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From Pixels to Perception




Recognition, Reconstruction & Reorganization




The Three R’ s of Vision

Recognition

AN

Reconstruction Reorganization

Each of the 6 directed arcs in this diagram is a useful direction
of information flow



~ Berkeley Segmentation DataSet [BSDS]

=l

D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its
Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV, 2001°



Consistency

Perceptual organization forms
a tree:

Image

grass bush far boak

body beak body

eye head eye head

Y Two segmentations are
consistent when they can be

A ,C are refinements of B explained I;>y the same
A.C are mutual refinements segmentation ftree (i.e. they

could be derived from a single
A B.C represent the same percept perceptual organization).
Attention accounts for differences







Contours can be defined by any of a number of cues (P. Cavanagh)
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Boundaries of image regions defined by
a number of cues

— Brightness

— Color

— Texture

— Motion (in video)

— Binocular Diparity (if available)

— Familiar objects




Cue-Invariant Representations

Gray level photographs
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Grill-Spector et al. , Neuron 1998
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Challenges: texture cue, cue combination

Goal: learn the posterior probability of a boundary
P, (x,y,0) from local information only
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Oriented Feature Gradient
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Visual Texture

Jitendra Malik

University of California, Berkeley
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Example Natural Materials

Pamted Spheres

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE)
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Example Natural Materials

Pamted Spheres

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE)
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Materials under different illumination
and viewing directions
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Julesz’ s texton theory

1.  Human Vision operates in two distinct modes

1.  Pre-attentive vision - parallel, instantaneous, without scrutiny,
independent of the number of patterns

2. Attentive vision - serial search by focal attention in 50 ms steps limited to
a small aperture as in form recognition

2. Textons are

1. Elongated blobs - e.g. rectangles, ellipses, line segments with specific
orientations, widths and lengths

2.  Terminators - ends of line segments
3. Crossings of line segments
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Orientation 1s a texton




tors are textons

1na

Term
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Texture gradient: max;(|VPIR;* G ¢|)

Texture gradient (x,y)

PRy~ PIR, i
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Table 3. Comparison of Predictions from Texture
Segmentation Algorithm with T'wo Sets of

Psychophysical Data®
Discriminability
Data Refs. Data Predicted
Texture Pair 41 and 42 Ref. 43 Data
+ 0 100(saturated ) n.a. 407
+ O 88.1 n.a. 225
L+ 68.6 0.736 203
LM n.a. n.a. 165
A 52.3 0.4-0.55 159
+ T 37.6 0.496 120
+ X 30.3 n.a. 104
TL 30.6 0.421 90*
L; M, n.a. 1n.a. 85

R-mirror-R n.a. n.a. 50*

P



Malik—Perona JOSA-A 90, Table 3
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Texture Recognition

Felt?
Polyester?
Terrycloth?
Rough Plaster?
Leather?
Plaster?
Concrete?

? Crumpled Paper?

> Sponge?
Limestone?
Brick?
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2D Textons

Goal: find canonical local features in a texture;

1) Filter image with linear filters:

3) Quantization centers are the textons.

Spatial distribution of textons defines the texture;
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2D Textons (cont d)
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Texton Labeling

» Each pixel labeled to texton i (1 to K) which 1s most
similar in appearance;

« Similarity measured by the Euclidean distance between
the filter responses;
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Material Representation

Each material 1s now represented as a spatial
arrangement of symbols from the texton
vocabulary;

Recognition --- 1gnore spatial arrangement,
use histogram (K=100);
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Histogram Models for Recognition
(Leung & Malik, 1999)

Rough Plastic

Pebbles

Plaster-b

Terrycloth
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Similarity of materials

e Similarity between histograms measured using
chi-square difference:
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Similarity Matrix

__ Feltosoofoojoolooooloo]o.0jo0/0.0/00/000.0/00)
| Terrycloth|0.0/1.0/0.0/00/0:30.0/0.1/0.2/00/0.0/0.0/0.0/0.0
_ Rough Plastic|0.000/0.9/00/0.0/0.0/020.1/00/0.0/0.0/00
 Leather|02/00/0.0/1.00.0/00/0.0/0.0000.0/00)
__ Sandpaper|0.0/01/0.0/00/1.0/0.0/0.10.000]0.0/00)
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Oriented Feature Gradient

40



Individual Features

1976 CIE L*a*b* colorspace
Brightness Gradient BG(X,y,r,0)

— Difference of L* distributions

Color Gradient CG(x,y,r,0)

— Difference of a*b* distributions

Texture Gradient TG(X,y,r,0)

— Difference of distributions of
V1-like filter responses

These are combined using logistic regression
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Filter Outputs




Texture gradient = Chi square distance between
texton histograms in half disks across edge
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1
Various Cue

Combinations
(Martin, Fowlkes,
Malik, 2004)
C
0
(7))
‘G 0.5
@
al
—_— BG F=0.62 @(0.70,0.58)
CG F=0.60 @(0.67,0.54)
— TG F=0.61 @(0.66,0.57)
_— BG+TG F=0.65 @(0.70,0.60)
m— BG+CG+TG F=0.67 @(0.71,0.64)
0 ) ) )
0 0.25 05 0.75 1
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Exploiting global constraints:
Image Segmentation as Graph Partitioning

V: image pixels

E: connections between
pairs of nearby pixels

Partition graph so that similarity within group 1s large and
similarity between groups i1s small -- Normalized Cuts
[Shi & Malik 97]
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Wi small when intervening contour strong, small when weak..

