Three-Dimensional Perception from a Single Image

Jitendra Malik

UC Berkeley



We can perceive depth in a single

picture
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List of cues from Palmer’s Vision book

NFORMATIONSOURGE  Ocuerl Brocter  Sale - faae Qualtane
Accommodation ocular monocular static absolute quantitative
Convergence ocular binocular static absolute quantitative
Binocular Disparity optical binocular static relative quantitative
Motion Parallax optical monocular  dynamic relative quantitative
Texture Accretion/Deletion optical monocular dyanmic relative qualitative
Convergence of Parallels optical monocular static relative quantitative
Position relative to Horizon optical monocular static relative quantitative
Relative Size optical monocular static relative quantitative
Familiar Size optical monocular static absolute quantitative
Texture Gradients optical monocular static relative quantitative
Edge Interpretation optical monocular static relative qualitative
Shading and Shadows optical monocular static relative qualitative
Aerial Perspective optical monocular static relative qualitative




Accomodation/Depth of Focus

Thick Lens—> Close

=

Thin Lens—> Far



Convergence

Large Angie
=> Close

Small Angle
=> Far




Convergence angle vs. distance
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not just depth,

through a combination of various pictorial cues
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Humans perceive surface normals
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Shape from Shading




Grouping Based on Shape from Shading




Leonardo thought of it first!
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What causes the outgoing radiance at a scene patch?

X et

.Ihcmm,t}v\j rAAA:GM(L -Crm /hN Sowrcl
bhe Sowrcl

- Anzzc be Lwrean ;)3 o 3 5

v en e, w22 b4 ~

M’Q—S acz,ba«roLL Paradf\m
= Mre Sont

Two special cases:
e Specular surfaces - Outgoing radiance direction obeys angle of
incidence=angle of reflection, and co-planarity of incident 8‘
reflected rays & the surface normal.
* Lambertian surfaces - Outgoing radiance same in all directior's

S



The Lambertian model
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We often model reflectance by a combination of a Lambertian term and a specular term. If we
want to be precise, we use a BRDF (Bidirectional Reflectance Distribution function) which is a 4D
function corresponding to the ratio of outgoing radiance in a particular direction to the
incoming irradiance in some other direction. This can be measured empirically.



Shape from Shading

A surface can be described as:

Z — f(.’l? y) =0
For this surface, the surface normal can be expressed as:
V+ 2+ 52

The light source is infinitely far away:

§ = [8z; 8y; 8]

Then radiance in image plane coordinate (z,y):

—JaSz = JySy = 8-
E(z,y) = p \[1 247 )




SFS results in a partial differential equation

Z = f(z,y)
07
fI — ZI % — Z:z:(xay)
07
fy p— Zy 8—3/ — Zy(xay)

—8,: 2. (T,Y) — 8y2,(T,y) — sz)
V(L+ 2+ 1)

E(z,y) = p(

It was solved by Horn in 1970 using characteristic strips.
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Real world scenes have additional complexity...

Objects are illuminated not just by light sources, but also by
reflected light from other surfaces. In computer graphics, ray
tracing and radiosity are techniques that address this issue.

Shadows
Point Light Source

Attached Shadow

Casted Shadow
Ground Plane




Adelson’s checkershadow

Edward H. Adelson
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A and B have same luminancel

Edward H. Adelson
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Forward Opfics

shape / depth



Forward Opfics

-

L

shape / depth illumination




Forward Opfics

L
shape / depth log-shading image of Z and LL illumination

Z

S(Z,L



Forward Opfics

L
shape / depth log-shading image of Z and LL illumination

S(Z,L
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Forward Opfics

Far

L
shape / depth log-shading image of Z and LL illumination

S(Z,L
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R I=R+S(Z,L)

log-reflectance Lambertian reflectance in log-intensity




Qur problem

log-shading image of Z and L illumination

R I=R+S(Z,L)

log-reflectance Lambertian reflectance in log-intensity



Past Work



Past Work: Shape from Shading
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Basic Assumption: illumination and albedo are known.

