
Recap Loopy Belief Propagation Sampling

Graphical Models in Computer Vision

Andreas Geiger

Max Planck Institute for Intelligent Systems
Perceiving Systems

May 2, 2016

1 / 62



Recap Loopy Belief Propagation Sampling

Syllabus

11.04.2016 Introduction

18.04.2016 Graphical Models 1

25.04.2016 Graphical Models 2 (Sand 6/7)

02.05.2016 Graphical Models 3

09.05.2016 Graphical Models 4

23.05.2016 Body Models 1

30.05.2016 Body Models 2

06.06.2016 Body Models 3

13.06.2016 Body Models 4

20.06.2016 Stereo

27.06.2016 Optical Flow

04.07.2016 Segmentation

11.07.2016 Object Detection 1

18.07.2016 Object Detection 2

2 / 62



Recap Loopy Belief Propagation Sampling

Todays topic

I Recap
I Belief Networks
I Markov Networks & Markov Random Fields
I Filter View
I Factor Graphs
I Belief Propagation on Trees

I Approximate Inference
I Loopy Belief Propagation on General Graphs
I Sampling

3 / 62



Recap Loopy Belief Propagation Sampling

Belief Networks

Belief network

A belief network is a distribution of the form

p(x1, . . . , xD) =
D∏
i=1

p(xi | pa(xi ))

where pa(x) denotes the parental variables of x

R

N H

S

4 / 62



Recap Loopy Belief Propagation Sampling

Markov Networks & Markov Random Fields

Markov Network

For a set of variables X = {x1, . . . , xD} a Markov network is defined as
a product of potentials over the maximal cliques Xc of the graph G

p(x1, . . . , xD) =
1

Z

C∏
c=1

φc(Xc)

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c)

5 / 62



Recap Loopy Belief Propagation Sampling

Filter View

I Each graph describes a family of probability distributions
I Extremes:

I Fully connected, no constraints, all p pass
I no connections, only product of marginals may pass

6 / 62



Recap Loopy Belief Propagation Sampling

Factor Graphs

I Now consider we introduce an extra node (a square) for each factor:

a

c b

a

c b

a

c b

(a) (b) (c)

I (a) Markov Network

I (b) Factor graph representation of φ(a, b, c)

I (c) Factor graph representation of φ(a, b)φ(b, c)φ(c , a)

I Both factor graphs have the same Markov network (b,c)⇒(a)

7 / 62



Recap Loopy Belief Propagation Sampling

Factor Graphs

Factor Graph

Given a function
f (x1, . . . , xn) =

∏
i

ψi (Xi )

the factor graph (FG) has a node (represented by a square) for each factor
ψi (Xi ) and a variable node (represented by a circle) for each variable xj
When used to represent a distribution

p(x1, . . . , xn) =
1

Z

∏
i

ψi (Xi )

a normalization constant Z is assumed.

8 / 62



Recap Loopy Belief Propagation Sampling

Belief Propagation on a Chain

a cb d
f1 f2 f3 f4

p(a, b, c, d) = f1(a, b)f2(b, c)f3(c , d)f4(d)

p(a, b, c) =
∑
d

p(a, b, c , d)

= f1(a, b)f2(b, c)
∑
d

f3(c , d)f4(d)︸ ︷︷ ︸
µd→c (c)

p(a, b) =
∑
c

p(a, b, c) = f1(a, b)
∑
c

f2(b, c)µd→c(c)︸ ︷︷ ︸
µc→b(b)

9 / 62



Recap Loopy Belief Propagation Sampling

Belief Propagation on a Tree

I Idea: compute messages

a

c

b

d

f1 f2

f3

f4

f5

e

µf2→b(b)

µc→f2(c)

µd→f2(d)

µf3→c(c)

µb→f1(b)

µf1→a(a)

10 / 62



Recap Loopy Belief Propagation Sampling

Belief Propagation: Finding Marginals

Sum-Product Algorithm for Trees

1. Initialize messages

2. Iterate from leaves of the tree to target variable:
I Factor-to-variable messages (“sum-product”)

µf→x(x) =
∑
Xf \x

φf (Xf )
∏

y∈{ne(f )\x}
µy→f (y)

I Variable-to-factor messages (at target ⇒ marginal!)

µx→f (x) =
∏

g∈{ne(x)\f }
µg→x(x)

I Xf : Variables that connect to factor f
I ne(x): Factors that connect to variable x
I If all marginals are desired: 1) leaves → root 2) root → leaves

11 / 62



Recap Loopy Belief Propagation Sampling

Belief Propagation: Find Most Likely State (MAP)

Max-Product Algorithm for Trees

1. Initialize messages

2. Iterate from leaves of the tree to target variable:
I Factor-to-variable messages (“max-product”)

µf→x(x) = max
Xf \x

φf (Xf )
∏

y∈{ne(f )\x}
µy→f (y)

I Variable-to-factor messages (at target ⇒ most likely state!)

