Graphical Models in Computer Vision

Andreas Geiger

Max Planck Institute for Intelligent Systems
Perceiving Systems

May 2, 2016

MAX-PLANCK-GESELLSCHAFT

1/62

Syllabus

11.04.2016

Introduction

18.04.2016

Graphical Models 1

25.04.2016

Graphical Models 2 (Sand 6/7)

02.05.2016

Graphical Models 3

09.05.2016

Graphical Models 4

23.05.2016

Body Models 1

30.05.2016

Body Models 2

06.06.2016

Body Models 3

13.06.2016

Body Models 4

20.06.2016

Stereo

27.06.2016

Optical Flow

04.07.2016

Segmentation

11.07.2016

Object Detection 1

18.07.2016

Object Detection 2

Todays topic

» Recap
» Belief Networks
Markov Networks & Markov Random Fields
Filter View
Factor Graphs
Belief Propagation on Trees

vV vy VvYy

» Approximate Inference

» Loopy Belief Propagation on General Graphs
» Sampling

Recap

900000000

Belief Networks

Belief network

A belief network is a distribution of the form
D
p(xi, ..., xp) = HP(Xi | pa(xi))
i=1

where pa(x) denotes the parental variables of x

Recap
000000000

Markov Networks & Markov Random Fields

Markov Network

For a set of variables X = {xy,...,xp} a Markov network is defined as
a product of potentials over the maximal cliques X, of the graph G

1 C
p(le s 7XD) = ? H ¢C(XC)
c=1

p(a7 b7 C) = %d)ac(a? C)¢bc(b’ C)

Recap
[e]e] Jelelele]e]e)

Filter View

1
[_

» Each graph describes a family of probability distributions
» Extremes:

» Fully connected, no constraints, all p pass
» no connections, only product of marginals may pass

6

62

Recap
[e]e]e] lelelee]e)

Factor Graphs

» Now consider we introduce an extra node (a square) for each factor:

(<) O, (+)

0‘0 OO OAG

(a) (b) (c)

v

(a) Markov Network

(b) Factor graph representation of ¢(a, b, c)

(c) Factor graph representation of ¢(a, b)¢(b, c)é(c, a)

Both factor graphs have the same Markov network (b,c)=(a)

v

v

v

Recap

[e]e]e]e] Jele]ele]

Factor Graphs

Factor Graph

Given a function
Fx1,) = [[wi(X)

the factor graph (FG) has a node (represented by a square) for each factor
¥i(X;) and a variable node (represented by a circle) for each variable x;
When used to represent a distribution

p(x1,y. .., xn) = % H?/Ji(Xi)

a normalization constant Z is assumed.

Recap
[e]e]e]e]e] lelele)

Belief Propagation on a Chain

. fi . f2 ' fa . i

p(a, b, c,d) = fi(a, b)fa(b, c)f3(c, d)fa(d)

p(a,b,c) = Z p(a, b, c,d)
d

= fi(a,b)f(b,c))_ f(c,d)fa(d)
d

pd—sc(c)

p(a, b) = Z p(a, b,c) = fi(a, b) Z f2(b, ¢)prd—sc(c)

He—b(b)

Recap
[e]e]e]e]e]e] lele)

Belief Propagation on a Tree

» Idea: compute messages

Pfa—e(C)

10/62

Recap
000000080

Belief Propagation: Finding Marginals

Sum-Product Algorithm for Trees

1. Initialize messages
2. lterate from leaves of the tree to target variable:
» Factor-to-variable messages (“sum-product”)

Mf—)x(X) = quf()(f) H Ny—)f()/)

Xr\x ye{ne(f)\x}

> Variable-to-factor messages (at target = marginal!)

px—sf(X) = H Ng%X(X)

ge{ne()\f}

» X¢: Variables that connect to factor f
» ne(x): Factors that connect to variable x
» If all marginals are desired: 1) leaves — root 2) root — leaves

11 /62

Recap Loc
00000000

Belief Propagation: Find Most Likely State (MAP)

Max-Product Algorithm for Trees

1. Initialize messages
2. lterate from leaves of the tree to target variable:
» Factor-to-variable messages (“max-product”)

pfx(x) = ?an¢f(Xf) H My—)f()/)
o yelne(i\x)

» Variable-to-factor messages (at target = most likely state!)

px—sf(X) = H Ng%X(X)

ge{ne(x)\f}

» X¢: Variables that connect to factor f
» ne(x): Factors that connect to variable x
» If all states are of interest: 1) leaves — root 2) root — leaves

Loopy Belief Propagation
@90000000000000000000

Fantastic, this is all very nice!

