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Organization

I Lecture: 2 hours/week
I Mon: 12:15 – 14:00, Room A301

I Exercises: 2 hours/week
I Mon: 14:00 – 16:00, Room A301

I Exception
I 25.4.: Kleiner Hörsaal, Sand 6/7

I Course web page: http://cv.is.tue.mpg.de/
I Slides
I Pointers to Books and Papers
I Homework assignments

I Mailing list http://groups.google.com/d/forum/cv-is
I Please register!
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Exercises & Exam

I Credits: 4 LP (2+2)
I Exercises:

I Goal: Understand theory and transfer into
computer experiments

I Work in teams of up to two
I Pen and paper exercises
I Computing exercises

I Will use Linux & Python
I We provide a VirtualBox (webpage)
I Would a brief Python tutorial be useful?

I Exam
I Oral exam
I English or german
I 50 % of exercise points required!
I Examination dates: 21.7.2016 + 25.7.2016

Joel Janai

Naureen Mahmood
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Questions on organizational part?
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Topics & Materials
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Graphical Models...

I Models

I Inference

I Learning

... in Computer Vision

I Image Denoising

I Human Pose Estimation

I Human Body Models

I Stereo

I Optical Flow

I Image Segmentation

I Object Detection
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Syllabus

11.04.2016 Introduction

18.04.2016 Graphical Models 1

25.04.2016 Graphical Models 2 (Sand 6/7)

02.05.2016 Graphical Models 3

09.05.2016 Graphical Models 4

23.05.2016 Body Models 1

30.05.2016 Body Models 2

06.06.2016 Body Models 3

13.06.2016 Body Models 4

20.06.2016 Stereo

27.06.2016 Optical Flow

04.07.2016 Segmentation

11.07.2016 Object Detection 1

18.07.2016 Object Detection 2
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Main Book for Graphical Model Part

I Barber, Bayesian Reasoning and Machine Learning, Cambridge
University Press, 2011, ISBN-13: 978-0521518147,
http://tinyurl.com/3flppuo

I Available online for free

I Comes with graphical model toolbox (for Matlab)
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For the curious ones ...

I Bishop, Pattern Recognition and Machine Learning, Springer New
York, 2006, ISBN-13: 978-0387310732

I Koller, Friedman, Probabilistic Graphical Models: Principles and
Techniques, The MIT Press, 2009, ISBN-13: 978-0262013192

I MacKay, Information Theory, Inference and Learning Algorithms,
Cambridge University Press, 2003, ISBN-13: 978-0521642989

Links are available on the course website.
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Computer Vision References

I Szeliski, Computer Vision: Algorithms and Applications

I Hartley & Zisserman, Multiple View Geometry in Computer
Vision

I Bernd Jähne, Digital Image Processing and Image Formation

Links are available on the course website.
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Introduction
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Natural
System

Perception

Action

Learning

15 / 76



Organization Introduction Probability Theory Structured Prediction Decision Theory

16 / 76



Organization Introduction Probability Theory Structured Prediction Decision Theory

Artificial
System

Perception

Action

Learning
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Why is Visual Perception hard?
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Why is Visual Perception hard?

What we see What the computer sees
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Why is Computer Vision hard?
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Why is Visual Perception hard?

Slide credits: Antonio Torralba
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Why is Visual Perception hard?
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Intelligent Systems require Robust Vision

I Feature invariance

I Good prior

I Tractable representations

I Efficient learning and inference

I Model uncertainty
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Some Examples from our Lab

https://ps.is.tuebingen.mpg.de/research
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Probability Theory Review
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Brief Review

I A random variable X can take values from some discrete set
of outcomes X (think six-sided dice)

I We usually use the short-hand notation

p(x) for p(X = x) ∈ [0, 1]

for the probability that X takes value x
I With

p(X )

we denote the probability distribution over X
I p(x) must satisfy the following conditions:

p(x) ≥ 0∑
x∈X

p(x) = 1
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Brief Review

I Joint probability (of X and Y )

p(x , y) instead p(X = x ,Y = y)

I Conditional probability

p(x |y) instead p(X = x |Y = y)

I Two RVs are called independent if

p(X = x ,Y = y) = p(X = x)p(Y = y)
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Vocabulary

