Handwritten digit recognition

Handwritten digit recognition
(MNIST,USPS)

£

LeCun’s Convolutional Neural Networks variations (0.8%,
0.6% and 0.4% on MNIST)

Tangent Distance(Simard, LeCun & Denker: 2.5% on USPS)
Randomized Decision Trees (Amit, Geman & Wilder, 0.8%)
SVM on orientation histograms(Maji & Malik, 0.8%)

—hboTFOLO rmN
T NS T WS
o F 7P O |0 — T Y N X
DN S~ xCH -
8 ~~T\wMNOI
N QY NN O
NN NN N NS
PO N=—n ey o
O N -0 Ad -\
MNAY T N N

Fie. 4. Size-normalized examples from the MNIST database.

The MNIST DATABASE of handwritten digits
yvann.lecun.com/exdb/mnist/ e
Yann LeCun & Corinna Cortes

* Has a training set of 60 K examples (6K examples
for each digit), and a test set of 10K examples.

 Each digitis a 28 x 28 pixel grey level image. The
digit itself occupies the central 20 x 20 pixels, and
the center of mass lies at the center of the box.

 “Itis a good database for people who want to try learning
techniques and pattern recognition methods on real-world

data while spending minimal efforts on preprocessing and
formatting.”

The machine learning approach to
object recognition

* Training time
— Compute feature vectors for positive and negative
examples of image patches

— Train a classifier

* Test Time
— Compute feature vector on image patch
— Evaluate classifier

Let us take an example...

Lmage

Let us take an example...

= |
wi F ecalnre
‘ e Sof
|| W\lé
| | 9,
11 (\l /’7‘5
0l-5\He)
,'5\\ 0\0 05
e v
Noke Mok fave ot S |
Senverak wa—jcx:’a“st"“‘r e,
o feokiae edor. Thin oo 0
oL X &amn \O)

In feature space, positive and negative
examples are just points...

b ¢ .
Y ’ '
. ’ (7
\ . " . ’
J » ' 'S \ v
\ v . e ¢
\ [4
’
\ v ¢ . N ¢
L 4 °
3 . ° —
N\ aB .
PR S ' y\ﬂd'v&' ,0_63} o
‘ S AT

How do we classify a new point?

3 0
r
d ¢ '
e Y v (7
()
\ . ' 'Y
L] ' L |
> ([] v
\ v -
[' J
\ [4
v
¢
) v \ ! ¢

Nearest neighbor rule

“transfer label of nearest example”
¢ o? : ’
» 't | .
! ; '
: ¢ :0 ¢ ' ' 9 ’
\ .‘ - , O - v
b ’ ' .
“ v . X ' ’
1 ’ . ’ .
- oo
' “ ’ “ﬂd'w' 631 1‘
' | P o gt 7

Different approaches to training
classifiers

Nearest neighbor methods
Neural networks

Support vector machines
Randomized decision trees

Support Vector Machines

1
O
o O
O
O
‘Bz “-“§‘ O

.......... **““*“O
- e R P21
) | b,

[|

] : '
| '-.‘-._.r'nar i by,

b2

* Find hyperplane maximizes the margin => B1 is better than B2

Support Vector Machines

Examples are;

O (x1,..,xn,y) with

O o
e{-1.1
// o yE{-1.1}

m T S wex+b=+1

wex+b=-1 " " O

11

Margin = ——
1 ifwexX+b=-1 | w|

Some remarks..

* While the diagram corresponds to a linearly
separable case, the idea can be generalized to a
“soft margin SVM” where mistakes are allowed
but penalized.

