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From Pixels to Perception 
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D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its 

Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV, 2001 

Berkeley Segmentation DataSet  [BSDS] 
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Consistency 
A 

B C 

•  A,C are refinements of B 
•  A,C are mutual refinements  
•  A,B,C represent the same percept 

•  Attention accounts for differences 

Image 

BG L-bird R-bird 

grass bush 

head eye 

beak far body 

head eye 

beak body 

Perceptual organization forms 
a tree: 

Two segmentations are  
consistent when they can be 
explained by the same 
segmentation tree (i.e. they 
could be derived from a single  
perceptual organization). 
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Contours can be defined by any of a number of cues (P. Cavanagh) 
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Boundaries of image regions defined by 
a number of cues 

–  Brightness 
–  Color 
–  Texture 
–  Motion (in video) 
–  Binocular Diparity (if available) 
–  Familiar objects 



  10 Grill-Spector et al. , Neuron 1998 

Objects from disparity 
Objects from texture  

Objects from luminance 

Cue-Invariant Representations 

Line drawings 

Gray level photographs 

Objects from motion 
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Image 

Boundary Cues 

Model 

Pb 

Brightness 

Color 

Texture 

Challenges:  texture cue, cue combination  
Goal: learn the posterior probability of a boundary  
Pb(x,y,θ) from local information only  

Cue Combination 
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Oriented Feature Gradient 



  13 

Visual Texture 

Jitendra Malik 
University of California, Berkeley 



  14 

Example Natural Materials 

Terrycloth Rough Plastic Plaster-b 

Sponge Rug-a Painted Spheres 

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE) 
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Example Natural Materials 

Terrycloth Rough Plastic Plaster-b 

Sponge Rug-a Painted Spheres 

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE) 
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Materials under different illumination 
and viewing directions 

Different 
illumination 
and viewing 

directions 

Plaster-a Crumpled 
Paper 

Concrete Plaster-b 
(zoomed) 
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Julesz’s texton theory 
1.  Human Vision operates in two distinct modes 

1.  Pre-attentive vision - parallel, instantaneous, without scrutiny, 
independent of the number of patterns 

2.  Attentive vision - serial search by focal attention in 50 ms steps limited to 
a small aperture as in form recognition 

2.  Textons are 
1.  Elongated blobs - e.g. rectangles, ellipses, line segments with specific 

orientations, widths and lengths 
2.  Terminators - ends of line segments 
3.  Crossings of line segments 
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Orientation is a texton 
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Terminators are textons 
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Texture Recognition 
Felt? 
Polyester? 
Terrycloth? 
Rough Plaster? 
Leather? 
Plaster? 
Concrete? 
Crumpled Paper? 
Sponge? 
Limestone? 
Brick? 

? 

? 
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2D Textons 
•  Goal: find canonical local features in a texture; 

    1) Filter image with linear filters: 

 

  

    2) Vector quantization (k-means) on filter outputs;    
   3) Quantization centers are the textons. 

 

•  Spatial distribution of textons defines the texture;  
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2D Textons (cont’d) 
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Texton Labeling 

•  Each pixel labeled to texton i (1 to K) which is most 
similar in appearance; 

•  Similarity measured by the Euclidean distance between 
the filter responses; 
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Material Representation 

•  Each material is now represented as a spatial 
arrangement of symbols from the texton 
vocabulary; 

•  Recognition ---  ignore spatial arrangement,  
 use histogram (K=100); 
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Histogram Models for Recognition 
(Leung & Malik, 1999) 

Terrycloth 

Rough Plastic 

Pebbles 

Plaster-b 
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Similarity of materials 

•  Similarity between histograms measured using 
chi-square difference: 
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Similarity Matrix 

j)  sample , i  (materialSimilarity ===ije

Plaster-a Plaster-b 

Aluminum 
Foil 

Cork 
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Oriented Feature Gradient 
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Individual Features 

•  1976 CIE L*a*b* colorspace 
•  Brightness Gradient BG(x,y,r,θ)  

–  Difference of L* distributions 

•  Color Gradient CG(x,y,r,θ) 
–  Difference of a*b* distributions 

•  Texture Gradient TG(x,y,r,θ) 
–  Difference of distributions of  

V1-like filter responses 

θ 
r 

(x,y) 

These are combined using logistic regression  
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Filter Outputs 
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Texture gradient = Chi square distance between 
texton histograms in half disks across edge 
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Various Cue 
Combinations 

(Martin, Fowlkes, 
Malik, 2004) 
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Exploiting global constraints: 
Image Segmentation as Graph Partitioning 

Build a weighted graph G=(V,E) from image 

V: image pixels 

E: connections between 
pairs of nearby pixels 

 

Partition graph so that similarity within group is large and 
similarity between groups is small -- Normalized Cuts 
[Shi & Malik 97] 
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Wij  small when intervening contour strong, small when weak.. 
  

Cij =  max Pb(x,y) for  (x,y)  on line segment ij;     Wij = exp ( - Cij / σ ) 
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 How to partition a graph 

•  We can find the minimum cut efficiently, but this 
tends to break the graph into isolated little pieces 
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Normalized Cut is a better measure .. 

 

•  We normalize by the total volume of connections 
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Solving the Normalized Cut problem 

•  Exact discrete solution to Ncut is NP-hard even on regular 
grid [Papadimitriou’97] 

•   We first transform to 

•  Drawing on spectral graph theory, good approximation can 
be obtained by solving a generalized eigenvalue problem. 
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Normalized Cuts as a Spring-Mass system 
•  Each pixel is a point mass; each connection is a spring:  

 

•  Fundamental modes are generalized eigenvectors of 
                   (D - W) y = λDy 

DyyWD λ=− )(
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Eigenvectors carry contour information 
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Comparison to other approaches (2009) 
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Image 

Boundary Cues 
Brightness 

Color 

Texture 

We trained a detector that combine multiple cues to find the posterior 
probability of a boundary/edge Pb(x,y,θ). After that we used Normalized 
Cuts (Shi & Malik) to find regions. 
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