If the reflectivity function is ¢(I,E,G), the normalized
incident light intensity at the point r = (x,y,2) is A(r) and
the intensity at the corresponding Image point L' = (x’,y’,f)

is b(r”), then:
ACr) ¢(I,E,G) = b(r")

This image Illumination equation is the main equation studied
here. When finding a solution we assume A(r) and +(I,E,G)

are known and b(::) is obtained from the image. We want to

B. K. P. Horn. Shape from shading: A method for obtaining the shape
of a smooth opaque object from one view. Technical report, MIT, 1970.



Past Work: Shape from Shading
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P. Belhumeur, D. Kriegman, and A. Yuille.
The Bas-Relief Ambiguity. IJCV, 1999.



Past Work: Shape from Shading

P. Belhumeur, D. Kriegman, and A. Yuille. J. Koenderink, A. van Doorn, C. Christou, and J. Lappin.
The Bas-Relief Ambiguity. IJCV, 1999. Shape constancy in pictorial relief. Perception, 1996.



Past Work: Shape from Shading

Ecker & Jepson, Polynomial Shape from Shading, CVPR 2010



Past Work: Shape from Shading

Ecker & Jepson, Polynomial Shape from Shading, CVPR 2010



Past Work: Lightness Recovery

Basic assumption: Shape is ignored, illumination varies slowly,
therefore all edges are reflectance edges.
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Piet Mondrian, Composition A. Oil on Canvas, 1920. E. H. Land and J. J. McCann.
Lightness and retinex theory. JOSA, 1971.



Past Work: Lightness Recovery

Horn. Determining lightness from an image. CGIP, 1974
Grosse et el., Ground-truth dataset and baseline evaluations for intrinsic image algorithms, ICCV, 2009



Past Work: Lightness Recovery

Horn. Determining lightness from an image. CGIP, 1974
Grosse et el., Ground-truth dataset and baseline evaluations for intrinsic image algorithms, ICCV, 2009



Past Work: Lightness Recovery

Horn. Determining lightness from an image. CGIP, 1974
Grosse et el., Ground-truth dataset and baseline evaluations for intrinsic image algorithms, ICCV, 2009



Past Work: Color Constancy




Past Work: Natural Image Statistics

Fig.6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only
the central region was directly analyzed (160 X 160). See the text or details.

D. Field. Relations between the statistics of natural images and the response properties of cortical cells. JOSA A, 1987.



Past Work: Natural Image Statistics
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Fig. 8. Amplitude spectra for the six images A-F, averaged across
. all orientations. The spectra have been shifted up for clarity. On
Fig.6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only these log-log coordinates the spectra fall off by a factor of roughly
the central region was directly analyzed (160 X 160). See the text or details. 1/f (aslope of ~1). Therefore the power spectra fall off as 1/f%.

D. Field. Relations between the statistics of natural images and the response properties of cortical cells. JOSA A, 1987.



Past Work: Natural Image Statistics
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Fig. 8. Amplitude spectra for the six images A-F, averaged across
all orientations. The spectra have been shifted up for clarity. On
Fig.6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only these log-log coordinates the spectra fall off by a factor of roughly
the central region was directly analyzed (160 X 160). See the text or details. 1/f (aslope of ~1). Therefore the power spectra fall off as 1/f%.

D. Field. Relations between the statistics of natural images and the response properties of cortical cells. JOSA A, 1987.

Statistical regularities arise in natural images (mostly) because of
statistical regularities in natural environmentsl!