* Training an SVM is a convex optimization

problem, so we are guaranteed that we can find
the globally best solution. Various software

packages are available such as LIBSVM, LIBLINEAR

* But what if the decision boundary is horribly non-
linear? We use the “kernel trick”

Suppose the positive examples lie

inside a disk
B -
' —
_ 4 " —
¥ A
— -+ —
4 ¢ ¥

Suppose the positive examples lie
inside a disk

2. L
XXy = C

We can construct a new higher-dimensional feature
space where the boundary is linear

_ PRV
| %/" —_— X‘ +>(L - C
y ﬂGhlfhwf = ~
_ L] ba'umM -
E? B
X, | —
— x,L Uineswr —
7 _ —_

Kernel Support Vector Machines

Kernel :

e|nner Product in Hilbert Space
K(x,z) = D(x) ®(2)

eCan Learn Non Linear Boundaries

S Riphing wakh hore, Serry |

Transformation invariance
(or, why we love orientation histograms so
much!)

 We want to recognize objects in spite of
various transformations-scaling, translation,
rotations, small deformations...

/ a

of course, sometimes we don’t want full invariance—a 6 vs. a9

Why is this a problem?

Feature Yector Feature Yector
n’x_l\ (81\
X2 X2
Image : Shifted Image :

#
'n)

\ dL\(\”MM

How do we build in transformational
invariance?

 Augment the dataset

— Include in it various transformed copies of the digit,
and hope that the classifier will figure out a decision
boundary that works

 Build in invariance into the feature vector

— Orientation histograms do this for several common
transformations and this is why they are so popular
for building feature vectors in computer vision

* Build in invariance into the classification strategy
— Multi-scale scanning deals with scaling and translation

Orientation histograms

* Orientation histograms can be
computed on blocks of pixels,
SO we can obtain tolerance to
small shifts of a part of the
object.

* For gray-scale images of 3d
objects, the process of
computing orientations, gives
partial invariance to
illumination changes.

e Small deformations when the
orientation of a part changes

only by a little causes no
I change in the histogram,
_ l . because we bin orientations

0 30 60 90 120 150 A

count of A
pixels with
orientation ¢

Some more intuition

The information retrieval community had invented the “bag of
words” model for text documents where we ignore the order of
words and just consider their counts. It turns out that this is quite
an effective feature vector — medical documents will use quite
different words from real estate documents.

An example with letters: How many different words can you think
of that contain a, b, e, |, t?

Throwing away the spatial arrangement in the process of
constructing an orientation histogram loses some information, but
not that much.

In addition, we can construct orientation histograms at different
scales- the whole object, the object divided into quadrants, the
object divided into even smaller blocks.

We compare histograms using the
Intersection Kernel

Histogram Intersection kernel between histograms a, b

K(a,b) = Z min(a;, b;)
i—1

g@
VIV
o O

K small -> a, b are different
K large -> a, b are similar

Intro. by Swain and Ballard 1991 to compare color histograms.
Odone et al 2005 proved positive definiteness.
Can be used directly as a kernel for an SVM.

Orientation histograms

count of
pixels with
orientation ¢

A

0 30 60 90

Digit Recognition using SVMS

Jitendra Malik
Lecture is based on
Maji & Malik (2009)

Digit recognition using SVMs

 What feature vectors should we use?
— Pixel brightness values
— Orientation histograms

* What kernel should we use for the SVM?
— Linear
— Intersection kernel
— Polynomial
— Gaussian Radial Basis Function

Some popular kernels in computer vision
X and y are two feature vectors

LINERR Fum

(X y) - X'y
H‘lS TOGRAN Fkint(x,y) = min(x,y)
G ENERA Poly(x y) = (x-y+1)°
(x,y) = exp(—y||x—y] ‘2)

Kernelized SVMs slow to evaluate

Decision function is sign (h(a:)) where:

Sum over all Kernel Evaluation

Feature vector

to evaluate support vectors Feature corresponding
4 to a support vector /

#Hsy

Arbitrary h(x) — § :Oz]K(ZE, :I?]) +b

Kernel —_ .
J=1
Hsv #dim

Histogram o j Z . j

Intersection h(:l]‘) o § : o mln(x%? x,&) +b

Kernel 1=1 i\zl

Cost: # Support Vectors x Cost of kernel computation

Fov a Unear, Rernel (%) Simphtieo
J . p— X , ZXJX "|" b
2« X g +o A (‘/5RE‘C‘J’oc~>>PoTeD

Complexity considerations

e Linear kernels are the fastest

* |Intersection kernels are nearly as fast, using
the “Fast Intersection Kernel” (Maji, Berg &<_

Malik, 2008)

* Non-linear kernels such as the polynomial
kernel or Gaussian radial basis functions are
the slowest, because of the need to evaluate
kernel products with each support vector.
There could be thousands of support vectors!

