Graphical Models in Computer Vision

Andreas Geiger

Max Planck Institute for Intelligent Systems Perceiving Systems

April 18, 2016

Todays topic

- \blacktriangleright Recap
	- \blacktriangleright Probability Theory
- \triangleright Graphical Models
	- **Directed Models**
	- \blacktriangleright Undirected Models
	- **Filter View**

Recap

Probabilities: Discrete Case

 \blacktriangleright Joint Probability

$$
p(x_i, y_j) = \frac{n_{ij}}{N}
$$

 \blacktriangleright Marginal Probability

$$
p(x_i) = \frac{c_i}{N}
$$

 \triangleright Conditional Probability

$$
p(y_j \mid x_i) = \frac{n_{ij}}{c_i}
$$

$$
x_i
$$

$$
c_i=\sum_j n_{ij}
$$

$$
N=\sum_{ij} n_{ij}
$$

Probabilities: Continuous Case

joint, marginal, conditional probability

The Rules of Probability

 \triangleright Sum rule

$$
p(X) = \sum_{y \in \mathcal{Y}} p(X, Y = y)
$$

 \blacktriangleright Product Rule

$$
p(X, Y) = p(Y|X)p(X)
$$

 \blacktriangleright Bayes Theorem

$$
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}
$$

Probability Variables – Notation

 \blacktriangleright Two random variables X and Y

Independence

 X and Y are independent if

 $p(X, Y) = p(X)p(Y)$

Provided $p(X) \neq 0, p(Y) \neq 0$ this is equivalent with

 $p(X | Y) = p(X) \Leftrightarrow p(Y | X) = p(Y)$

Probability Variables – Notation

 \triangleright Sets of random variables $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$

Conditional independence

 $\mathcal X$ and $\mathcal Y$ are independent provided we know the state of $\mathcal Z$ if

$$
p(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) = p(\mathcal{X} \mid \mathcal{Z})p(\mathcal{Y} \mid \mathcal{Z})
$$

for all states of $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$. They are conditional independent given $\mathcal Z$

 \blacktriangleright For conditional independence we write

 $\mathcal{X} \perp \!\!\! \perp \mathcal{Y} \mid \mathcal{Z}$

 \triangleright And thus we write for (unconditional) independence

 $\mathcal{X} \perp\!\!\!\perp \mathcal{Y} \mid \emptyset$ or shorter $\mathcal{X} \perp\!\!\!\perp \mathcal{Y}$

Probability Variables – Notation

 \triangleright Similarly we write

 $\mathcal{X} \top \mathcal{Y} \mid \mathcal{Z}$

for conditionally dependent sets of random variables \blacktriangleright and

 $\mathcal{X} \mathbb{T} \mathcal{Y} \mid \emptyset$ or shorter $\mathcal{X} \mathbb{T} \mathcal{Y}$

for unconditional dependent random variables

Dependent or not?

- A is independent of $B(A \perp \!\!\!\perp B)$
- ► B is independent of C ($B \perp\!\!\!\perp C$)
- \triangleright C and A are \therefore ?
- \blacktriangleright Consider this distribution

$$
p(A, B, C) = p(B)p(A, C)
$$

 \triangleright a \perp b and b \perp c because:

$$
p(A, B) = p(B) \sum_{c} p(A, C)
$$

$$
p(C, B) = p(B) \sum_{a} p(A, C)
$$

- \triangleright So A and C may or may not be independent
- And the other direction? $\{A\overline{\otimes} B, B\overline{\otimes} C\} \Rightarrow A\overline{\otimes} C$?