Our Work



Shape, llumination and Reflectance
from Shading

Barron & Malik, CVPR 2011, CVPR 2012, ECCV 2012

INnput:

Qutput:

Shape Albedo Shading lllumination
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Problem Formulation

maZ,),c}%I,I}Jize P(R)P(Z)P(L)

subject to I=R+S5(Z,L)

“Search for the most likely explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Problem Formulation

migimize  g(R) + f(2) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Some Explanations




Some Explanations




Some Explanations




Some Explanations




Some Explanations




Some Explanations

f(2) = 18.87

g(R) = 0.00
F(Z) + g(R) = 18.87



Some Explanations

F(2Z) = 18.87

g(R) = 0.00 g(R) 19.12
f(Z) + g(R) = 18.87 f(Z) + g(R) =19.91



Some Explanations

f(2) = 18.87

g(R) = 0.00 g(R) 19.12 g(R) = 9.66
f(Z)+ g(R) = 18.87 f(Z)+g(R) =19.91 f(Z)+g(R)=11.93



Problem Formulation

migimize  g(R) + f(2) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Problem Formulation

migimize  g(R) + f(2) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



What do we know about reflectance?



What do we know about reflectance?

1) Piecewise smooth
(variation is small and sparse)

K
g(R) = As Z Z log (Z arN (R; — Rj;O,ak))

1 JEN () k=1



What do we know about reflectance?

1) Piecewise smooth
(variation is small and sparse)

2) Palette is small
(distribution is low-entropy)

X (R; — R;)
g(R) =X} ) log (ZakN(Ri—Rj;O,Gk)) — Aelog (ZZeXp( 402 ))

i JEN(7) k=1



What do we know about reflectance?

1) Piecewise smooth
(variation is small and sparse)

2) Palette is small
(distribution is low-entropy)

3) Some colors are common
(maximize likelihood under density model)

K 2
g(R) = )\SZ Z log (Z ap N (R; — Rj;O,ak)) — Xelog (Zzexp (_ (Ri4_g2Rj) )) + )\GZF(RZ-)
k=1 i g e i

i JEN(3)



Reflectance:Smoothness
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Reflectance:Smoothness
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Reflectance:Smoothness

log-likelihood




Reflectance:Smoothness

log-likelihood



Reflectance: Minimal Entropy



Reflectance: Minimal Entropy




Reflectance: Minimal Entropy




Reflectance: Minimal Entropy

(a) Correct Everything
ge(R) = 0.913



Reflectance: Minimal Entropy

(a) Correct Everything
ge(R) = 0.913

(b) Wrong Shape (C) Wrong Light
ge(R) = 1.325 ge(R) = 2.366



Reflectance: Absolute Color

log(R)

(a) Training reflectances



Reflectance: Absolute Color
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109(G) 4 g 109(G)
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(a) Training reflectances (b) Our PDF of reflectance



Reflectance: Absolute Color

log(G)

1og(G)
log(R) log(R)

(a) Training reflectances (b) Our PDF of reflectance

Random Samples

4.48 8.50 9.25 9.98 10.71 11.54 12.41
Cost

(C) Reflectances sorted by cost



Problem Formulation

migimize  g(R) + f(2) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Problem Formulation

migimize  g(R) + f(2) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



What do we know about shapes?



What do we know about shapes?

1) Piecewise smooth
(variation in mean curvature is small and sparse)

K
F(Z2)=X>_ ) log (Z ay N (H(Z); — H(Z); ;0,0'k)) :

t JEN(i)



What do we know about shapes?

1) Piecewise smooth
(variation in mean curvature is small and sparse)

2) Face outward at the occluding contour

K
F(Z)=X) > log (ZakN(H(Z)i — H(Z), ;O,Uk)) Ay \/(Ni”’(Z) —n2)* + (N}(2) —n¥)* -

i JEN(7) ieC



What do we know about shapes?

1) Piecewise smooth
(variation in mean curvature is small and sparse)

2) Face outward at the occluding contour

3) Tend to be fronto-parallel
(slant tends to be small)

=X ), Y log (Zak./\f — H(Z);;0 ak)) + e Z\/ 2(Z) —n®)? + (NY(Z) —n¥)® —Xp) log (2NZ,(Z))

i JEN(7)



Shapes:Smoothness



Shapes:Smoothness

Z

What's a good representation of shape for imposing priors?