µx→f (x) =
∏

g∈{ne(x)\f }
µg→x(x)

I Xf : Variables that connect to factor f
I ne(x): Factors that connect to variable x
I If all states are of interest: 1) leaves → root 2) root → leaves

12 / 62



Recap Loopy Belief Propagation Sampling

Fantastic, this is all very nice!

BUT ...

13 / 62



Recap Loopy Belief Propagation Sampling

What if the graph is not singly connected?

a

d

b

c

f1

f2

f3

f4

p(a, b, c, d) = f1(a, b)f2(b, c)f3(c, d)f4(d , a)

14 / 62



Recap Loopy Belief Propagation Sampling

What if the graph is not singly connected?

p(a, b, c, d) = f1(a, b)f2(b, c)f3(c, d)f4(d , a)

p(a, b, c) =
∑
d

p(a, b, c , d) = f1(a, b)f2(b, c)
∑
d

f3(c , d)f4(d , a)︸ ︷︷ ︸
µd→a,c (a,c)

p(a, b) =
∑
c

p(a, b, c) = f1(a, b)
∑
c

f2(b, c)µd→a,c(a, c)︸ ︷︷ ︸
µc→a,b(a,b)

p(a) =
∑
b

p(a, b) =
∑
b

f1(a, b)µc→a,b(a, b)

2D messages now ⇒ simply buy more RAM and wait a bit longer?

15 / 62



Recap Loopy Belief Propagation Sampling

What if the graph gets bigger?

p(all) = f1(a, b)f2(b, c)f3(a, d)f4(b, e)f5(c , g)f6(d , e)

f7(e, g)f8(d , h)f9(e, i)f10(g , j)f11(h, i)f12(i , j)

16 / 62



Recap Loopy Belief Propagation Sampling

What if the graph gets bigger?

p(all) = f1(a, b)f2(b, c)f3(a, d)f4(b, e)f5(c , g)f6(d , e)

f7(e, g)f8(d , h)f9(e, i)f10(g , j)f11(h, i)f12(i , j)

p(all\{j}) = f1(a, b)f2(b, c)f3(a, d)f4(b, e)f5(c , g)f6(d , e)

f7(e, g)f8(d , h)f9(e, i)f11(h, i)µj→i ,g (i , g)

p(all\{i , j}) = f1(a, b)f2(b, c)f3(a, d)f4(b, e)f5(c , g)f6(d , e)

f7(e, g)f8(d , h)µi→e,h,g (e, h, g)

3D messages now ⇒ this is getting intractable!

17 / 62



Recap Loopy Belief Propagation Sampling

How can we handle general loopy graphs?

Loopy Belief Propagation
I Messages are well defined for loopy graphs:

µx→f (x) =
∏

g∈{ne(x)\f }

µg→x(x)

µf→x(x) =
∑
Xf \x

φf (Xf )
∏

y∈{ne(f )\x}

µy→f (y)

I Simply apply them to loopy graphs as well
I We loose exactness (⇒ approximate inference)
I No guarantee of convergence [Yedida et al. 2004]
I But often works astonishingly well in practice
I Same algorithm works for trees (exact) as well as

for loopy graphs (approximate) ⇒ Programming exercise

18 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Outline of the algorithm:

I Initialize messages to fixed value (e.g., uniform distribution)

I Perform message updates in fixed or random order

I After convergence: Calculate approximate marginals

I Note: LBP does not always converge

I There exist converging variants: TRW-S [Kolmogorov, PAMI 2006]

19 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Which message passing schedule?

I Random or fixed order
I Popular choice:

1. Factors → variables
2. Variables → factors
3. Repeat for N iterations

I Can be run in parallel as factor graph is bipartite:

20 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Sum-Product Belief Propagation
I Goal: Compute marginals of distribution
I Multiplying many double-precision numbers is not a good idea
I Better use log messages λ(x) = logµ(x):

I Factor-to-variable messages:
µf→x(x) =

∑
Xf \x φf (Xf )

∏
y∈Xf \x µy→f (y)

λf→x(x) = log
(∑

Xf \x φf (Xf ) exp
{∑

y∈ne(f ) λy→f (y)
})

(1)

I Variable-to-factor messages:
µx→f (x) =

∏
g∈{ne(x)\f } µg→x(x)

λx→f (x) =
∑

g∈{ne(x)\f } λg→x(x) (2)

I
∑
Xf \x : Summation over all states in Xf \ x

I
∑

y∈ne(f ) : Summation over all incoming messages
I To avoid numbers from getting too large, normalize λx→f (x) after

the message update (Eq. 2), for example by subtracting its mean
21 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Max-Product/Sum Belief Propagation
I Goal: Find most likely state (MAP state)
I Very similar to sum-product, only factor-to-variable message changes
I As before, we better use log messages λ(x) = logµ(x):

