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Different kinds of images

* Radiance images, where a pixel value
corresponds to the radiance from some point
in the scene in the direction of the camera.

* Other modalities
— X-rays, MRI...
— Light Microscopy, Electron Microscopy...
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Canonical Image Processing problems

Image Restoration

— denoising

— deblurring

Image Compression

— JPEG, JPEG2000, MPEG..
Computing Field Properties
— orientation

— optical flow

— disparity

Locating Structural Features

— corners
— edges



Image Restoration
(lookup Wikipedia for more details)

* Based on priors of what the “true” image should be like.
Typically the world consists of opaque piecewise smooth
surfaces, and illumination is also piecewise smooth, therefore
the resulting radiance images are piecewise smooth.

 Some techniques
— Median filtering
— Gaussian smoothing
— Anisotropic diffusion
— Non-Local means
— Deconvolution



Image Compression

* Based on prior distributions on natural
images, as well as properties of the human
visual system, which is more sensitive to some

error than others



Computing field properties

these are defined at every pixel (x,y)

 QOrientation

— at every pixel, one can define a local orientation by
computing the gradient of the image

* Optical Flow

— at every pixel, a vector corresponding to the movement
from one time frame to the next

* Binocular Disparity

— at every pixel, a vector corresponding to the displacement
of the corresponding point from the left to the right image



Locating Structural Features

* Edges are curves in the image, across which the

brightness changes “a lot” /}\

 Corners/Junctions
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Edges detected in an image




Edge Detection

Consider a one dimensional image, which 1s a scanline of a two dimensional
mage:
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However...

* Differentiation amplifies noise
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* Compensate by Gaussian smoothing

* Both of these are examples of convolution



Edge detection in 1D
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Figure 248 Top: Intensity profile I(z) along a one-dimensional section across a step
edge. Middle: The derivative of intensity, I'(z). Large values of this function correspond
to edges, but the function is noisy. Bottom: The derivative of a smoothed version of the
intensity, (I * G, )’, which can be computed in one step as the convolution I * G/ . The noisy
candidate edge at x = 75 has disappeared.



Convolution
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Implementation Details

* |Images are 2D arrays of numbers, so how does
one implement the process of computing
derivatives, gradients etc?

* The solution: use discrete convolution. In the
formula for convolution, replace integral by
sum. You can find an exposition in the
Wikipedia entry on convolution, also in
Wolfram MathWorld




An example
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An example
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An example
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An example
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An example
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The 1D Gaussian and its derivatives
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G' (z)’s maxima/minima occur at G (z)’s zeros. And, we can see that
G.(z) is an odd symmetric function and G () is an even symmetric function.



An important observation

Taking a derivative is a linear operation. Since differentiation is linear, it can
be performed by convolution with some function h. Using the commutativity
and associativity properties of convolution, we can show that

(Ixf)=Uxf)xh=Txh)xf=Ixf

By similar reasoning, we can show that (I x f)' = I * f’



Edge detection in 1D
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Figure 248 Top: Intensity profile I(z) along a one-dimensional section across a step
edge. Middle: The derivative of intensity, I'(z). Large values of this function correspond
to edges, but the function is noisy. Bottom: The derivative of a smoothed version of the
intensity, (I * G, )’, which can be computed in one step as the convolution I * G/ . The noisy
candidate edge at x = 75 has disappeared.



Two Dimensional Gaussian
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Image convolved with 2D Gaussian




Oriented Gaussian Derivatives in 2D

filz,y) = G, (2)Goy(y) (10.4)
fo(z,y) = G7, (2)Goy (y) (10.5)

We also consider rotated versions of these Gaussian derivative functions.

Roty f1 = G, (u)Go, (V) (10.6)
ROtng — GZI( o (107)
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These are useful when we convolve with 2D images, e.g. to detect edges at
different orientations.
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Oriented Gaussian First and Second Derivatives
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Computing Orientation
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), and at a vertical edge, VI = (AO). In
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At a horizontal edge, VI.= (]61

VI [cosb
\V I sin 6
This gives us a # = #(x,y) at every pixel, which defines the edge orientation
at that pixel.
If VI 1s null or very close to 0, then the information given by 6 1s not

reliable: we typically use ||[VI|| as a confidence measure, and for ||VI|| below
some threshold, we do not declare a direction 6.

Typiclly, we cmpue 7 (1 KGo) 15 hardle

general, we have