Shapes:Smoothness

H(Z)

Mean Curvature of Z
(zero on planes, constant on cylinders and spheres)



Shapes:Smoothness

VH(Z)

Variation of Mean Curvature of Z
“bending”



Shapes:Smoothness
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Shapes:Smoothness
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Shapes:Smoothness




Shapes:Smoothness

log-likelihood




Shapes:Occluding Contours



Shapes:Occluding Contours




Shapes:Occluding Contours

orthogonal
projection
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Shapes:Occluding Contours




Shapes:Fronto-Parallel



Shapes:Fronto-Parallel

If we observe a surface,
it is more likely that it faces us (N = 1)
than that it is perpendicular to us (N = 0)



Shapes:Fronto-Parallel

X
7/

Better

8
.@ /D Bad
s -

If we observe a surface,
it is more likely that it faces us (N = 1)
than that it is perpendicular to us (N = 0)



Problem Formulation

migimize  g(R) + £(2) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Problem Formulation

migimize  g(R) + f(Z) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



What do we know about light?

1) Global illumination is well modeled with spherical harmonics:

Q -<.. @€ O SC€ O™® -



What do we know about light?

1) Global illumination is well modeled with spherical harmonics:

@ 0€0NQCOe:

2) Spherical harmonic coefficients are well-modeled with a Gaussian

h(L) = Ap(L — NL)TEF(L — pKr)



What do we know about light?
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our dataset




What do we know about light?
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Problem Formulation

migimize  g(R) + f(Z) + (L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Problem Formulation

migimize  g(R) + f(2) + h(L)

subject to I=R+5(Z, L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Problem Formulation

mirlzi,rilize gl —S(Z,L))+ f(Z)+ h(L)

“Search for the least costly explanation
(shape Z, log-reflectance R and illumination L)
that together exactly reconstructs log-image I’



Optimization

Straightforward L-BFGS with respect to Zfails!




Optimization

Straightforward L-BFGS with respect to Zfails!

L(Z)
Instead, op’rlmlze over L(Z) a Laplacian pyramid of 7



Optimization

Straightforward L-BFGS with respect to Zfails!

L(Z)
Instead, op’rlmlze over L(Z) a Laplacian pyramid of 7
[@,VYE] — f,(Y) .
Psuedocode: Z+ LTY(Y)

Vyf — Q(VZE)



Evaluation:Known Lighting

(a) Input Image &
[1lumination



Evaluation:Known Lighting

(a) Input Image & | (b) Ground Truth
[llumination




Evaluation:Known Lighting

(a) Input Image &
[llumination

(b) Ground Truth

(¢) Our Model



(a) Input Image &
Illumination

Evaluation:Known Lighting

(b) Ground Truth

(c) Our Model

(d) Retinex[5, 4] +
SFS

(e) Tappen et al.
2005[10] + SFS

(f) Barron & Malik
2010[1]

(g) J. Shen et al.
2010[8] + SES

(h) L. Shen & Yeo
2010[9] + SFS



(i) Input Image &
Illumination

Evaluation:Known Lighting

(j) Ground Truth

)0

(k) Our Model

(1) Retinex[5, 4] +
SFS

(m) Tappen et al.

2005[10] + SFS

(n) Barron & Malik
2010[1]

(0) J. Shen et al.

2010[%] + SFS

(p) L. Shen & Yeo
2010[9] + SFS
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(q) Input Image &
Illumination

Evaluation:Known Lighting

(r) Ground Truth

(Ss) Our Model

(t) Retinex[5, 4] +
SFS

(u) Tappen et al.
2005[10] + SFS

(v) Barron & Malik
2010[1]

(w) J. Shen et al.
2010[%] + SFS

(Xx) L. Shen & Yeo
2010[9] + SFS



Evaluation:Unknown Lighting




Unknown Lighting

1oN.