I Joint Probability

p(xi , yj) =
nij
N

I Marginal Probability

p(xi ) =
ci
N

I Conditional Probability

p(yj | xi ) =
nij
ci

ci︸︷︷︸
yj nij

xi

ci =
∑
j

nij

N =
∑
ij

nij
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The Rules of Probability

I Sum rule
p(X ) =

∑
y∈Y

p(X ,Y = y)

we “marginalize out y”. p(X = x) is also called
a marginal probability

I Product Rule
p(X ,Y ) = p(Y |X )p(X )

I And as a consequence: Bayes Theorem

p(Y |X ) =
p(X |Y )p(Y )

p(X )
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Probability Densities

I Now X is a continuous random variable, eg taking values in R
I Probability that X takes a value in the interval (a, b) is

p(X ∈ (a, b)) =

∫ b

a
p(x) dx

and we call p(x) the probability density over x
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Probability Densities

I p(x) must satisfy the following conditions

p(x) ≥ 0∫ ∞
−∞

p(x) = 1

I The probability that x lies in (−∞, z) is given by the cumulative
distribution function

P(z) =

∫ z

−∞
p(x)dx
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Probability Densities

Probability density of a continuous variable

34 / 76



Organization Introduction Probability Theory Structured Prediction Decision Theory

Illustration

joint, marginal, conditional probability
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Expectation and Variances

I Expectation

E[f ] =
∑
x∈X

p(x)f (x)

E[f ] =

∫
x∈X

p(x)f (x) dx

I Sometimes we denote the distribution that we take the expectation
over as a subscript, eg

Ep[f ] =
∑
x∈X

p(x)f (x)

I Variance
var[f ] = E

[
(f (x)− E [f (x)])2

]
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Structured Prediction
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Standard Regression:
f : X → R

I inputs X can be any kind of objects
I images, text, audio, sequence of amino acids, . . .

I output y is a real number
I classification, regression, density estimation, . . .

Structured Output Learning:

f : X → Y

I inputs X can be any kind of objects
I outputs y ∈ Y are complex (structured) objects

I images, parse trees, folds of a protein, . . .
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What is structured output prediction?

Ad hoc definition: predicting structured outputs from input data
(in contrast to predicting just a single number, like in classification or regression)

I Natural Language Processing:
I Automatic Translation (output: sentences)
I Sentence Parsing (output: parse trees)

I Bioinformatics:
I Secondary Structure Prediction (output: bipartite graphs)
I Enzyme Function Prediction (output: path in a tree)

I Speech Processing:
I Automatic Transcription (output: sentences)
I Text-to-Speech (output: audio signal)

I Robotics:
I Planning (output: sequence of actions)
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Graphical Models...

I Models

I Inference

I Learning

... in Computer Vision

I Object Detection

I Human Pose Estimation

I Optical Flow

I Stereo

I Image Denoising

I Segmentation

I Semantic Segmentation

I Image Stitching

I Tracking

This is the language ... ... for these problems.
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Example: Human Pose Estimation

x ∈ X y ∈ Y

I Given an image, where is a person and how is it articulated?

f : X → Y

I Image x , but what is human pose y ∈ Y precisely?
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Human Pose Y

Example yhead

I Body Part: yhead = (u, v , θ) where (u, v) center, θ rotation
I (u, v) ∈ {1, . . . ,M} × {1, . . . ,N}, θ ∈ {0, 45◦, 90◦, . . .}

I Entire Body: y = (yhead , ytorso , yleft−lower−arm, . . .} ∈ Y
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Human Pose Y

Yhead

X

ψ(yhead, x)

Image x ∈ X Example yhead Head detector

I Idea: Have a head classifier (SVM, Random Forest, NN, ...)

ψ(yhead , x) ∈ R+

I Evaluate everywhere and record score
I Repeat for all body parts
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Human Pose Estimation

Yhead

X

ψ(yhead, x)

Ytorso

X

ψ(ytorso, x)

Image x ∈ X Prediction y∗ ∈ Y
I Compute

y∗ = (y∗head , y
∗
torso , · · · ) = argmax

yhead ,ytorso ,···
ψ(yhead , x)ψ(ytorso , x) · · ·

= (argmax
yhead

ψ(yhead , x), argmax
ytorso

ψ(ytorso , x), · · · )

I Great! Problem solved!?
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Idea: Connect Body Parts

Yhead

X

ψ(yhead, x)

Ytorso

X

ψ(ytorso, x)

ψ(yhead, ytorso)