BUT ...

13 /62

Loopy Belief Propagation

000000000000 00000000

What if the graph is not singly connected?

/o

()
fi
(D

—

fs

p(a, b, c,d) = fi(a, b)ra(b, c)fs(c, d)fa(d, a)

14 /62

Loopy Belief Propagation
000000000000 00000000

What if the graph is not singly connected?

p(a, b, c,d) = fi(a, b)f2(b, c)fz(c, d)fa(d, a)

p(a,b,c) = p(a, b,c,d) = fi(a, b)ha(b,c) > fi(c,d)fa(d,a)
d d

Nd—»a,c(a-,c)

p(a,b) = p(a,b,c) = fi(a, b)Y fa(b,c) pra—ac(a, c)

Hc%a,b(avb)

p(a) = Z p(a, b) = Z fl(av b) Nc—>a,b(a: b)

b b

2D messages now = simply buy more RAM and wait a bit longer?

15 /62

Loopy Belief Propagation
0000000000000 0000000

What if the graph gets bigger?

p(all) = fi(a, b)fa(b, c)fz(a, d)fa(b, e)fs(c,g)fe(d, €)
f7(e,g)f3(d, h)fg(e, i)flo(gaj)fll(hv i)’rl2(i7j)

16 /62

Loopy Belief Propagation
000000000000 00000000

What if the graph gets bigger?

p(all) = fi(a, b)fa(b, c)fz(a, d)fa(b, e)fs(c, g)fe(d, €)
f7(e,g)f3(d, h)fg(e, i)flo(gaj)fll(hv i)’rl2(i7j)

p(a//\{_/}) = fl(aa b)f—2(ba C)%(‘% d)f4(b7 e)ﬁ?(cag)fﬁ(d7 e)
f1(e, g)fa(d, h)fo(e,) f1(h, I)ij—ig(i, g)

p(a//\{i,j}) = fl(av b)fZ(bv C)f}:(a7 d)ﬂl(b’ e)ﬂ')(c’g)fﬁ(d’ e)
f7(e, g)fé(d7 h),uli—>e,h,g(ea h‘/ g)

3D messages now = this is getting intractable!

17 /62

Loopy Belief Propagation

0000000000000 000000

How can we handle general loopy graphs?

Loopy Belief Propagation

v

Messages are well defined for loopy graphs:

px—f(x) = H tg—x(x)

ge{ne(x)\f}
/fo*)X(X) = Z (Zsf(Xf) H Myﬁf()/)
Xr\x ye{ne(f)\x}

Simply apply them to loopy graphs as well

We loose exactness (= approximate inference)

No guarantee of convergence [Yedida et al. 2004]

But often works astonishingly well in practice

Same algorithm works for trees (exact) as well as

for loopy graphs (approximate) = Programming exercise

vV v.v vy

18 /62

Loopy Belief Propagation
000000800000 00000000

Loopy Belief Propagation

Outline of the algorithm:
» Initialize messages to fixed value (e.g., uniform distribution)
» Perform message updates in fixed or random order
» After convergence: Calculate approximate marginals
» Note: LBP does not always converge

» There exist converging variants: TRW-S [Kolmogorov, PAMI 2006]

19/62

Loopy Belief Propagation
0000000 e000000000000

Loopy Belief Propagation

Which message passing schedule?
» Random or fixed order

» Popular choice:

1. Factors — variables
2. Variables — factors
3. Repeat for N iterations

» Can be run in parallel as factor graph is bipartite:

