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Todays topic

I Recap
I Probability Theory

I Graphical Models
I Directed Models
I Undirected Models
I Filter View
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Recap
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Probabilities: Discrete Case

I Joint Probability

p(xi , yj) =
nij
N

I Marginal Probability

p(xi ) =
ci
N

I Conditional Probability

p(yj | xi ) =
nij
ci

ci︸︷︷︸
yj nij

xi

ci =
∑
j

nij

N =
∑
ij

nij
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Probabilities: Continuous Case

joint, marginal, conditional probability
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The Rules of Probability

I Sum rule
p(X ) =

∑
y∈Y

p(X ,Y = y)

I Product Rule
p(X ,Y ) = p(Y |X )p(X )

I Bayes Theorem

p(Y |X ) =
p(X |Y )p(Y )

p(X )
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Probability Variables – Notation

I Two random variables X and Y

Independence

X and Y are independent if

p(X ,Y ) = p(X )p(Y )

I Provided p(X ) 6= 0, p(Y ) 6= 0 this is equivalent with

p(X | Y ) = p(X )⇔ p(Y | X ) = p(Y )
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Probability Variables – Notation

I Sets of random variables X ,Y,Z

Conditional independence

X and Y are independent provided we know the state of Z if

p(X ,Y | Z) = p(X | Z)p(Y | Z)

for all states of X ,Y,Z. They are conditional independent given Z

I For conditional independence we write

X ⊥⊥ Y | Z
I And thus we write for (unconditional) independence

X ⊥⊥ Y | ∅ or shorter X ⊥⊥ Y
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Probability Variables – Notation

I Similarly we write
X>>Y | Z

for conditionally dependent sets of random variables

I and
X>>Y | ∅ or shorter X>>Y

for unconditional dependent random variables
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Dependent or not?

I A is independent of B (A ⊥⊥ B)
I B is independent of C (B ⊥⊥ C )
I C and A are ... ?

I Consider this distribution

p(A,B,C ) = p(B)p(A,C )

I a ⊥⊥ b and b ⊥⊥ c because:

p(A,B) = p(B)
∑
c

p(A,C )

p(C ,B) = p(B)
∑
a

p(A,C )

I So A and C may or may not be independent

I And the other direction? {A>>B,B>>C} ⇒ A>>C ?
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Belief Networks
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An example

I Mr. Holmes leaves his house
I He sees that the lawn in front of his house is wet
I This can have two reasons: he left the sprinkler turned on or it rained

during the night.
I Without any further information the probability of both events increases

I Now he also observes that his neighbour’s lawn is wet
I This lowers the probability that he left his sprinkler on. This event is

explained away
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Example continued

I Let’s formalize:
I There are several random variables

I R ∈ {0, 1}, R = 1 means it has been Raining
I S ∈ {0, 1}, S = 1 means the Sprinkler was left on
I N ∈ {0, 1}, N = 1 means Neighbours lawn is wet
I H ∈ {0, 1}, H = 1 means Holmes lawn is wet

I How many states to be specified?

p(R, S ,N,H) = p(H | R, S ,N)︸ ︷︷ ︸
23=8

p(N | R, S)︸ ︷︷ ︸
22=4

p(R | S)︸ ︷︷ ︸
2

p(S)︸︷︷︸
1

I 8 + 4 + 2 + 1 = 15 numbers needed to specify all probabilities

I In general 2n − 1 for binary states only
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Example – Conditional Independence

I As a modeler of this problem we have
prior knowledge of the dependencies / independencies

I p(H | R,S ,N) = p(H | R,S)

I p(N | R,S) = p(N | R)

I p(R | S) = p(R)

I In effect our model becomes

p(R, S ,N,H) = p(H | R,S)︸ ︷︷ ︸
4

p(N | R)︸ ︷︷ ︸
2

p(R)︸︷︷︸
1

p(S)︸︷︷︸
1

I How many states? 8

I Holmes grass, Neighbours grass, Rain, Sprinkler
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This example as a Belief Network

R

N H

S R

N H

S R

N H

S

I This is called a directed graphical model or belief network
I observing the wet grass
I observing the neighbours wet grass
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Example – Inference

I The most pressing question is: was the sprinkler on?