Evaluat




Evaluation:Known vs Unknown

(a) Input Image (b) Ground Truth (¢) Known (d) Unknown
[1lumination [1lumination



Evaluation:Real World Images




Evaluation:Real World Images




Evaluation:Real World Images




Evaluation:The Numbers

Known Illumination

Algorithm Avg.

Flat Baseline 0.2004
Retinex + SFS 0.2009
Tappen et al. 2005 + SFS 0.1761
Barron & Malik 2011 0.1682
J. Shen et al. 2011 + SES 0.2376
Our Model (All Priors) 0.0856



Evaluation:The Numbers

Known Illumination

Algorithm Avg.

Flat Baseline 0.2004
Retinex + SFS 0.2009
Tappen et al. 2005 + SFS 0.1761
Barron & Malik 2011 0.1682
J. Shen et al. 2011 + SFS 0.2376
Our Shape from Contour 0.1394
Our Model (No ||V A||) 0.1070
Our Model (No ||[VH(Z)||) 0.1244
Our Model (No Flatness) 0.1002
Our Model (No Contour) 0.1082
Our Model (No Albedo Entropy)| 0.0865
Our Model (All Priors) 0.0856



Evaluation:The Numbers

Known Illumination

Algorithm Avg.

Flat Baseline 0.2004
Retinex + SFS 0.2009
Tappen et al. 2005 + SFS 0.1761
Barron & Malik 2011 0.1682
J. Shen et al. 2011 + SFS 0.2376
Our Shape from Contour 0.1394
Our Model (No ||V A||) 0.1070
Our Model (No ||[VH(Z)||) 0.1244
Our Model (No Flatness) 0.1002
Our Model (No Contour) 0.1082
Our Model (No Albedo Entropy)| 0.0865
Our Model (All Priors) 0.0856



Evaluation:The Numbers

Known Illumination

Algorithm Z-MAE I-MSE LMSE S-MSE p-MSE | Avg.

Flat Baseline 25.56  0.1369 0.0385 0.0563  0.0427 | 0.2004
Retinex + SFS 82.06  0.1795 0.0289  0.0291  0.0264 | 0.2009
Tappen et al. 2005 + SFS 43.30  0.1522  0.0292  0.0343  0.0256 | 0.1761
Barron & Malik 2011 21.10  0.0829 0.0584  0.0282  0.0468 | 0.1682
J. Shen et al. 2011 + SFS 48.51  0.1629  0.0445 0.0478  0.0450 | 0.2376
Our Shape from Contour 21.42  0.0805 0.0350 0.0280  0.0311 | 0.1394
Our Model (No ||V A||) 17.50  0.0620 0.0289  0.0188  0.0238 | 0.1070
Our Model (No ||[VH(Z)||) 21.81  0.1011  0.0341  0.0205 0.0194 | 0.1244
Our Model (No Flatness) 35.11  0.0651  0.0190 0.0148  0.0157 | 0.1002
Our Model (No Contour) 28.45  0.0811 0.0204 0.0167  0.0189 | 0.1082
Our Model (No Albedo Entropy)| 21.23  0.0523  0.0196  0.0138  0.0162 | 0.0865
Our Model (All Priors) 21.86  0.0521 0.0191  0.0136  0.0156 | 0.0856



Evaluation:The Numbers

Known Illumination

Algorithm Z-MAE I-MSE LMSE S-MSE p-MSE | Avg.