Zq) T3

fa fb fc fd

20 /62

0000000 0@00000000000
Loopy Belief Propagation

Sum-Product Belief Propagation
» Goal: Compute marginals of distribution

» Multiplying many double-precision numbers is not a good idea
> Better use log messages A(x) = log u(x):
» Factor-to-variable messages:
fr—x(X) = 2 a0 x PF(XF) T e x iy (¥)

Arox(x) = 10g (Z 1 01(X0) €0 { Sy eneqry s () }) | ()

» Variable-to-factor messages:

pxsr(x) = HgE{ne(x)\f} fg—x(X)

Ao f(x) = ZgE{ne(x)\f} Ag—x(x) | (2)

> fo\x : Summation over all states in Xf \ x

> > ene(r) : Summation over all incoming messages

» To avoid numbers from getting too large, normalize A\, ¢(x) after
the message update (Eq. 2), for example by subtracting its mean

000000000 e0000000000
Loopy Belief Propagation

Max-Product/Sum Belief Propagation
» Goal: Find most likely state (MAP state)
» Very similar to sum-product, only factor-to-variable message changes

> As before, we better use log messages A\(x) = log 1(x):
» Factor-to-variable messages:

prx(X) = maxa e [0 () Tl ety ()]

Aroanlx) = max [log 67(Xr) + 5y enecr M ()] | (3)

» Variable-to-factor messages:

tx—£(X) = Ige ey He—x(x)

Ax—f(x) = de{ne(x)\f} Ag—x(x)| (2)

> maxy,\, : Maximization over all states in X¢ \ x

> Zyene(f) : Summation over all incoming messages

» To avoid numbers from getting too large, normalize A\, ¢(x) after
the message update (Eq. 2), for example by subtracting its mean

N
N
o
(]

000000000 0@000000000
Loopy Belief Propagation

Unary and Pairwise Factor-to-Variable Messages
Factor-to-variable messages simplify as follows if you only consider unary
or pairwise factors. Variable-to-factor messages don’t simplify.
» Sum-Product Belief Propagation:
» Unary factor ¢¢(x):

[Arox(x) = log ()| (1)
» Pairwise factor ¢¢(x,y):
Arox(x) = log (32, @r(x, v) exp {Ayr(1)}) (1)

» Max-Product Belief Propagation:
» Unary factor ¢¢(x):

[Arox(x) = log or(x) | (3)
» Pairwise factor ¢¢(x,y):
M) = max, [log ér(x, y) + Ay (y)]] (3)

Note: The sum/max here run over all states of variable y!

Loopy Belief Propagation
00000000000 e00000000

Loopy Belief Propagation

Let’'s implement this now! Which data structures to use?
» A vector variables containing the #labels each variable can take

» A vector factors; each factor contains:

» The variable id or id's of the variables it is connected to
» A vector or matrix storing the factor values for all states

v

A vector of factor-to-variable messages (Af_x)

v

A vector of variable-to-factor messages (Ax_f)

v

Each message contains:
» The id’'s of the involved variables, factors
and input messages it depends on for enabling quick updates
according to the formulas on the previous slide
» The message log values themselves (a vector, length: #labels)

\4

variables and factors are the inputs to the algorithm

» messages are computed by the algorithm

000000000000 e0000000
Loopy Belief Propagation

Belief Propagation Algorithm (handles both cases)
» Input: variables and factors
Allocate all messages
Initialize the message log values to 0 (=uniform distribution)
For N = 10 iterations do
» Update all factor-to-variable messages (Eq. 1 or Eq. 3)

» Update all variable-to-factor messages (Eq. 2)
» Normalize all variable-to-factor messages:

s (%) = Hms(x) — mean (s (x))
Read off marginal or MAP state at each variable:

A= Y, Agax())
ge{ne(x)} x*=argmax Y Agox(x)

p(x) = exp{A(x }/Zexp{)\ * gclnex)

v vy

v

Loopy B Propagation

0000000000000 e000000

Imagine ...