I in other words what is p(S = 1 | H = 1)?

I First we need to specify the eight states (conditional probability
table) (CPT)

p(R = 1) = 0.2, p(S = 1) = 0.1

p(N = 1 | R = 0) = 0.2, p(N = 1 | R = 1) = 1

p(H = 1 | R = 0,S = 0) = 0, p(H = 1 | R = 0,S = 1) = 0.9

p(H = 1 | R = 1, S = 0) = 1, p(H = 1 | R = 1, S = 1) = 1

I p(S = 1 | H = 1) = . . . = 0.3382

I p(S = 1 | H = 1,N = 1) = . . . = 0.1604 (explained away)
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Belief Networks

Belief network

A belief network is a distribution of the form

p(x1, . . . , xD) =
D∏
i=1

p(xi | pa(xi )),

where pa(x) denotes the parental variables of x

I No cycles allowed! Why?

I ⇒ Directed uncyclic graph (DAG)

17 / 61



Recap Belief Networks Conditional Independence Markov Networks Directed vs. Undirected

Different factorizations

x1 x2 x3 x4 x3 x4 x1 x2

I Two factorizations of four variables:

p(x1, x2, x3, x4) = p(x1 | x2, x3, x4)p(x2 | x3, x4)p(x3 | x4)p(x4)

p(x1, x2, x3, x4) = p(x3 | x1, x2, x4)p(x4 | x1, x2)p(x1 | x2)p(x2)

I Any distribution can be written in such a cascade form as a belief
network (using Bayes’ theorem)

I With independence assumptions the factorization is important
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Conditional Independence
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Conditional Independence

I Structure of the DAG corresponds to a set of conditional
independence assumptions

I which parents are sufficient (are the causes) to specify the CPT
I to complete need to specify all p(x | pa(x))

I This does not mean non-parental variables have no influence:

p(x1 | x2)p(x2 | x3)p(x3)

with DAG x1 ← x2 ← x3 does not imply (Exercise)

p(x2 | x1, x3) = p(x2 | x3)
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Conditional Independence

I Important task:
I given graph, read of conditional independence statements

I Question:
I are x1 and x2 conditional independent given x4?
I and what about x1 ⊥⊥ x2 | x3 ?

x1 x2 x3 x4

I how to automate?
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Collisions

Collision

Given a path from node a to b, a collider is a
node c for which there are two nodes a, b in the
path pointing towards c. (a→ c ← b)

I Let’s check these for colliders:

x1 x2

x3

x1 x2

x3

x1 x2

x3
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Collider and conditional independence

x1 x2

x3

I x3 a collider ? no

I x1 ⊥⊥ x2 | x3 ? yes

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x1 | x3)p(x2 | x3)p(x3)/p(x3)

= p(x2 | x3)p(x1 | x3)
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Collider and conditional independence

x1 x2

x3

I x3 a collider ? no

I x1 ⊥⊥ x2 | x3 ? yes

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x2 | x3)p(x3 | x1)p(x1)/p(x3)

= p(x2 | x3)p(x1, x3)/p(x3)

= p(x2 | x3)p(x1 | x3)
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Collider and conditional independence

x1 x2

x3

I x3 a collider ? yes
I x1 ⊥⊥ x2 | x3 ? no! (explaining away)

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x1)p(x2) p(x3 | x1, x2)/p(x3)︸ ︷︷ ︸
6=1 in general

I x1 ⊥⊥ x2 ? yes

p(x1, x2) =
∑
x3

p(x3 | x1, x2)p(x1)p(x2) = p(x1)p(x2)
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Determining Conditional Independence I

Special case: The distribution of A conditioned on all other variables
depends only on the variables in the “Markov blanket”.

The Markov blanket comprises:

I Parents

I Children

I Parents of children
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Determining Conditional Independence II

I There is a general algorithm to check for conditional independence
X ⊥⊥ Y | Z in any belief network, called “D-separation”:

D-separation

For every x ∈ X , y ∈ Y check every path U between x and y .
A path is blocked if there is a node w on U such that either:

1. w is a collider and neither w nor any descendant is in Z
2. w is not a collider on U and w is in Z

If all such paths are blocked then X and Y are d-separated by Z

I But, as always in life, there is alternatives ...
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Determining Conditional Independence III

I Given X ,Y,Z how to determine whether X ⊥⊥ Y | Z?