I Factor-to-variable messages:

µf→x(x) = maxXf \x
[
φf (Xf )

∏
y∈Xf \x µy→f (y)

]
λf→x(x) = maxXf \x

[
log φf (Xf ) +

∑
y∈ne(f ) λy→f (y)

]
(3)

I Variable-to-factor messages:
µx→f (x) =

∏
g∈{ne(x)\f } µg→x(x)

λx→f (x) =
∑

g∈{ne(x)\f } λg→x(x) (2)

I maxXf \x : Maximization over all states in Xf \ x
I
∑

y∈ne(f ) : Summation over all incoming messages
I To avoid numbers from getting too large, normalize λx→f (x) after

the message update (Eq. 2), for example by subtracting its mean
22 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Unary and Pairwise Factor-to-Variable Messages
Factor-to-variable messages simplify as follows if you only consider unary
or pairwise factors. Variable-to-factor messages don’t simplify.

I Sum-Product Belief Propagation:
I Unary factor φf (x):

λf→x(x) = log φf (x) (1)

I Pairwise factor φf (x , y):

λf→x(x) = log
(∑

y φf (x , y) exp {λy→f (y)}
)

(1)

I Max-Product Belief Propagation:
I Unary factor φf (x):

λf→x(x) = log φf (x) (3)

I Pairwise factor φf (x , y):

λf→x(x) = maxy [log φf (x , y) + λy→f (y)] (3)

Note: The sum/max here run over all states of variable y !
23 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Let’s implement this now! Which data structures to use?

I A vector variables containing the #labels each variable can take
I A vector factors; each factor contains:

I The variable id or id’s of the variables it is connected to
I A vector or matrix storing the factor values for all states

I A vector of factor-to-variable messages (λf→x)

I A vector of variable-to-factor messages (λx→f )
I Each message contains:

I The id’s of the involved variables, factors
and input messages it depends on for enabling quick updates
according to the formulas on the previous slide

I The message log values themselves (a vector, length: #labels)

I variables and factors are the inputs to the algorithm

I messages are computed by the algorithm

24 / 62



Recap Loopy Belief Propagation Sampling

Loopy Belief Propagation

Belief Propagation Algorithm (handles both cases)

I Input: variables and factors

I Allocate all messages

I Initialize the message log values to 0 (=uniform distribution)
I For N = 10 iterations do

I Update all factor-to-variable messages (Eq. 1 or Eq. 3)
I Update all variable-to-factor messages (Eq. 2)
I Normalize all variable-to-factor messages:
µx→f (x)← µx→f (x)−mean (µx→f (x))

I Read off marginal or MAP state at each variable:

λ(x) =
∑

g∈{ne(x)}

λg→x(x)

p(x) = exp{λ(x)}/
∑
x

exp {λ(x)}

x∗ = argmax
x

∑
g∈{ne(x)}

λg→x(x)

25 / 62



Recap Loopy Belief Propagation Sampling

Imagine ...

29 / 62



Recap Loopy Belief Propagation Sampling

Denoising a Binary Image

Can we recover the original image from the noisy observation?

?→

I Let us model this using a MRF!

I Variables: x1, . . . , x100 ∈ {0, 1}
I Unary potentials: ψ1(x1), . . . , ψ100(x100)

I ψi (xi ) = [xi = oi ] with observation oi
I Log representation: ψi (xi ) = log fi (xi )

p(x) = 1
Z

∏
i fi (xi ) = 1

Z exp {
∑

i ψi (xi )}
30 / 62



Recap Loopy Belief Propagation Sampling

Denoising a Binary Image

What will be the outcome of MAP inference with unary factors only?

→

I Maximizing a MRF with unary factors only is equivalent to
maximizing each factor individually (no dependencies)

I Thus the result equals the observation

31 / 62



Recap Loopy Belief Propagation Sampling

Denoising a Binary Image

What can we do?

I Let us look at the clean image again!

I What prior knowledge do we have about this image?

I Smoothness! (Neighboring pixels tend to have the same label)

I Really? How many neighbors share / don’t share their label?

I 10× 10× 2− 20 = 180 neighborhood relationships in total

I 34× label transition ⇒ 146× same label

32 / 62



Recap Loopy Belief Propagation Sampling

Denoising a Binary Image

Introducing a Smoothness Prior

↔

I Log representation:

p(x) ∝ exp


100∑
i=1

ψi (xi ) +
∑
i∼j

ψij(xi , xj)


I Variables: x1, . . . , x100 ∈ {0, 1}
I Unary potentials: ψi (xi ) = [xi = oi ] with pixel observation oi ∈ {0, 1}
I Pairwise potentials: ψij(xi , xj) = α · [xi = xj ]
I Parameter α controls the strength of the smoothing / prior

33 / 62



Recap Loopy Belief Propagation Sampling

Ising Model

Ising Model (1924)

I Statistical mechanics

I Mathematical model of ferromagnetism

I Magnetic dipole moments of atomic spins

I Two states: +1 and -1, arranged in lattice

I Allows identification of phase transitions

Ernst Ising (1900-1998)

I Studies in Göttingen, Bonn, Hamburg

I Investigated simple chain model

I Grid model solved in 1944 by Osanger

I School teacher (Caputh, Berlin)

I Escaped to US (Bradley University, Illinois)

34 / 62



Recap Loopy Belief Propagation Sampling

Denoising a Binary Image

What will the MAP result look like?