29 /62

Loopy Belief Propagation

0000000000000 0e00000

Denoising a Binary Image

Can we recover the original image from the noisy observation?

v

Let us model this using a MRF! C>} O} C)}

» Variables: xi,...,xi00 € {0,1}

» Unary potentials: 11(x1), ..., %100(x100) C)ﬁ C)J Cf
» i(x;) = [xi = 0j] with observation o;

» Log representation: 1;(x;) = log fi(x;) C)F C)J O,

p(x) = ZT1; filxi) = Z exp {32, vi(x)}

30/62

Loopy Belief Propagation

000000000000 000e0000

Denoising a Binary Image

What will be the outcome of MAP inference with unary factors only?

» Maximizing a MRF with unary factors only is equivalent to
maximizing each factor individually (no dependencies)

» Thus the result equals the observation

31/62

Loopy Belief Propagation

000000000000 0000e000

Denoising a Binary Image

What can we do?

Let us look at the clean image again!

\4

v

What prior knowledge do we have about this image?

v

Smoothness! (Neighboring pixels tend to have the same label)

v

Really? How many neighbors share / don't share their label?
10 x 10 x 2 — 20 = 180 neighborhood relationships in total

34 x label transition = 146x same label

\4

v

Loopy Belief Propagation

0000000000000 0000e00

Denoising a Binary Image

Introducing a Smoothness Prior

v

Log representation:

100

p(x) ocexp ¢ > wila) + D> (i, X))
i=1 inj
Variables: xi,...,x100 € {0,1}
Unary potentials: 1;(x;) = [x; = o] with pixel observation o; € {0,1}
Pairwise potentials: 1;i(x;, xj) = a - [x; = x;]
Parameter o controls the strength of the smoothing / prior

vV vyyVvYyywy

33/62

Loopy Belief Propagation
0000000000000 00000e0

Ising Model

Ising Model (1924)
» Statistical mechanics
» Mathematical model of ferromagnetism
» Magnetic dipole moments of atomic spins
» Two states: +1 and -1, arranged in lattice
» Allows identification of phase transitions
Ernst Ising (1900-1998)
» Studies in Gottingen, Bonn, Hamburg
> Investigated simple chain model
» Grid model solved in 1944 by Osanger '
» School teacher (Caputh, Berlin) k 1
» Escaped to US (Bradley University, lllinois) & i B

34 /62

Loopy Belief Propagation
0000000000000 000000e

Denoising a Binary Image

What will the MAP result look like?

Programming exercise

Play with smoothness parameters «

How to set « in a principled fashion?
Learn from training data! = Next week ...

vV v v VY

Next: Approximate inference via sampling

35/62

Sampling

®000000000000000000000000

So far:
» We learned about one particular deterministic approximation
» There are other deterministic techniques (overview at end of lecture)

» There is also another way of approaching approximate inference:

Sampling

Deterministic Approximation Stochastic Approximation
» Approximate the model » Use the true model / target
or inference procedure distribution of interest
> Retrieve a determ. solution » Draw samples to
to this approximation approximate this distribution

37/62

0000000000000 000000000000
Motivation: Sampling

Many statistical problems involve solving analytically intractable integrals
(for example in Bayesian inference with continuous variables and
non-conjugate priors). Typical problems that can be solved with sampling:

» Normalization: p(x|y) = %

» Marginalization: p(x|y) = [p(x, z|y)dz
» Maximization: x* = argmax p(x|y) (no integral here)
Expectation: = [f(x)p(x)dx

v

Examples for functions f(x) in the latter case:
> The expectation: [xp(x)dx
> The variance: [x?p(x)dx — ([xp(x)dx)2
> The expected risk: [risk(x)p(x)dx

38 /62

Sampling
0000000000000 000000000000

Monte Carlo Approximation

p(+) e {7, nant~p

approximate

not analytically integral by
tractable finite sum
approximate N
[f@p)de «—— F3.L, f(zi)

» The more samples we draw, the better the approximation:
1 N N
—00
31 0e) / £(x)p(x)dx
i=1

» The estimate is unbiased and will almost surely converge to the right
value by the strong law of large numbers
» Difficulties: Obtaining uncorrelated samples for fast convergence .,

Sampling
0000000000000 000000000000

Basic Sampling Strategies

» For most (multivariate) standard distributions there exist good
sampling algorithms that you can just call in Python/MATLAB