I The first two steps apply to directed graphs only

I Let D = {X ∪ Y ∪ Z}

1. Build the Ancestral Graph
I Remove all nodes that are 6∈ D and not an ancestor of a node in D
I Also remove all edges in or out of such nodes

2. Moralisation
I Connect parents with common child
I Remove directions

3. Separation
I Remove links neighbouring Z
I If no path links a node in X to a node in Y ⇒ X ⊥⊥ Y | Z
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Markov equivalence

Markov equivalence

Two graphs are Markov equivalent if they represent the same
set of conditional independence statements.
(holds for directed and undirected graphs)

Skeleton

Graph resulting when removing all arrows of edges

Immorality

Parents of a child with no connection

I Markov equivalent ⇔ Same skeleton and same set of immoralities
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Three variable graphs revisited

x1 x2

x3

x1 x2

x3

x1 x2

x3

x1 x2

x3

(a) (b) (c) (d)

I All have the same skeleton

I (b,c,d) have no immoralities

I (a) has immorality (x1, x2) and is thus not equivalent
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Markov Networks
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Markov Networks

I So far:
I Factorization with each factor a (conditional) probability distribution
I Normalization as a by-product

I Alternative:

p(a, b, c) =
1

Z
φ(a, b)φ(b, c)

I Here Z normalization constant or partition function

Z =
∑
a,b,c

φ(a, b)φ(b, c)
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Definitions

Potential

A potential φ(x) is a non-negative function of the variable x .
A joint potential φ(x1, . . . , xD) is a non-negative function of
the set of variables.

I Distribution (as in belief networks) is a special choice

34 / 61



Recap Belief Networks Conditional Independence Markov Networks Directed vs. Undirected

Example

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c)
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Markov Network

Markov Network

For a set of variables X = {x1, . . . , xD} a Markov
network is defined as a product of potentials over
the maximal cliques Xc of the graph G

p(x1, . . . , xD) =
1

Z

C∏
c=1

φc(Xc)

I Special case: cliques of size 2 – pairwise Markov network

I If all potentials are strictly positive this is called a Gibbs distribution
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Properties of Markov Networks

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c)
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Properties of Markov Networks

a

c

b

⇒ a b

I Marginalizing over c makes a and b “graphically” dependent

I Check

p(a, b) =
∑
c

1

Z
φ1(a, c)φ2(b, c)
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Properties of Markov Networks

a

c

b

⇒ a b

I Conditioning on c makes a and b independent (whiteboard)

p(a, b | c) = p(a | c)p(b | c)

I This is opposite to the directed version a→ c ← b where
conditioning introduced dependency
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Global Markov Property

Separation

A subset S separates A from B if every path
from a member of A to any member of B
passes through S.

Global Markov Property

For disjoint sets of variables (A,B,S) where
S separates A from B, then A ⊥⊥ B | S

1

2

4

3

5

6

7
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Local Markov Property

I For positive potentials, the so-called local Markov property holds

Local Markov Property

p(x | X \ {x}) = p(x | ne(x))

I The set of neighboring nodes ne(x) is called the Markov blanket

I This also holds for set of variables ⇒ Simple independence check by
separation (third step in algorithm III discussed for directed models)
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Local Markov Property – Example

1

2

4

3

5

6

7

I p(x4 | x1, x2, x3, x4, x5, x6, x7) = p(x4 | x2, x3, x5, x6)

I in other words x4 ⊥⊥ {x1, x7} | {x2, x3, x5, x6}
I and others
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Markov Random Field (MRF)

Markov Random Field

A MRF is defined by a set of distributions
p(xi | ne(xi )). A distribution is a Markov Random
Field with respect to an undirected graph G if

p(xi | x\i ) = p(xi | ne(xi ))

I Not every set of conditional distributions p(xi | x\i ) yields a valid joint
distribution (exercise)
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Finding the factorization

I An undirected graph G specifies a set of conditional independence
statements

I Question: What is the most general factorization F (form of the
distribution) that satisfies these independences?
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Finding the factorization