ψ(ytorso , yarm) Head-Torso Model

I Ensure head is on top of torso

ψ(yhead , ytorso) ∈ R+

I Compute

y∗ = argmax
yhead ,ytorso ,···

ψ(yhead , x)ψ(ytorso , x)ψ(yhead , ytorso) · · ·

Problem? Does not decompose anymore!
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The General Recipe

Structured output function: X = anything→ Y = anything

1) Define auxiliary function g : X × Y → R:

e.g . g(x , y) =
∏
i

ψi (yi , x)
∏
i∼j

ψij(yi , yj , x)

2) Obtain f : X → Y by maximimization:

f (x) = argmax
y∈Y

g(x , y)
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A Probabilistic View

Computer Vision problems usually deal with uncertain information

I Incomplete information (observe static images, projections, etc)

I Annotation is ”noisy” (wrong or ambiguous cases)

Uncertainty is captured by (conditional) probability distributions: p(y |x)

I for input x ∈ X , how likely is y ∈ Y the correct output?

We can also phrase this as

I what’s the probability of observing y given x?

I how strong is our belief in y if we know x?
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A Probabilistic View on f : X → Y

Structured output function X = anything→ Y = anything

We need to define an auxiliary function, g : X × Y → R.

e.g . g(x , y) := p(y |x).

Then maximimization

f (x) = argmax
y∈Y

g(x , y) = argmax
y∈Y

p(y |x)

becomes maximum a posteriori (MAP) prediction.

Interpretation: The MAP estimate y ∈ Y, is the most probable value
(there can be multiple).
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Probability Distributions

∀y ∈ Y p(y) ≥ 0 (positivity)∑
y∈Y

p(y) = 1 (normalization)

Example: binary (”Bernoulli”)
variable y ∈ Y = {0, 1}

I 2 values,

I 1 degree of freedom

0 1
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p
(y

)
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Conditional Probability Distributions

∀x ∈ X ∀y ∈ Y p(y |x) ≥ 0 (positivity)

∀x ∈ X
∑
y∈Y

p(y |x) = 1 (normalization w.r.t. y)

For example: binary prediction
X = {images}, y ∈ Y = {0, 1}

I each x : 2 values, 1 d.o.f.
→ two functions
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Multi-class prediction, y ∈ Y = {1, . . . ,K}

I each x : K values, K−1 d.o.f.
→ K−1 functions

I or 1 vector-valued function with
K−1 outputs

Typically: K functions, plus explicit normalization

Example: predicting the center point of an object

y ∈ Y = {(1, 1), . . . , (width, height)}
• for each x : |Y| = W · H values,

y = (y1, y2) ∈ Y1 × Y2 with
Y1 = {1, . . . ,width} and
Y2 = {1, . . . , height}.
• each x : |Y1| · |Y2| = W · H values,
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Structured objects: predicting M variables jointly

Y = {1,K} × {1,K} · · · × {1,K}
For each x :

I KM values, KM−1 d.o.f.
→ KM functions

Example: Object detection with variable size bounding box

Y ⊂ {1, . . . ,W } × {1, . . . ,H}
× {1, . . . ,W } × {1, . . . ,H}

y = (left, top, right, bottom)

For each x :

I 1
4W (W−1)H(H−1) values
(millions to billions...)
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Example: image denoising

Y = {640× 480 RGB images}

For each x :

I 16777216307200 values in p(y |x)

I ≥ 102000000 functions

I How many atoms in universe?

too much!

We cannot consider all possible distributions, we must impose structure.
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Decision Theory
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Digit classification

I Classify digits “a” versus “b”

The digits “a” and “b”

I Goal: classify new digits such that probability of error is minimized
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Digit classification - Priors

Prior Distribution?

I How often do the letters “a” and “b” occur ?

I Let us assume

C1 = a p(C1) = 0.75

C2 = b p(C2) = 0.25

I The prior has to be a distribution, in particular∑
k=1,2

p(Ck) = 1
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Digit classification - Class conditionals

I We describe every digit using some feature vector x
I the number of black pixels in each box
I relation between width and height

I Likelihood: How likely has x been generated
from p(x | a) or p(x | b)?
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Digit classification

I Which class should we assign x to?

I Class a
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Digit classification

I Which class should we assign x to ?

I Class b
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Digit classification

I Which class should we assign x to ?

I The answer?
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Bayes Theorem

I How do we formalize this?