» Uniform, Gaussian, Poisson, Dirichlet, Discrete

» But those are usually not the distributions we are interested in

» Our distributions specified by a graphical model are more complex

40 /62

Sampling
0000000000000 000000000000

So how to sample?
Let's look at the simple univariate case first

41/62

Sampling
0000000000000 000000000000

Discrete Case

06 x=1
» Assume distribution: p(x) =¢ 0.1 x=2
03 x=3
06 y=1
» Calculate cumulant: ¢(y) = Zp(x) =< 07 y=2
x<y 1.0 y = 3

v

Draw u ~ [0, 1] using pseudo-random number generator
» Find y such that: ¢(y — 1) < u < c(y)

v

Return state y as sample from p

Sampling
000000e000000000000000000

Continuous Case

» Similar to the discrete case
» Compute the cumulant function:
y
o) = [plxax
—00
» Sample u ~ [0,1] = compute x = ¢~ 1(u)

» The integral c(y) can be computed analytically or numerically
0< x,

else

For example: p(x) = {ZXP(_X)

c(y)

0.6/

[R S - SR

o \2(x)

IS
e
®
5
=

0
43 /62

Sampling
0000000 @00000000000000000

Overview: Sampling Methods

» Inverse Transform

» Ancestral Sampling

» Rejection Sampling

» Importance Sampling

» Slice Sampling

» Markov Chain Monte Carlo
» Metropolis-Hastings

» Gibbs Sampling
» Hybrid Monte Carlo

» Do | need to know them all?
» Yes! Most efficient technique depends on model/application

» Today “only” the ones in red ;)

44 /62

Sampling
0000000 0@0000000000000000

Rejection Sampling

45 /62

Sampling
000000000 e000000000000000

Rejection Sampling

v

Suppose a p(x) such that direct sampling is not tractable

v

Furthermore assume we can evaluate p(x) up to a constant
(e.g., Markov Networks!):

v

Sample from a proposal distribution g(x)

v

Choose q(-) which we can easily sample and a k exists with

kaq(x) = B(x) ¥x

46 /62

Sampling
000000000 0@00000000000000

Rejection Sampling

» Sample two random variables:
1. zg ~ q(x)
2. u~ 0, kq(zo)] uniform

» Reject sample zg if up > p(z0)

Fazo) Fa(z)

\4

zp from q is accepted with probability p(z)/kq(z)
_ [B(2) _1/~
p(accept) = / kq(z)q(z)dz =7 p(z)dz
k =1 and g(x) = p(x) = p(accept) =1
But often: p(accept | x) = Hle p(accept | x;) = O(vP)

v

v

47 /62

Sampling

00000000000 e0000000000000

Rejection Sampling

Robot Localization Example
» You bought a vaccum robot for your living room (1 x 1 m)
» For proper cleaning, the robot needs to localize itself
» No prior knowledge on location: x ~ ([0, 1] x [0, 1])
> Independent measurements: d;|x ~ N(||x — e;||,0?)

p(x|d1, o, d3, dg) o< p(x)p(di|x)p(dz|x)p(ds|x)p(da|x)
X [0 S X1, X2 S 1]

€2

X %e Oe OX
0 /

e
48 /62

Sampling
0000000000000 00000000000

Rejection Sampling

Robot Localization Example
» The maximum of the unnormalized posterior is 1

» Thus we can choose: g(x) =[0 < xq,x < 1]

- 2699 rejected |
o 50 accepted

6193 re'jec‘ted‘::
o 50 accepted

0.8

49 /62

Sampling
0000000000000 @00000000000

Metropolis-Hastings Sampling

Sampling
0000000000000 0e0000000000

Metropolis-Hastings Sampling
Markov Chain
» Discrete random process with Markov property:
P(X,'|X,'_1, ...,X1) = P(X,'|X,'_1) = P(X/|X)

Markov Chain Monte Carlo (MCMC)
> We want to sample from p(x) = $p(x) with Z unknown

» ldea: Establish a Markov chain with transition kernel T(x’ | x)
and with stationary distribution p(x):

px) = [T0! | x) ()

» Task: Find T(x’ | x) such that p(x) is its stationary distribution!