Flat Baseline 25.56  0.1369  0.0385 0.0563  0.0427 [ 0.2004
Retinex + SFS 82.06  0.1795 0.0289  0.0291  0.0264 | 0.2009
Tappen et al. 2005 + SFS 43.30  0.1522  0.0292  0.0343  0.0256 | 0.1761
Barron & Malik 2011 21.10  0.0829  0.0584 0.0282  0.0468 | 0.1682
J. Shen et al. 2011 + SFS 48.51  0.1629  0.0445 0.0478  0.0450 | 0.2376
Our Shape from Contour 21.42  0.0805 0.0350 0.0280 0.0311 | 0.1394
Our Model (No ||V A||) 17.50  0.0620 0.0289  0.0188  0.0238 | 0.1070
Our Model (No ||[VH (Z)||) 21.81  0.1011  0.0341  0.0205 0.0194 | 0.1244
Our Model (No Flatness) 35.11  0.0651  0.0190 0.0148  0.0157 | 0.1002
Our Model (No Contour) 28.45  0.0811  0.0204 0.0167  0.0189 | 0.1082
Our Model (No Albedo Entropy)| 21.23  0.0523  0.0196  0.0138  0.0162 | 0.0865
Our Model (All Priors) 21.86  0.0521 0.0191  0.0136  0.0156 | 0.0856

Unknown Illumination
Our Model (All Priors) \ 19.41 0.0577  0.0197  0.0178  0.0193 | 0.0946



Color!



Color: The Good

Color light tells you a lot about shape

(a) Achromatic (b) Achromatic

illumination isophotes



Color: The Good

Color light tells you a lot about shape

(a) Achromatic (b) Achromatic

illumination isophotes

(¢) Chromatic (d) Chromatic

illumination isophotes



Color: The Good

Color images help distinguish between albedo and shading...

Genhler et al.
Input Image (the best-performing
intrinsic image algorithm)



Color: The Bad

...but things get tricky if ilumination isn’t white
(and illumination is almost never white)

Gehler et al.
Input Image (the best-performing
intrinsic image algorithm)



Input Image

Results

Ground Truth

4

Our Model
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Results: Laboratory lllumination

Known Illumination

Algorithm |N-MSE s-MSE r-MSE rs-MSE L-MSEH Avg.
Flat Baseline 0.6141 0.0572 0.0452 0.0354 - 0.0866
Retinex [2,5] + SFS [1] 0.8412 0.0204 0.0186 0.0163 - 0.0477
Tappen et al. 2005 [14] + SFS [1] | 0.7052 0.0361 0.0379 0.0347 - 0.0760
Shen et al.2011 [15] 4+ SFS [1] 0.9232 0.0528 0.0458 0.0398 - 0.0971
Gehler et al.2011 [12] 4+ SFS [1] 0.6342 0.0106 0.0101 0.0131 - 0.0307
Barron & Malik 2012A [1] 0.2032 0.0142 0.0160 0.0181 - 0.0302
Shape from Contour [1] 0.2464 0.0296 0.0412 0.0309 - 0.0552
Our Model (Complete) 0.2151 0.0066 0.0115 0.0133 - 0.0215
Unknown Illumination
Barron & Malik 2012A [1] 0.1975 0.0194 0.0224 0.0190 0.0247 || 0.0332
Our Model (Complete) 0.2793 0.0075 0.0112 0.0136 0.0085 || 0.0188



Results: Natural lllumination

OQU'

Known Illumination

Algorithm |N-MSE s-MSE r-MSE rs-MSE L-MSE|| Avg.
Flat Baseline 0.6141 0.0246 0.0243 0.0125 - 0.0463
Retinex [2, 5] + SF'S [1] 0.4258 0.0174 0.0174 0.0083 - 0.0322
Tappen et al. 2005 [14] + SFS [1] 0.6707 0.0255 0.0280 0.0268 - 0.0599
Gehler et al. 2011 [12] + SFS [1] 0.5549 0.0162 0.0150 0.0105 - 0.0346
Gehler et al. 2011 [12] + [11] + SFS [1]| 0.6282 0.0163 0.0164 0.0106 - 0.0365
Barron & Malik 2012A [1] 0.2044 0.0092 0.0094 0.0081 - 0.0195
Shape from Contour [1] 0.2502 0.0126 0.0163 0.0106 - 0.0271
Our Model (Complete) 0.0867 0.0022 0.0017 0.0026 - 0.0054
Unknown Illumination
Barron & Malik 2012A [1] 0.2172 0.0193 0.0188 0.0094 0.0206 || 0.0273
Our Model (Complete) 0.2348 0.0060 0.0049 0.0042 0.0084 (|0.0119
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Evaluation: Graphics!
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Conclusions

« Unification shape-from-shading, intrinsic images, and color
constancy

« Solving the unified problem > Solving any sub-problem

« Noft (and can never be?) metrically accurate



Closing thoughts...