Belief Networks

An example

- \triangleright Mr. Holmes leaves his house
	- \blacktriangleright He sees that the lawn in front of his house is wet
	- \triangleright This can have two reasons: he left the sprinkler turned on or it rained during the night.
	- \triangleright Without any further information the probability of both events increases
- \triangleright Now he also observes that his neighbour's lawn is wet
	- \blacktriangleright This lowers the probability that he left his sprinkler on. This event is explained away

Example continued

- \blacktriangleright Let's formalize:
- \triangleright There are several random variables
	- $R \in \{0,1\}$, $R = 1$ means it has been Raining
	- \triangleright $S \in \{0,1\}$, $S = 1$ means the Sprinkler was left on
	- $N \in \{0, 1\}, N = 1$ means Neighbours lawn is wet
	- $H \in \{0, 1\}$, $H = 1$ means **H**olmes lawn is wet

 \blacktriangleright How many states to be specified?

$$
p(R, S, N, H) = p(H | R, S, N) p(N | R, S) p(R | S) p(S)
$$

_{2³=8} _{2²=4} ₂ ₂ ₁

- $8 + 4 + 2 + 1 = 15$ numbers needed to specify all probabilities
- \blacktriangleright In general 2ⁿ − 1 for binary states only

Example – Conditional Independence

- \triangleright As a modeler of this problem we have prior knowledge of the dependencies / independencies
- $p(H | R, S, N) = p(H | R, S)$
- $p(N | R, S) = p(N | R)$
- \blacktriangleright p(R | S) = p(R)
- \blacktriangleright In effect our model becomes

$$
p(R, S, N, H) = p(H | R, S) p(N | R) p(R) p(S) \over 4
$$

- \blacktriangleright How many states? 8
- \triangleright Holmes grass, Neighbours grass, Rain, Sprinkler

This example as a Belief Network

- \triangleright This is called a directed graphical model or belief network
	- \triangleright observing the wet grass
	- \triangleright observing the neighbours wet grass

Example – Inference

- \triangleright The most pressing question is: was the sprinkler on?
- in other words what is $p(S = 1 | H = 1)$?
- \triangleright First we need to specify the eight states (conditional probability table) (CPT)

$$
p(R = 1) = 0.2, p(S = 1) = 0.1
$$

\n
$$
p(N = 1 | R = 0) = 0.2, p(N = 1 | R = 1) = 1
$$

\n
$$
p(H = 1 | R = 0, S = 0) = 0, p(H = 1 | R = 0, S = 1) = 0.9
$$

\n
$$
p(H = 1 | R = 1, S = 0) = 1, p(H = 1 | R = 1, S = 1) = 1
$$

►
$$
p(S = 1 | H = 1) = ... = 0.3382
$$

\n► $p(S = 1 | H = 1, N = 1) = ... = 0.1604$ (explained away)

Belief Networks

Belief network

A belief network is a distribution of the form

$$
p(x_1,\ldots,x_D)=\prod_{i=1}^D p(x_i\mid pa(x_i)),
$$

where $pa(x)$ denotes the parental variables of x

- \triangleright No cycles allowed! Why?
- \triangleright \Rightarrow Directed uncyclic graph (DAG)

Different factorizations

 \blacktriangleright Two factorizations of four variables:

 $p(x_1, x_2, x_3, x_4) = p(x_1 | x_2, x_3, x_4) p(x_2 | x_3, x_4) p(x_3 | x_4) p(x_4)$ $p(x_1, x_2, x_3, x_4) = p(x_3 | x_1, x_2, x_4) p(x_4 | x_1, x_2) p(x_1 | x_2) p(x_2)$

- \triangleright Any distribution can be written in such a cascade form as a belief network (using Bayes' theorem)
- \triangleright With independence assumptions the factorization is important

Conditional Independence

Conditional Independence

- \triangleright Structure of the DAG corresponds to a set of conditional independence assumptions
	- \triangleright which parents are sufficient (are the causes) to specify the CPT
	- ight to complete need to specify all $p(x | pa(x))$
- \triangleright This does not mean non-parental variables have no influence:

$$
p(x_1 | x_2)p(x_2 | x_3)p(x_3)
$$

with DAG $x_1 \leftarrow x_2 \leftarrow x_3$ does **not** imply (Exercise)

$$
p(x_2 | x_1, x_3) = p(x_2 | x_3)
$$

Conditional Independence

- \blacktriangleright Important task:
	- \blacktriangleright given graph, read of conditional independence statements
- ▶ Question:
	- \triangleright are x_1 and x_2 conditional independent given x_4 ?
	- ► and what about $x_1 \perp x_2 \mid x_3$?

 \blacktriangleright how to automate?

