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Pose and Shape

e Pose: The position and orientation of the object with respect to the
camera. This is specified by 6 numbers (3 for its translation, 3 for rota-
tion). For example, we might consider the coordinates of the centroid
of the object relative to the center of projection, and the rotation of a
coordinate frame on the object with respect to that of the camera.

e Shape: The coordinates of the points of an object relative to a coor-
dinate frame on the object. These remain invariant when the object
undergoes rotations and translations.



Definition 1 FEuclidean transformations (also known as isometries) are trans-
formations that preserve distances between pairs of points.

lv(a) — (b)|| = [la — bl] (3.1)
Translations, ¥)(a) = a + t, are isometries, since

[4(a) = (b)|| = [[t +a—(t +b)|| = [la—Db] (3.2)



We now define orthogonal transformations; these constitute another ma-
jor class of isometries.

Definition 2 A linear transformation: 1»(a) = Aa, for some matriz A.

Definition 3 Orthogonal transformations are linear transformations which
preserve inner products.

a-b=1(a)-(b) (3.3)

Rotations and reflections are examples
of orthogonal transformations



Rigid body motions
(Euclidean transformations / isometries)

 Theorem: Any rigid body motion can be
expressed as an orthogonal transformation
followed by a translation.

Y(a) = Aa+t
A o an etRogoal malhix



Property 1 Orthogonal transformations preserve norms.

a-a=d(a) d@) = [l = |[¢()] (3.4)



Property 2 Orthogonal transformations are isometries.

(v(a) = ¥(b)) - (V(a) — (b)) = (a—b)-(a—h) (3.5)
[ (@)|[* + [[¢(b)]]* = 2((a) - (b)) = |[a*+ [[b]|> = 2(a- b) (3.6)
By property 1,
[o@I7 = |lall® (3.7)
[o®)I[* = [[b]J. (3.8)
By definition 3,
Y(a)-¥(b) =a-b. (3.9)

Thus, equality holds.



Orthogonal Matrices

Let ¢ be an orthogonal transformation whose action we can represent by ma-
trix multiplication, ©»(a) = Aa. Then, because it preserves inner products:

U(a)-(b) =a'b. (3.10)
By substitution,
U(a)-(b) = (Aa)l(Ab) (3.11)
— a’ATAb. (3.12)
Thus,
alb=alATAb — ATA=1 — AT =A"1. (3.13)

Note that det(A)? = 1 which implies that det(A) = +1 or —1. Each
column of A has norm 1, and is orthogonal to the other column.



Orthogonal Matrices in 2D

In 2D, these constraints put together force A to be one of two types of
matrices.

cosf —sind cosf siné
. or | .
sinf@ cos#@ sinf —cos#

v v
rotation, det=+1 reflection, det=—1

Under a rotation by angle 6,

1 cos 6 | 0 —sin#
— | . anc —
0 sin 1 cos 6
The reflection matrix above corresponds to reflection around the line with
angle g (verify). Note that two rotations one after the other give another

rotation, while two reflections give us a rotation.



Orthogonal Matrices in 3D

Let us now construct some examples in 3D. Just as in 2D, rotations
are characterized by orthogonal matrices with det = +1. For orthogonal
matrices, each column vector has length 1, and the dot product of any two
different columns is 0. This gives rise to six constraints (3 pairwise dot
product constraints, and 3 length constraints), so for a 3 dimensional rotation

martrix
|- a1 a19 ai1s -‘

A = a91 99 A93
\\(131 as9 (L33J

with 9 total parameters, there are really only three free parameters. There

(3.14)



e Rotation about z-axis by #:

R:

e Rotation about x-axis by 6:

R:
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Parameterizing Rotations in 3D

Recall that rotation matrices have the property that each column vector
has length 1 and the dot product of any 2 different columns is 0. These
6 constraints leave only 3 degrees of freedom. Here are some alternative
notations used to represent orthogonal matrices in 3-D:

e Euler angles which specify rotations about 3 axes

e Axis plus amount of rotation

e (Quaternions which generalize complex numbers from 2-D to 3-D. (Note,
a complex number can represent a rotation in 2-D)

We will use the axis and rotation as the preferred representation of an
orthogonal matrix: s, #, where s is the unit vector of the axis of rotation and
f is the amount of rotation.



Skew symmetric matrices can be used to represent “cross” products or vector
products. Recall:

aq by "asbs — ashs |
a9 A b2 = a3b1 — a1b3
as b3 a by — asby
We define a as:
) 0 —as as |
A% as 0 —a
—a9 Qg 0

Thus, multiplying a by any vector gives:

b1 [ —asby + azbs
ﬁ b2 = a3b1 — a1b3
_b3_ _—a2b1 == (llbg_

—aAb



Consider now, the equation of motion of a point ¢ on a rotating body:

q(t) =w A q(t)
where the direction of w specifies the axis of rotation and ||w|| specifies the
angular speed. Rewriting with @&

q(t) = wq(t)



Consider now, the equation of motion of a point ¢ on a rotating body:

q(t) =w A q(t)
where the direction of w specifies the axis of rotation and ||w|| specifies the
angular speed. Rewriting with &

q(t) = wq(t)
The solution to this differential equation uses the matrix exponential
q(t) = e*'q(0)
Where,

wt)2 (wt)®
(2!) +(3!)

et =140t + + ...



Collecting the odd and even terms in the above equation, we get to Roderigues
Formula for a rotation matrix R.

R = e
=1+sin¢ S+ (1 — cos¢)s?

Here s is a unit vector along w and ¢ = ||w||t is the total amount of rotation.
Given an axis of rotation, s, and amount of rotation ¢ we can construct S
and plug it in.



The composition of two isometries is an isometry

Yi(a) = Aja+ t; Yo (a) = Aga + ts.

Yroys(a) = Aj(Aza+ty) + 1t
= A{Asa+ Aty + t4
= (AjAz)a+ (Ats +tq)
— Asa -+ ts

where A3 A A2 and t3 = A tg —+ t3
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Affine transformations

e Definition: An affine transformation is a
nonsingular linear transformation followed
by a translation.

Y(a) = Aa+t






Number of parameters required to
specify isometry vs. affine transform
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Invariants under transformation
(Properties that remain unchanged)
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The big picture ...

A=T t-o
A nNJ
TOC T LITY P EFine

TRANSFORMS

But are affine transforms as general as we need to be?



Projective Transformations

Under perspective projection, parallel lines can
map to lines that intersect. Therefore, this cannot
be modeled by an affine transform!

Projective transformations are a more general
family which includes affine transforms and

perspective projections.
Projective transformations are linear

transformations using homogeneous
coordinates.

We will study them later in the course.