Raw pixels do not make a good feature vector

Each digit in the MNIST DATABASE of
handwritten digits is a 28 x 28 pixel grey level

image.
Complexity | kemel | error rate(%) kernel | error rate(%)
O(1) linear 15.38 linear 14.84
int 13.29 int 9.02
O(#SV) poly 7.41 poly 7.71
rbf 8.10 rbf 6.57

Table 1: Error rates on the MNIST dataset using raw pixels(left) and pyramid of raw pixels(right).
Only the first 1000 examples were used for training.

mhv\bw {@,,,\,J,Q ve Smellyy exror reles, bk

Error rates vs. the number of training examples

Performance on MNIST Dataset
T T Gradentimt
R oo | we@e= Gradient, Linear
BO[\ - oob e deedteb b b deenc e L Bt o el Raw, Poly

35

250NN b oo e b

20 R e

Error Rate

N\ .
T . . . N . . .o LI
10 : - U et la T S S . RO
. . . * LI LI
, ' . o . . . o ' ' ' P

/.

. 0’ 10° 10 1o
O Yl c"‘t"r Lor- (Number of Training Examples
hnsCograms ra!

. . . Coor o e e .
. . . o | . . . oo |
M M M PR T T T 1 M M M U R T T

Technical details on orientation computation

1. Oriented Derivative Filter The input grayscale image is convolved with filters which re-
spond to horizontal and vertical gradients from which the magnitude and orientation is
computed. Let rh(p) and rv(p) be the response in the horizontal and vertical direction at a
pixel p respectively, then the magnitude m(p) and the angle a(p) of the pixel is given by :

m(p) = /rh(p)?+ rv(p)? (5)
a(p) = atan2(rh(p),rv(p)) € [0, 360) (6)

We experiment with tap filters, Sobel and oriented Gaussian derivative (OGF) filters.

o

. Signed vs. Unsigned The orientation could be signed (0 — 360) or unsigned (0 — 180). The
signed gradient distinguishes between black to white and white to black transitions which
might be useful for digits.

)

. Number of Orientation Bins The orientation at each pixel is binned into a discrete set of
orientations by linear interpolation between bin centers to avoid aliasing.

The beat choiee in defarmined 2xperimentlly

Details of histogram computation

1

—

|\

\

-

v DL e blich bisTograms
one ctaded un O‘J’W‘g

Mw\rb vecktory

Dock Sl yes c- 4,7, 4 were uatd
Eine, grroc red = 07797

The 79 Errors

8
S
204

6-0
211£

»3 iﬂ1 80

3

3
930 ?E

450

446

1

2

3

1365

71

1261)

1248

11

1015

2.0
09;

2

» @

4
05-4'

2

04

A

83
72

18

) — 2

9
1531 , 1710% 1733

2807
s

89

2855
728

-0

w

2

4

0;
2439
84

A——
528 S
5
s 3550 3

3423

) E«O

e
t
(=1

8-

/

60

98
2131 i 204 2388 i
35
294-(;6 2054 s 3031 324?