51/62

Sampling
0000000000000 00e000000000

Metropolis-Hastings Sampling

Metropolis-Hastings
» Initialize x and specify proposal distribution g(x’|x)

» Sample x’ from g(x’|x) and accept with probability

A(x', x) = min <1, m) = min (1’ m>

» If accepted: x < x’
» If not accepted: stay at x

> lterate (sample again)

o
o
=)
(]

Sampling
0000000000000 000e00000000

Example: 2D Gaussian

» 150 proposal steps, 43 are rejected (red)

53 /62

Sampling
0000000000000 0000e0000000

Why does it work?

» Remember the acceptance probability:

A(x',x) = min (l, p(x)q(x\x))

p(x) a(x'x)

» Let us write down the transition kernel T(x’|x)
i.e., the probability to transition the state from x to x’:

T(X'|x) = q(x'|x) A(X, x)
+ 8(x — x) / g(%]x) [1 — A(%|x)] d%

54 /62

Sampling
0000000000000 00000e000000

Why does it work?

[Tpbade = [min{p(e)a(x). p(x)atebe)
+ [gt - ARl
[min{p(:)a(x). a(x(x)
+p(x) [ahe)ds

= [et AGIX) o

— [minfp(x)alx'x). p(x)alxlx') o

+ p(x')
~ [min{p(x)a(x1x) p(Ra(x [}
= p(x)

Sampling
0000000000000 000000e00000

Why does it work?

Other requirements that need to be fulfilled:

» Irreducibility: Any state x’ can be reached by
any other state x in a finite number of steps

» Aperiodicity: The occurrence of states is not restricted
to periodic events (any state may occur at any time).

Sampling
0000000000000 0000000e0000

Example: Irreducibility

» g(x’|x) needs to be able to bridge the gap

57 /62

Sampling

0000000000000 00000000e000

Metropolis-Hastings Sampling

Robot Localization Example

Now inferring 2 variables: location x and sensor noise o
» Uniform prior on location: x ~ U([0, 1] x [0, 1])

» Uniform prior on sensor noise: o ~ 1/(0.01,0.5)

» Measurements depend on o: d;|x,o ~ N(||x — e;||, 0?)

v

p(x,oldi,...dig) o< p(x)p(c)p(dilx, o) - p(dis|x, o)
x [0<x1,x <1] x[0.01 <o <0.5]

exp (—o2s S llx — el - di]2)

(2702)®

N2 O
7 \.. /m
7N S

X

58 /62

Sampling
0000000000000 00000000!

Metropolis-Hastings Sampling

Robot Localization Example

1
2465 rejected 0.4¢
Markov chain
0.8 + 500 accepted 0.35(]
0.3
0.6
0.25
° E
i)
0.4 ® 02
0.2
o4 4
0 +)}:‘ﬁ *‘t L L n N . : H .
0 02 04 0.6 0.8 1 o 100 200 300 200 500
Xy sample number

59 /62

Sampling

0000000000000 0000000000e0

Gibbs Sampling

Special case of MH Sampling:
» Cyclic MH kernel that updates one variable at a time
» Sample directly from the full conditional distribution

q(X'[x) = p(xk|X1, - Xk—1, Xk 15 -+, XD)

» Samples get accepted with probability 1 (exercise)
» But: conditionals must be easy to sample from!
» Danger of slow convergence and non-irreducibility:

=

3|
2|
1
of
1
2|
3|

P
i i‘ig‘ it

60 /62

Sampling
0000000000000 00000000000e

Approximate Inference Overview

» Deterministic Inference

v

Junction Tree (not approximate but intractable)
Loopy Belief Propagation

Variational Approximation

Expectation Propagation

Mean field

Gradient Descent

vV VY VY VY VvYY

» Sampling

Rejection Sampling

Slice Sampling
Metropolis-Hastings Sampling
Gibbs Sampling

v

vV vy VvYy

61 /62

Next Time ...

» Learning
» And after that: Computer Vision, finally!

» No more toy examples, but real stuff - promised ;)

	Recap
	Loopy Belief Propagation
	Sampling