Collisions

Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. $(a \rightarrow c \leftarrow b)$

 \blacktriangleright Let's check these for colliders:

Collider and conditional independence

- \triangleright x_3 a collider ? no
- \triangleright $x_1 \perp x_2 \mid x_3$? yes

$$
p(x_1, x_2 | x_3) = p(x_1, x_2, x_3) / p(x_3)
$$

= $p(x_1 | x_3)p(x_2 | x_3)p(x_3) / p(x_3)$
= $p(x_2 | x_3)p(x_1 | x_3)$

Collider and conditional independence

- \triangleright x₃ a collider ? no
- \triangleright $x_1 \perp x_2 | x_3$? yes

$$
p(x_1, x_2 \mid x_3) = p(x_1, x_2, x_3) / p(x_3)
$$

= $p(x_2 \mid x_3)p(x_3 \mid x_1)p(x_1) / p(x_3)$
= $p(x_2 \mid x_3)p(x_1, x_3) / p(x_3)$
= $p(x_2 \mid x_3)p(x_1 \mid x_3)$

Collider and conditional independence

 \triangleright x_3 a collider ? yes

► $x_1 \perp x_2 \mid x_3$? no! (explaining away)

$$
p(x_1, x_2 | x_3) = p(x_1, x_2, x_3) / p(x_3)
$$

= $p(x_1)p(x_2) p(x_3 | x_1, x_2) / p(x_3)$
 $\neq 1$ in general

 \triangleright $x_1 \perp x_2$? yes

$$
p(x_1,x_2)=\sum_{x_3}p(x_3\mid x_1,x_2)p(x_1)p(x_2)=p(x_1)p(x_2)
$$

Determining Conditional Independence I

Special case: The distribution of A conditioned on all other variables depends only on the variables in the "Markov blanket".

The Markov blanket comprises:

- \blacktriangleright Parents
- \blacktriangleright Children
- \blacktriangleright Parents of children

Determining Conditional Independence II

 \triangleright There is a general algorithm to check for conditional independence $\mathcal{X} \perp\!\!\!\perp \mathcal{Y} \mid \mathcal{Z}$ in any belief network, called "D-separation":

D-separation

For every $x \in \mathcal{X}, y \in \mathcal{Y}$ check every path U between x and y. A path is blocked if there is a node w on U such that either:

- 1. w is a collider and neither w nor any descendant is in $\mathcal Z$
- 2. w is not a collider on U and w is in Z

If all such paths are blocked then X and Y are d-separated by $\mathcal Z$

 \triangleright But, as always in life, there is alternatives ...

Determining Conditional Independence III

- ► Given $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ how to determine whether $\mathcal{X} \perp\!\!\!\perp \mathcal{Y} \mid \mathcal{Z}$?
- \triangleright The first two steps apply to directed graphs only
- ► Let $\mathcal{D} = \{ \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \}$
- 1. Build the Ancestral Graph
	- ▶ Remove all nodes that are $\not\in\mathcal{D}$ and not an ancestor of a node in $\mathcal D$
	- \triangleright Also remove all edges in or out of such nodes
- 2. Moralisation
	- \triangleright Connect parents with common child
	- \blacktriangleright Remove directions
- 3. Separation
	- Remove links neighbouring $\mathcal Z$
	- ► If no path links a node in $\mathcal X$ to a node in $\mathcal Y\Rightarrow \mathcal X\perp\!\!\!\perp \mathcal Y\mid \mathcal Z$

Markov equivalence

Markov equivalence

Two graphs are Markov equivalent if they represent the same set of conditional independence statements. (holds for directed and undirected graphs)

Skeleton

Graph resulting when removing all arrows of edges

Immorality

Parents of a child with no connection

Markov equivalent \Leftrightarrow Same skeleton and same set of immoralities

Three variable graphs revisited

- \blacktriangleright All have the same skeleton
- \blacktriangleright (b,c,d) have no immoralities
- \triangleright (a) has immorality (x_1, x_2) and is thus not equivalent

Markov Networks

Markov Networks

\blacktriangleright So far:

- \blacktriangleright Factorization with each factor a (conditional) probability distribution
- ▶ Normalization as a by-product
- \blacktriangleright Alternative:

$$
p(a,b,c)=\frac{1}{Z}\phi(a,b)\phi(b,c)
$$

 \blacktriangleright Here Z normalization constant or partition function

$$
Z=\sum_{a,b,c}\phi(a,b)\phi(b,c)
$$

Definitions

Potential

A potential $\phi(x)$ is a non-negative function of the variable x. A joint potential $\phi(x_1, \ldots, x_D)$ is a non-negative function of the set of variables.