49
85

—

72 474 4762 4808 4815 4380 5750

S

#~

Some key references on orientation
histograms

* D. Lowe, ICCV 1999, SIFT

 A.Oliva & A. Torralba, IJCV 2001, GIST

* A.Berg & J. Malik, CVPR 2001, Geometric Blur
* N. Dalal & B. Triggs, CVPR 2005, HOG

e S. Lazebnik, C. Schmid & J. Ponce, CVPR 2006,
Spatial Pyramid Matching

o 0 avoulade Lol of KRese
gJoehodeo\/, bo dmﬁvméﬁéh&m(

Randomized decision trees
(a.k.a. Random Forests)

Two papers

e Y. Amit, D. Geman & K. Wilder, Joint induction
of shape features and tree classifiers, |IEEE
Trans. on PAMI, Nov. 1997.(digit
classification)

e J. Shotton et al, Real-time Human Pose
Recognition in Parts from Single Depth
mages, IEEE CVPR, 2011. (describes the
algorithm used in the Kinect system)

What is a decision tree?

What is a decision tree?

Ts L m N.America, S Amene.

or A+res)
N — T~JXES
Ia\LLtSESﬁY(;%”‘:‘j Ir\ N A‘h«w/nc.o.7
Ls populskion. Lo ngin
o,

Decision trees for Classification

* Training time
— Construct the tree, i.e. pick the questions at each
node of the tree. Typically done so as to make each of
the child nodes “purer”(lower entropy). Each leaf

node will be associated with a set of training
examples

e Test time

— Evaluate the tree by sequentially evaluating
qguestions, starting from the root node. Once a
particular leaf node is reached, we predict the class to
be the one with the most examples(from training
set)at this node.

Training 0 Sl @stiy o feal

Amit, Geman & Wilder’s approach

* Some questions are based on whether certain
“tags” are found in the image. Crudely, think
of these as edges of particular orientation.

 Other questions are based on spatial
relationships between pairs of tags. An
example might be whether a vertical edge is
found above and to the right of an horizontal
edge

Fia. 1. First three taa levels with most common confiqurations.

Fig. 2. Top: All instances of four depth three tags. Bottom: All instances
of four depth five tags.

An example of such an arrangement

// "/,"'/8 . A.,,.'/s /
}(/ // /// / 2
/ z _____'/ /"// f’/
/ Fd
2
4 4
A [Ve /
/
7 Al /
P |
2 2 z

Fig. 3. Top row: Instances of a geometric arrangement in several 5s.
Bottom row: Several instances of the aeometric arranaement in one 8.

gnmu\f dses ot ducriminale
Thl% ‘:—;:\m\ So we mk,amo-o(:\:-'%mf

Additional questions “grow” the arrangement

No Yes
’, 3
l J\ | 4 4 q
J | \ \ || \
: ¥ K P
% ? ¥
f)
N }I { f /
J‘ J
2 ¢ l\ ‘ -
? 2z

Fig. 4. Example of node-splitting in a typical digit tree; the query in-
volves adding a fifth tag (vertex) to the pending arrangement. Specifi-
cally, the proposed arrangement adds a fifth vertex and a fourth rela-
tion to the existing graph which has four vertices and three relations.

Multiple randomized trees

* |t turns out that using a single tree for
classification doesn’t work too well. Error
rates are around 7% or so.

e But if one trains multiple trees (different
questions) and averages the predicted
posterior class probabilities, error rates fall
below 1%

 Powerful general idea- now called “Random
Forests”

Fig. 5. Arrangements found in an image at terminal nodes of six differ-
ent trees.

The Microsoft Kinect system uses a similar approach...

Real-Time Human Pose Recognition in Parts from Single Depth Images !
Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake

Microsoft Research Cambridge & Xbox Incubation

Abstract

We propose a new method to quickly and accurately pre-
dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

]
E »
b

SLEel 23

il

.
v '
i -
-
-
.
'

- ,‘de

depth image == bodyparts =% 3D joint proposals

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

ininte Af intaract Ranrnianting tha infarrad narte inta ararld

Convolutional Neural Networks
LeCun et al (1989)

|T—r

IT- o

|]

Convolutional Neural Networks
(LeCun et al)