I We already mentioned Bayes Theorem

p(Y |X ) =
p(X |Y )p(Y )

p(X )

I Now we apply it:

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)
=

p(x |Ck)p(Ck)∑
j p(x |Cj)p(Cj)
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Bayes Theorem

I Some terminology! Repeated from last slide:

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)
=

p(x |Ck)p(Ck)∑
j p(x |Cj)p(Cj)

I We use the following names

Posterior =
Likelihood× Prior

Normalization Factor

I Normalization Factor is also called the Partition Function
or Evidence (commonly denoted with the symbol ‘Z ’)
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Bayes Theorem

Likelihood

Likelihood × Prior

Posterior = Likelihood×Prior
Normalization Factor
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How to decide?

I Two class problem C1,C2, plotting Likelihood × Prior

I What is the probability of making an error?
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Minmizing the Error

p(error) = p(x ∈ R2,C1) + p(x ∈ R1,C2)

= p(x ∈ R2|C1)p(C1) + p(x ∈ R1|C2)p(C2)

=

∫
R2

p(x |C1)p(C1)dx +

∫
R1

p(x |C2)p(C2)dx
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General Loss Functions

I So far we considered misclassification error only

I This is also referred to as 0/1 loss

I Now suppose we are given a more general loss function

∆ : Y × Y → R+

(y , ŷ) 7→ ∆(y , ŷ)

I How do we read this?

I ∆(y , ŷ) is the cost we have to pay if y is the true class,
but we predict ŷ instead
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Example: Predicting Cancer

I General loss function:

∆ : Y × Y → R+

(y , ŷ) 7→ ∆(y , ŷ)

I Given: X-Ray image
I Question: Cancer yes or no?
I Should we have a medical doctor check the patient?

I For discrete sets Y this is a loss matrix. How does it look?

I Loss function:
cancer normal

cancer 0 1000
normal 1 0
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Digit Classification

I Which class should we assign x to? (p(a) = p(b) = 0.5)

I The answer

I It depends on the loss
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Minimizing Expected Error

I But we do not know the correct class y

I The expected error for x (averaged over all decisions):

E[∆] =
∑

k=1,...,K

∑
j=1,...,K

∫
Rj

∆(Ck ,Cj)p(x ,Ck)dx
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Minimizing Expected Error

I But we do not know the correct class y

I The expected error for x (averaged over all decisions):

E[∆] =
∑

k=1,...,K

∑
j=1,...,K

∫
Rj

∆(Ck ,Cj)p(x ,Ck)dx

I And how do we predict, given an x? Decide on one y !

y∗ = argmin
y∈Y

∑
k=1,...,K

∆(Ck , y)p(Ck |x)

= argmin
y∈Y

Ep(·|x)[∆(·, y)]
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Inference and Decision

I We broke down the process into two steps
I Inference: obtaining the probabilities p(Ck |x)
I Decision: Obtain optimal class assignment

I The probabilites p(·|x) represent our belief of the world

I The loss ∆ tells us what to do with it!

I 0/1 loss implies deciding for max probability (exercise)
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Three approaches to solve decision problems

1. Generative models: infer the class conditionals

p(x |Ck), k = 1, . . . ,K

then combine using Bayes Theorem

2. Discriminative models: infer posterior probabilities directly

p(Ck |x)

3. Find discriminative function minimizing expected loss ∆

f : X → {1, . . . ,K}

Let’s discuss these options ...
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Generative Models

Pros:

I The name generative is because we explain the
generative process of the data

I Intuitive, “understand” your process

I We can generate samples x from p(x)

Cons:

I With high dimensionality of x ∈ X we need
large training set to determine the
class-conditionals

I We may just not be interested in all quantities

73 / 76



Organization Introduction Probability Theory Structured Prediction Decision Theory

Discriminative Models

Pros:

I No need to model p(x |Ck)
⇒ easier

Cons:

I No access to model p(x |Ck)
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Discriminative Functions

Pros:

I One integrated system

I Directly estimate the quantity of interest f (x)

I When solving a problem of interest, do not solve a harder / more
general problem as an intermediate step. [Vladimir Vapnik]

Cons:

I Need ∆ during training time

I Revision of ∆ requires re-learning

I No probabilities, no uncertainty, no reject?

I Prominent example: SVMs
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Next Time ...

I ... we will meet our new friends:
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