 \triangleright Distribution (as in belief networks) is a special choice

Example

Markov Network

Markov Network

For a set of variables $\mathcal{X} = \{x_1, \ldots, x_D\}$ a Markov network is defined as a product of potentials over the maximal cliques \mathcal{X}_{c} of the graph \mathcal{G}

$$
p(x_1,\ldots,x_D)=\frac{1}{Z}\prod_{c=1}^C \phi_c(\mathcal{X}_c)
$$

- \triangleright Special case: cliques of size 2 pairwise Markov network
- If all potentials are strictly positive this is called a Gibbs distribution

Properties of Markov Networks

Properties of Markov Networks

- \triangleright Marginalizing over c makes a and b "graphically" dependent
- \blacktriangleright Check

$$
p(a,b)=\sum_{c}\frac{1}{Z}\phi_1(a,c)\phi_2(b,c)
$$

Properties of Markov Networks

 \triangleright Conditioning on c makes a and b independent (whiteboard)

$$
p(a, b | c) = p(a | c)p(b | c)
$$

 \triangleright This is opposite to the directed version $a \rightarrow c \leftarrow b$ where conditioning introduced dependency

Global Markov Property

Separation

A subset S separates A from β if every path from a member of $\mathcal A$ to any member of $\mathcal B$ passes through S .

Global Markov Property

For disjoint sets of variables (A, B, S) where S separates A from B, then $A \perp\!\!\!\perp B \mid S$

Local Markov Property

 \triangleright For positive potentials, the so-called local Markov property holds

Local Markov Property $p(x | \mathcal{X} \setminus \{x\}) = p(x | ne(x))$

- \triangleright The set of neighboring nodes $ne(x)$ is called the Markov blanket
- \triangleright This also holds for set of variables \Rightarrow Simple independence check by separation (third step in algorithm III discussed for directed models)

Local Markov Property – Example

- \blacktriangleright $p(x_4 | x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_4 | x_2, x_3, x_5, x_6)$
- \triangleright in other words $x_4 \perp x \$ {x₁, x₇} | {x₂, x₃, x₅, x₆}
- \blacktriangleright and others

Markov Random Field (MRF)

Markov Random Field

A MRF is defined by a set of distributions $p(x_i \mid ne(x_i))$. A distribution is a *Markov Random* Field with respect to an undirected graph G if

 $p(x_i | x_{\backslash i}) = p(x_i | ne(x_i))$

 \blacktriangleright Not every set of conditional distributions $p(x_i | x_{\backslash i})$ yields a valid joint distribution (exercise)

- \triangleright An undirected graph G specifies a set of conditional independence statements
- \triangleright Question: What is the most general factorization F (form of the distribution) that satisfies these independences?

- \blacktriangleright Eliminate variable one by one
- In Let's start with x_1

$$
p(x_1,...,x_7)=p(x_1 | x_2,x_3)p(x_2,...,x_7)
$$

 \blacktriangleright Graph specifies:

$$
p(x_1, x_2, x_3 \mid x_4 \dots, x_7) = p(x_1, x_2, x_3 \mid x_4)
$$

\n
$$
\Rightarrow p(x_2, x_3 \mid x_4, \dots x_7) = p(x_2, x_3 \mid x_4)
$$

 \blacktriangleright Hence

$$
p(x_1,...,x_7)=p(x_1 | x_2,x_3)p(x_2,x_3, | x_4)p(x_4,x_5,x_6,x_7)
$$

 \triangleright We continue to find

$$
p(x_1,...,x_7) = p(x_1 | x_2, x_3) p(x_2, x_3 | x_4)
$$

$$
p(x_4 | x_5, x_6) p(x_5, x_6 | x_7) p(x_7)
$$

 \triangleright A factorization into clique potentials (maximal cliques)

$$
p(x_1,...,x_7)=\frac{1}{Z}\phi(x_1,x_2,x_3)\phi(x_2,x_3,x_4)\phi(x_4,x_5,x_6)\phi(x_5,x_6,x_7)
$$