LI1IS SeCLIOIL AesSCripes Ll 11ore getall uie arCiilecuure oL
LeNet-5, the Convolutional Neural Network used in the
experiments. LeNet-5 comprises 7 layers, not counting the
input, all of which contain trainable parameters (weights).
The input is a 32x32 pixel image. This is significantly larger
than the largest character in the database (at most 20x20
pixels centered in a 28x28 field). The reason is that it is
desirable that potential distinctive features such as stroke
end-points or corner can appear in the center of the recep-
tive field of the highest-level feature detectors. In LeNet-5
the set of centers of the receptive fields of the last convolu-
tional layer (C3, see below) form a 20x20 area in the center
of the 32x32 input. The values of the input pixels are nor-
malized so that the background level (white) corresponds
to a value of -0.1 and the foreground (black) corresponds
to 1,175, This makes the mean input roughly 0, and the
variance roughly 1 which accelerates learning [46].

In the following, convolutional layers are labeled Cx, sub-
sampling layers are labeled Sx, and fully-connected layers
are labeled Fx, where x is the layer index.

Layer C1 is a convolutional layer with 6 feature maps.
Each unit in each feature map is connected to a 5x5 neigh-
borhood in the input. The size of the feature maps is 28x28
which prevents connection from the input from falling off
the boundary. C1 contains 156 trainable parameters, and
122,304 connections.

Layer S2 is a sub-sampling layer with 6 feature maps of
size 14x14. Each unit in each feature map is connected to a
2x2 neighborhood in the corresponding feature map in C1.
The four inputs to a unit in 52 are added, then multiplied
by a trainable coefficient, and added to a trainable bias.
The result is passed through a sigmoidal function. The
2x2 receptive fields are non-overlapping, therefore feature
maps in S2 have half the number of rows and column as
feature maps in C1. Layer S2 has 12 trainable parameters
and 5,880 connections.

Layer C3 is a convolutional layer with 16 feature maps.
Each unit in each feature map is connected to several 5x5
neighborhoods at identical locations in a subset of S2’s
feature maps. Table I shows the set of S2 feature maps

Layer S2 is a sub-sampling layer with 6 feature maps of
size 14x14. Each unit in each feature map is connected to a
2x2 neighborhood in the corresponding feature map in C1.
The four inputs to a unit in 52 are added, then multiplied
by a trainable coefficient, and added to a trainable bias.
The result is passed through a sigmoidal function. The
2x2 receptive fields are non-overlapping, therefore feature
maps in S2 have half the number of rows and column as
feature maps in C1. Layer S2 has 12 trainable parameters
and 5,880 connections.

Layer C3 is a convolutional layer with 16 feature maps.
Each unit in each feature map is connected to several 5x5
neighborhoods at identical locations in a subset of S2’s
feature maps. Table I shows the set of S2 feature maps

combined by each C3 feature map. Why not. connect ev-
ery 52 feature map to every C3 feature map? The rea-
son is twofold. First, a non-complete connection scheme
keeps the number of connections within reasonable bounds.
More importantly, it forces a break of symmetry in the net-
work. Different feature maps are forced to extract different
(hopefully complementary) features because they get. dif-
ferent sets of inputs. The rationale behind the connection
scheme in table I is the following. The first six C3 feature
maps take inputs from every contiguous subsets of three
feature maps in S2. The next six take input from every
contiguous subset of four. The next three take input from
some discontinuous subsets of four. Finally the last one
takes input. from all S2 feature maps. Layer C3 has 1,516
trainable parameters and 151,600 connections.

012 3 45 6 7 89 10111213 14 15
01X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
1 X X X X X X X X X X
d X X X XX XX X X X

TABLE I

IZACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED

Training multi-layer networks
jé) 37, Ji= j(%w"{)kﬁ
Ny =2 QE‘ZW\\K”K)

YW\ ina vu 24 ?
, 1051 red-)

y, — 9

v
[
P
| wt’”‘

~/

} /
Cvrate 0L

(A

