40 Class Task

Scene Surfaces - Floors, walls, ceiling, windows, doors, ...
Furniture - Beds, chairs, sofa, table, desks, ...
Objects - Pillow, books, bottles, ...

Ground Truth 40 Class

	Silberman et al. ECCV 12	Ren et al. CVPR 12	Gupta et al. CVPR 13	Gupta et al. (13) + RGB-D DPM	Gupta et al. (13) + Our Obj Det.
fwavacc	38.2	37.6	43.4	45.2	47
avacc	19	20.5	24.3	27.3	28.6
mean (maxIU)	_	21.4	27.9	29.6	31.3
pixacc	54.6	49.3	57.9	59	60.3
obj avg	18.4	21.1	26.4	31.1	35.1

Silberman et al., ECCV12, Indoor segmentation and support inference from RGBD images. Ren et al., CVPR12, RGB-(D) scene labeling: Features and algorithms Gupta et al., CVPR13, Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images.

Overview

Input

Color and Depth Image Pair

Re-organization

Contour Detection

Region Proposal Generation

Recognition

Semantic Segm.

Object Detection

Detailed 3D Understanding

Instance Segm.

Pose Estimation

Task

Detect and segment objects

Method

Box CNN

Region CNN

For Semantic Segmentation (Performance)

40 class task

	Silberman et al. ECCV 12	Ren et al. CVPR 12	Gupta et al. CVPR 13	Gupta et al. (13) + RGB-D DPM	Gupta et al. (13) + Our Obj Det.	+ Instance Segm.
fwavacc	38.2	37.6	43.4	45.2	47	47.74
avacc	19	20.5	24.3	27.3	28.6	29.71
mean (maxIU)	_	21.4	27.9	29.6	31.3	32.90
pixacc	54.6	49.3	57.9	59	60.3	62.24
obj avg	18.4	21.1	26.4	31.1	35.1	37.50

Pose Estimation

3D reasoning by initial 2D processing and then 'lifting' to 3D

Learning from synthetic data and generalizing to real data

Starting with weak annotation (instance segmentation) able to produce a much richer output

3 layer CNN on **normal images** trained on **synthetic** data

Search over scale,
placement and sub-type
to minimize
re-projection error

28

Coarse Pose Estimation

- Train on **synthetic data** (pose aligned CAD models [Wu et al.] rendered in scales and positions they occur in scenes)
- Input representation
 - HHA (depth, height above ground, angle with gravity) images don't have azimuth information
 - Normal Images
- Desirable to be robust to occlusion
- Depth images are 'simpler', so we use a shallow network

Use a shallow 3 layer fully convolutional network (average pooling to predict)

Coarse Pose Estimation

Test on Synthetic Data

Coarse Pose Estimation Chair

Overview

Input

Color and Depth Image Pair

Re-organization

Contour Detection

Region Proposal Generation

Recognition

Semantic Segm.

Object Detection

Detailed 3D Understanding

Instance Segm.

Pose Estimation

Detailed 3D Understanding

Motivation

Object Detection

Semantic Segm.

Good first steps

But not enough for a robot to manipulate objects

Instance Segmentation

Object Parsing

Sub categorization

How to manipulate/
Material grasp?
Properties

Pose

Detailed 3D Understanding

All these tasks are related, doing one will help the other Estimating the 3D model explains all of these

Current Work / Preliminary Results

3D Model Estimation

- \bullet Start with a model **M**, at scale **s**, an initial pose estimate **R**
 - Iterative Closest Point (ICP) to optimize for R, t (that aligns best to data)
 - ullet Render model, use visible points, run ICP between these points, and points in the segmentation mask, re-estimate $m{R}$, $m{t}$, repeat

Pick best model M^* , scale s^* and pose R^* , t^* based on fit to the data

Works reasonably well even though

- Inaccurate models
- Imperfect segmentation masks

3D Model Estimation Results

3D Model Estimation

For 3D Detection

Put a 3D box around the 3D extent of the object

3D All (AP)	mean	bed	chair	sofa	table	toilet
Sliding Shapes	39.6	33.5	29.0	34.5	33.8	67.3
Our - 3D Box on Instance Segm.	48.4	74.7	18.6	50.3	28.6	69.7
Our - 3D Box on Model	58.5	73.4	44.2	57.2	33.4	84.5
3D Clean (AP)	mean	bed	chair	sofa	table	toilet
3D Clean (AP) Sliding Shapes	mean 64.6	bed 71.2	chair 78.7	sofa 41.0	table 42.8	toilet 89.1

[Sliding Shapes] S. Song and J. Xiao Sliding shapes for 3D object detection in depth images. In ECCV 14. [arXiv 15] S. Gupta et al. Inferring 3D Object Pose in RGB-D Images In arXiv 15.

3D Model Estimation

Results

AP^m

Prediction is an explicit placement of a model.

Pixels in intersection correct only when within some distance of the ground truth depth value

	detection setting						
	0.5, 5	0.5, 5	AP^r				
t_{agree}	7	∞	upper				
			bound				
bathtub	7.9	50.4	42.0				
bed	31.8	68.7	65.0				
chair	14.7	35.6	42.9				
desk	4.1	10.8	12.0				
dresser	26.3	35.0	36.1				
monitor	5.7	7.4	11.4				
night-stand	28.1	33.7	34.8				
sofa	21.8	48.5	47.4				
table	5.6	12.3	15.0				
toilet	41.8	68.4	68.4				
mean	18.8	37.1	37.5				

Future Work

3D Object Context

dinning set

Future Work

More Data

Current RGB-D datasets are really small

Algorithms far from saturation

Dataset	# Training Images	# Training Images	AP ^b	APr
NYUD2	0.8K	381	36.3	31.3
PASCAL	12K			
MS COCO	120K	795	41.2	37.5
ImageNet	1000 K		1	

More Richly Annotated Data

New metrics and corresponding annotations for detailed tasks like

- pose estimation
- part labelling

Realistic CAD models

Real high-fidelity models acquired using Kinect Fusion

Looking forward to new dataset from Princeton + Intel

model placement

Overview

Input

Color and Depth Image Pair

Re-organization

Contour Detection

Region Proposal Generation

Recognition

Semantic Segm.

Object Detection

Detailed 3D Understanding

Instance Segm.

Pose Estimation

Thank You

(most) source code online already