“Nothing of what is visible, apart from light and color, can be
perceived by pure sensation, but only by discernment,
inference, and recognition, in addition to sensation.”

0 r 965-1040

F.(p) — [r/ cos o 0] Alhazen

1] . . .
Vision can only be the result of some form of unconscious
inferences: a matter of making assumptions and conclusions
. . . "
from incomplete data, based on previous experiences.

Hermann von Helmholtz
1821-1894




Texture gradient cues
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Shape from Texture for Smooth Curved Surfaces
in Perspective Projection

JONAS GARDING
Computational Vision and Active Perception Laboratory (CVAP), Department of Numerical Analysis and
Computing Science, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Abstract. Projective distortion of surface texture observed in a perspective image can provide direct
information about the shape of the underlying surface. Previous theories have generally concerned
planar surfaces; this paper presents a systematic analysis of first- and second-order texture distortion
cues for the case of a smooth, curved surface. In particular, several kinds of texture gradients are
analyzcd and arc rclated to surface orientation and surface curvature. The local estimates obtained
from these cues can be integrated to obtain a global surface shape, and it is shown that the two
surfaces resulting from the well-known tilt ambiguity in the local foreshortening cue typically have
qualitatively different shapes. As an example of a practical application of the analysis, a shape-from-
texture algorithm based on local orientation-selective filtering is described, and some experimental
results are shown.
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Computing Local Surface Orientation and Shape from Texture
for Curved Surfaces

JITENDRA MALIK AND RUTH ROSENHOLTZ*
Department of Electrical Engineering and Computer Science, University of California at Berkeley,
Berkeley, CA 94720
malik@cs berkeley edu
rmuth@parc xerox.com

Received April 5, 1994; Accepted September 27, 1994

Abstract. Shape from texture 1s best analyzed 1n two stages. analogous to stereopsis and structure from motion: (a)
Computing the “texture distortion” from the image, and (b) Interpreting the “texture distortion’ to infer the orientation
and shape of the surface in the scene. We model the texture distortion for a given point and direction on the image
plane as an affine transformation and derive the relationship between the parameters of this transformation and the
shape parameters. We have developed a technique for estimating affine transforms between nearby image patches
which 1s based on solving a system of linear constraints derived from a differential analysis. One need not explicitly
1dentify texels or make restrictive assumptions about the nature of the texture such as isotropy. We use non-linear
minimization of a least squares error criterion to recover the surface orientation (slant and tilt) and shape (principal
curvatures and directions) based on the estimated affine transforms in a number of different directions. A simple
linear algorithm based on singular value decomposition of the linear parts of the affine transforms provides the initial
guess for the minimization procedure. Experimental results on both planar and curved surfaces under perspective
projection demonstrate good estimates for both orientation and shape. A sensitivity analysis yields predictions for
both computer vision algorithms and human perception of shape from texture.
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Projection mapping

Viewing sphere X Surface S

R :

F(p)

t

F.(p) = [r/c(t))sa S]
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FIGURE 2. The texture distortion between two image patches

can be modeled as an affine transformation: |z’, ¥/|” = Az, 3" +

[Az, Ayl", where A is a 2 x 2 matrix. A depends on the local surface

shape and orientation. A computational mode] of how this affine

texture distortion can be used to recover the Jocal surface geometry has
been presented in (Malik & Rosenholtz, 1994, 1996).
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