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Face Recognition by Humans:
Nineteen Results All Computer
Vision Researchers Should
Know About

Increased knowledge about the ways people recognize each other may help to
C C
guide efforts to develop practical automatic face-recognition systems.
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Recognition as a function of available spatial resolution
Result 1:  Humans can recognize familiar faces in
very low-resolution images.
Result 2: The ability to tolerate degradations in-
creases with familiarity.

Result 3:  High-frequency information by itself is
insufficient for good face recognition
performance.

The nature of processing: Piecemeal versus holistic
Result 4: Facial features are processed holistically.
Result 5:  Of the different facial features, eyebrows
are among the most important for
recognition.

Result 6:  The important configural relationships
appear to be independent across the width
and height dimensions.



The nature of cues used: Pigmentation, shape and motion

Result 7:

Result 8:

Result 9:

Result 10:

Result 11:

Result 12:

Result 13:

Result 14:

Face-shape appears to be encoded in a
slightly caricatured manner.

Prolonged face viewing can lead to high-
level aftereffects, which suggest proto-
type-based encoding.

Pigmentation cues are at least as impor-
tant as shape cues.

Color cues play a significant role, espe-
cially when shape cues are degraded.
Contrast polarity inversion dramatically
impairs recognition performance, possi-
bly due to compromised ability to use
pigmentation cues.

Illumination changes influence general-
ization.

View-generalization appears to be medi-
ated by temporal association.

Motion of faces appears to facilitate
subsequent recognition.



Developmental progression
Result 15: The visual system starts with a rudimen-
tary preference for face-like patterns.
Result 16: The visual system progresses from a piece-
meal to a holistic strategy over the first
several years of life.

Neural underpinnings

Result 17: The human visual system appears to de-
vote specialized neural resources for face
perception.

Result 18: Latency of responses to faces in infero-
temporal (IT) cortex is about 120 ms, sug-
gesting a largely feedforward computation.

Result 19: Facial identity and expression might be
processed by separate systems.






Fig. 1. Unlike current machine-based systems, human observers are able to handle significant degradations in face images. For instance,
subjects are able to recognize more than half of all familiar faces shown to them at the resolution depicted here. Individuals shown in
order are: Michael Jordan, Woody Allen, Goldie Hawn, Bill Clinton, Tom Hanks, Saddam Hussein, Elvis Presley, Jay Leno,

Dustin Hoffman, Prince Charles, Cher, and Richard Nixon.






Fig. 3. Images which contain exclusively contour information
are very difficult to recognize, suggesting that high-spatial
frequency information, by itself, is not an adequate cue for
human face recognition processes. Shown here are

Jim Carrey (left) and Kevin Costner.






Fig. 4. Try to name the famous faces depicted in the two halves of the
left image. Now try the right image. Subjects find it much more difficult
to perform this task when the halves are aligned (left) compared to
misaligned halves (right), presumably because holistic processing
interacts (and in this case, interferes) with feature-based processing.
The two individuals shown here are Woody Allen and Oprah Winfrey.






Fig. 6. Even drastic compressions of faces do not render them
unrecognizable. Here, celebrity faces have been compressed to 25%
of their original width. Yet, recognition performance with this set

is the same as that obtained with the original faces.
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Fig. 7. Example of a face caricature. (A) Average female face for a
particular face population is displayed, as well as a (B) “‘veridical’’
image of an exemplar face. (C) We create a caricatured version

of the exemplar by moving away from the norm, thus exaggerating
differences between the average face and the exemplar. Result is

a face with ““caricatured” shape and pigmentation. Such caricatures
are recognized as well or better than veridical images.



Fig. 8. Faces and their assodated “anti-faces” in a schematic face
space. Prolonged viewing of a face within a green circle will cause
the central face to be misidentified as the individual within

the red circle along the same “identity trajectory” (from [45]).



Fig. 9. Faces in the bottom row are all images of laser-scanned faces.
They differ from one another in terms of both shape and pigmentation.
Faces in the middle row differ from one another in terms of their
pigmentation but not their shape, while faces in the top row differ
from one another in terms of their shape but not their pigmentation.
From the fact that the faces in either the top or middle row do not
look the same as each other, itis evident that both shape and
pigmentation cues play a role in facial identity.



Fig. 11. Image contains several well-known singers, whose likenesses
would be easily recognizable to many readers of this publication.

However, when presented in negative contrast, it is difficult,
if not impossible, to recognize them. (Photographed during the

recording of “We Are the World’’ song.)



Humination Hlumination
from left from right

Fig. 12. Stimuli from Braje et al. [2]. These two images demonstrate
the kind of lighting used in this experiment. After being shown an
image like the one on the left, subjects were well above chance at
determining whether a subsequently presented image sucdh as

the one on the right represented the same or a different individual
(in this case the same).



(a) (b)
Fig. 15. (a) Newborns preferentially orient their gaze to face-like
pattern on top, rather than one shown on bottom, suggesting some
innately specified representation for faces (from [36]). (b) As a

counterpoint to idea of innate preferences for faces, Simion et al. [73]
have shown that newborns consistently prefer top-heavy patterns



Faces Schematici Hpiacts
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Fig. 17. upper left, an example of FFA in one subject, showing
right-hemisphere lateralization. Also induded here are example
stimuli from Tong et al. [80], together with amount of percent signal
change observed in FFA for each type of image. Photographs of human
and animal faces elicit strong responses, while schematic faces and
objects do not. This response profile may place important constraints
on the selectivity and generality of artificial recognition systems.



Fig. 18. Example of a monkey IT cell’s responses to variations on a face
stimulus (from Desimone et al. [17]). Response is robust to many
degradations of the primate face (save for scrambling) and also
responds very well to a human face. Lack of a response to the hand
indicates that this cell is not just interested in body parts, but is
specific to faces. Cells in IT cortex can produce responses such as
these with a latency of about 120 ms.



The Thatcher lllusion (Thompson 1980)
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Key ldeas

 “Frontalize” the face, so that the features can
be computed in standard position

* Train a neural network to learn the features
that are “identity specific” by treating
examples of the same individual’s face as
instances of the same category

* Use “local” receptive fields in higher layers, no
longer maintaining the shift-invariant
architecture of lower layers



(h)

Figure 1. Alignment pipeline. (a) The detected face, with 6 initial fidu-
cial points. (b) The induced 2D-aligned crop. (c) 67 fiducial points on
the 2D-aligned crop with their corresponding Delaunay triangulation, we
added triangles on the contour to avoid discontinuities. (d) The reference
3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle
visibility w.r.t. to the fitted 3D-2D camera; darker triangles are less visible.
(f) The 67 fiducial points induced by the 3D model that are used to direct
the piece-wise affine warpping. (g) The final frontalized crop. (h) A new
view generated by the 3D model (not used in this paper).
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Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.
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Figure 3. The ROC curves on the LFW dataset. Best viewed in color.