Cij = max Pb(x,y) for (x,y) on line segmentij; Wij=exp(-Cij/ o)
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How to partition a graph

* We can find the minimum cut efficiently, but this
tends to break the graph into 1solated little pieces
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Normalized Cut 1s a better measure ..

 We normalize by the total volume of connections

~ cut(A, B) cut(4, B)
Ncut(A, B) = assoc(A, V) i assoc(B,V)

where assoc(A, V) = ) caev w(u,t)
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Solving the Normalized Cut problem

« Exact discrete solution to Ncut is NP-hard even on regular
grid [Papadimitriou’ 97]
We first transform to

ming Neut(z) = min,

with the condition y(i) € {1, —b} and ' D1 =0

« Drawing on spectral graph theory, good approximation can
be obtained by solving a generalized eigenvalue problem.

(D — W)y = ADy.
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Normalized Cuts as a Spring-Mass system

« Each pixel is a point mass; each connection 1s a spring:

« Fundamental modes are generalized eigenvectors of
(D -W)y=ADy
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Eigenvectors carry contour information
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® Human Consistency
Maire, Arbelaez, Fowlkes, Malik color (2008) [F=0.70]
— Arbelaez (2006) [F=067]
Dollar, Z. Tu, and S. Belongie (2006) [F=0.66]
Felzenszwalb, McAllester (2006) [F=0.65]
Martin, Fowlkes Malik color (2004) [F=0.65]
Zhu, Song, Shi (2007) [F=0.64]
Ren, Fowlkes, Malik (2005) [F=0.64]
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Fast Edge Detection Using Structured Forests

Piotr Dollar and C. Lawrence Zitnick
Microsoft Research

{pdollar, larryz}@microsoft.com

Abstract—Edge detection is a critical component of many vision systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take
advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We
formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our
novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain
measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many
competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation
dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our
learned edge models generalize well across datasets.
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()

0DS =0.74,12.5Hz | |, ODS = 0.75, 2.5Hz

Fig. 1. Edge detection results using three versions of our
Structured Edge (SE) detector demonstrating tradeoffs in accu-
racy vs. runtime. We obtain realtime performance while simul-
taneously achieving state-of-the-art results. ODS numbers were
computed on BSDS ['] on which the popular gPb detector []
achieves a score of .73. The variants shown include SE, SE+SH,
and SE+MS+SH, see §4 for details.




good split &

(b) (d)

Fig. 2. lllustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

63



r € R32*32xK where K is the number of channels. We use
features of two types: pixel lookups z(i,j, k) and pairwise
differences z(%1, j1, k) — z(i2, j2, k), see §2.

Inspired by Lim et al. [* '], we use a similar set of color
and gradient channels (originally developed for fast pedestrian
detection ['’]). We compute 3 color channels in CIE-LUV
color space along with normalized gradient magnitude at 2
scales (original and half resolution). Additionally, we split
each gradient magnitude channel into 4 channels based on
orientation. The result is 3 color, 2 magnitude and 8 orientation

channels, for a total of 13 channels.

We blur the channels with a radius 2 triangle filter and
downsample by a factor of 2, resulting in 32-32-13/4 = 3328
candidate features . Motivated by [ '], we also compute
pairwise difference features. We apply a large triangle blur to
each channel (8 pixel radius), and downsample to a resolution
of 5 x 5. Sampling all candidate pairs and computing their
differences yields an additional (3’) = 300 candidate features

2
per channel, resulting in 7228 total candidate features.
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Fig. 9. Results on BSDS500. Structured edges (SE) and SE
coupled with hierarchical multiscale segmentation (SE+multi-
ucm) [~] achieve top results. For the SE result we report the
SE+MS+SH variant. See Table 1 for additional details including
method citations and runtimes. SE is orders of magnitude faster
than nearly all edge detectors with comparable accuracy.
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We trained a detector that combine multiple cues to find the posterior
probability of a boundary/edge P (X,y,0). After that we used Normalized
Cuts (Shi & Malik) to find regions.



Multiscale Combinatorial Regions
Arbelaez, Pont-Tuset, Barron, Marques & Malik, CVPR 2014

Image Pyramid Segmentation Pyramid Aligned Hierarchies Multiscale Hierarchy Candidates
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Fig. 5. Object segmentation as combinatorial op-
timization: Examples of objects (b), (c), formed by
selecting regions from a hierarchy (a).




Examples




Jaccard index at instance level (.J;)
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Fig. 8. Object Proposals: Jaccard index at instance level. Results on SegVOC12, SBD, and COCO.




Jaccard index at class level (J.)
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Fig. 9. Object Proposals: Jaccard index at class level. Results on SegVOC12, SBD, and COCO.
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