1

2

4

3

5

6

7

I Eliminate variable one by one

I Let’s start with x1

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, . . . , x7)
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Finding the factorization

1

2

4

3

5

6

7

I Graph specifies:

p(x1, x2, x3 | x4 . . . , x7) = p(x1, x2, x3 | x4)

⇒ p(x2, x3 | x4, . . . x7) = p(x2, x3 | x4)

I Hence

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, x3, | x4)p(x4, x5, x6, x7)
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Finding the factorization

1

2

4

3

5

6

7

I We continue to find

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, x3 | x4)

p(x4 | x5, x6)p(x5, x6 | x7)p(x7)

I A factorization into clique potentials (maximal cliques)

p(x1, . . . , x7) =
1

Z
φ(x1, x2, x3)φ(x2, x3, x4)φ(x4, x5, x6)φ(x5, x6, x7)
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Finding the factorization

1

2

4

3

5

6

7

I Markov conditions of graph G ⇒ factorization F into clique potentials

I And conversely: F ⇒ G
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Hammersley-Clifford Theorem

Hammersely-Clifford

This factorization property G ⇔ F holds for any undirected
graph provided that the potentials are positive

I Thus also loopy ones: x1 − x2 − x3 − x4 − x1
I Theorem says, distribution is of the form

p(x1, x2, x3, x4) =
1

Z
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)
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Directed vs. Undirected
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Bayes or Markov?

I So which one is better? Directed or Undirected ?

I Both directed and undirected graphical models imply sets of
conditional independences

I Which one models more distributions? Or are they the same?

I First introduce “canonical” representation
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Relationship directed – undirected models: maps

D Map

A graph is said to be a D map (dependency map) of a
distribution if every conditional independence statement
satisfied by the distribution is reflected in the graph

I A completely disconnected graph contains all possible independence
statements for its variables

I ⇒ it is a trivial D map for any distribution

52 / 61



Recap Belief Networks Conditional Independence Markov Networks Directed vs. Undirected

Relationship directed – undirected models: maps

I Map

A graph is said to be a I map (independence map) of a
distribution if every conditional independence implied by the
graph is satisfied by the distribution

I A fully connected graph implies no independence statements

I ⇒ it is a trivial I map for any distribution
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Relationship directed – undirected models: maps

Perfect Map

If every conditional independence property of the distribution
is reflected in the graph, and vice versa, then the graph is
said to be a perfect map for that distribution.

I A perfect map: Both I map and a D map of the distribution
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Relationship directed – undirected GM

I P – set of all distributions for a given set of variables
I Distributions that can be represented as a perfect map

I using undirected graph – U
I using a directed graph – D
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(a) (b)

I Middle: conditional independence properties cannot be expressed
using an undirected graph over the same three variables

I Right: conditional independence properties cannot be expressed using
a directed graph over the same four variables
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Filter View of a Graphical Model

I This graph has one conditional
independence statement only: x1 ⊥⊥ x2

x1 x2

x3

I The following distribution satisfies this:

p1(x3 = 1 | x1, x2) = (x1 − x2)2, p1(x1 = 1) = 0.3, p1(x2 = 1) = 0.4

I BUT: More conditional independencies are possible:

p2(x3 = 1 | x1, x2) = 0.5, p2(x1 = 1) = 0.3, p2(x2 = 1) = 0.4

p2 satisfies {x1 ⊥⊥ x2, x1 ⊥⊥ x3, x2 ⊥⊥ x3}
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Filter View of a Graphical Model

I Belief network implies a list of conditional independences
I Regard as filter:

I Only distributions DF that satisfy all
conditional independences are allowed to pass

I All distributions satisfying the d-separation theorem pass

I One graph describes a whole family of probability distributions
I Extremes:

I Fully connected, no constraints, all p pass
I no connections, only product of marginals may pass
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Filter View of a Graphical Model

I Let UI denote the distributions that can pass
I those that satisfy all conditional independence statements
I those which can be read from the graph using graph separation

I Let UF denote the distributions with factorization over cliques

I Hammersley-Clifford says: UI = UF
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Next Time ...

I ... we will meet our last friend:
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Questions?
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