- ► Markov conditions of graph $G \Rightarrow$ factorization F into clique potentials
- And conversely: $F \Rightarrow G$

Hammersley-Clifford Theorem

Hammersely-Clifford

This factorization property $G \Leftrightarrow F$ holds for any undirected graph provided that the potentials are positive

- ► Thus also loopy ones: $x_1 x_2 x_3 x_4 x_1$
- \triangleright Theorem says, distribution is of the form

$$
p(x_1, x_2, x_3, x_4) = \frac{1}{Z} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{41}(x_4, x_1)
$$

Directed vs. Undirected

Bayes or Markov?

- ▶ So which one is better? Directed or Undirected ?
- \triangleright Both directed and undirected graphical models imply sets of conditional independences
- \triangleright Which one models more distributions? Or are they the same?
- \blacktriangleright First introduce "canonical" representation

Relationship directed – undirected models: maps

Map

A graph is said to be a D map (dependency map) of a distribution if every conditional independence statement satisfied by the distribution is reflected in the graph

- \triangleright A completely disconnected graph contains all possible independence statements for its variables
- $\triangleright \Rightarrow$ it is a trivial D map for any distribution

Relationship directed – undirected models: maps

I Map

A graph is said to be a I map (independence map) of a distribution if every conditional independence implied by the graph is satisfied by the distribution

- \triangleright A fully connected graph implies no independence statements
- $\triangleright \Rightarrow$ it is a trivial I map for any distribution

Relationship directed – undirected models: maps

Perfect Map

If every conditional independence property of the distribution is reflected in the graph, and vice versa, then the graph is said to be a perfect map for that distribution.

 \triangleright A perfect map: Both I map and a D map of the distribution

Relationship directed – undirected GM

- \triangleright P set of all distributions for a given set of variables
- \triangleright Distributions that can be represented as a perfect map
	- \triangleright using undirected graph U
	- \triangleright using a directed graph D

- \triangleright Middle: conditional independence properties cannot be expressed using an undirected graph over the same three variables
- \triangleright Right: conditional independence properties cannot be expressed using a directed graph over the same four variables

Filter View of a Graphical Model

 \triangleright This graph has one conditional independence statement only: $x_1 \perp x_2$

- \triangleright The following distribution satisfies this: $p_1(x_3 = 1 | x_1, x_2) = (x_1 - x_2)^2, p_1(x_1 = 1) = 0.3, p_1(x_2 = 1) = 0.4$
- \triangleright BUT: More conditional independencies are possible:

$$
p_2(x_3 = 1 | x_1, x_2) = 0.5, p_2(x_1 = 1) = 0.3, p_2(x_2 = 1) = 0.4
$$

p₂ satisfies $\{x_1 \perp x_2, x_1 \perp x_3, x_2 \perp x_3\}$

Filter View of a Graphical Model

- ^I Belief network implies a list of conditional independences
- \triangleright Regard as filter:
	- \triangleright Only distributions \mathcal{DF} that satisfy all conditional independences are allowed to pass
	- \blacktriangleright All distributions satisfying the d-separation theorem pass
- \triangleright One graph describes a whole family of probability distributions
- \blacktriangleright Extremes:
	- \blacktriangleright Fully connected, no constraints, all p pass
	- \triangleright no connections, only product of marginals may pass

Filter View of a Graphical Model

- \blacktriangleright Let $\mathcal{U}I$ denote the distributions that can pass
	- \triangleright those that satisfy all conditional independence statements
	- \triangleright those which can be read from the graph using graph separation
- Exect Let $U\mathcal{F}$ denote the distributions with factorization over cliques
- \blacktriangleright Hammersley-Clifford says: $\mathcal{U}\mathcal{I} = \mathcal{U}\mathcal{F}$

Next Time ...

 \blacktriangleright ... we will meet our last friend:

Questions?