→

I Programming exercise
I Play with smoothness parameters α
I How to set α in a principled fashion?
I Learn from training data! ⇒ Next week ...
I Next: Approximate inference via sampling

35 / 62



Recap Loopy Belief Propagation Sampling

So far:

I We learned about one particular deterministic approximation

I There are other deterministic techniques (overview at end of lecture)

I There is also another way of approaching approximate inference:

Sampling

Deterministic Approximation

I Approximate the model
or inference procedure

I Retrieve a determ. solution
to this approximation

Stochastic Approximation

I Use the true model / target
distribution of interest

I Draw samples to
approximate this distribution

37 / 62



Recap Loopy Belief Propagation Sampling

Motivation: Sampling

Many statistical problems involve solving analytically intractable integrals
(for example in Bayesian inference with continuous variables and
non-conjugate priors). Typical problems that can be solved with sampling:

I Normalization: p(x |y) = p(y |x)p(x)∫
p(y |x ′)p(x ′)dx ′

I Marginalization: p(x |y) =
∫
p(x , z |y)dz

I Maximization: x∗ = argmaxx p(x |y) (no integral here)

I Expectation: Ep(f (x)) =
∫
f (x)p(x)dx

Examples for functions f (x) in the latter case:

I The expectation:
∫
xp(x)dx

I The variance:
∫
x2p(x)dx −

(∫
xp(x)dx

)2
I The expected risk:

∫
risk(x)p(x)dx

38 / 62



Recap Loopy Belief Propagation Sampling

Monte Carlo Approximation

not analytically
tractable

sample

approximate

approximate
integral by
finite sum

I The more samples we draw, the better the approximation:

1

N

N∑
i=1

f (xi )
N→∞−−−−→

∫
f (x)p(x)dx

I The estimate is unbiased and will almost surely converge to the right
value by the strong law of large numbers

I Difficulties: Obtaining uncorrelated samples for fast convergence
39 / 62



Recap Loopy Belief Propagation Sampling

Basic Sampling Strategies

I For most (multivariate) standard distributions there exist good
sampling algorithms that you can just call in Python/MATLAB

I Uniform, Gaussian, Poisson, Dirichlet, Discrete
I But those are usually not the distributions we are interested in
I Our distributions specified by a graphical model are more complex

40 / 62



Recap Loopy Belief Propagation Sampling

So how to sample?
Let’s look at the simple univariate case first

41 / 62



Recap Loopy Belief Propagation Sampling

Discrete Case

I Assume distribution: p(x) =


0.6 x = 1
0.1 x = 2
0.3 x = 3

I Calculate cumulant: c(y) =
∑
x≤y

p(x) =


0.6 y = 1
0.7 y = 2
1.0 y = 3

I Draw u ∼ [0, 1] using pseudo-random number generator

I Find y such that: c(y − 1) < u ≤ c(y)

I Return state y as sample from p

42 / 62



Recap Loopy Belief Propagation Sampling

Continuous Case

I Similar to the discrete case
I Compute the cumulant function:

c(y) =

∫ y

−∞
p(x)dx

I Sample u ∼ [0, 1] ⇒ compute x = c−1(u)
I The integral c(y) can be computed analytically or numerically

For example: p(x) =

{
exp(−x) 0 ≤ x ,

0 else

43 / 62



Recap Loopy Belief Propagation Sampling

Overview: Sampling Methods

I Inverse Transform

I Ancestral Sampling

I Rejection Sampling

I Importance Sampling

I Slice Sampling
I Markov Chain Monte Carlo

I Metropolis-Hastings
I Gibbs Sampling
I Hybrid Monte Carlo

I Do I need to know them all?

I Yes! Most efficient technique depends on model/application

I Today “only” the ones in red ;)

44 / 62



Recap Loopy Belief Propagation Sampling

Rejection Sampling

45 / 62



Recap Loopy Belief Propagation Sampling

Rejection Sampling

I Suppose a p(x) such that direct sampling is not tractable

I Furthermore assume we can evaluate p(x) up to a constant
(e.g., Markov Networks!):

p(x) =
1

Z
p̃(x) =

1

Z

∏
c

φc(Xc)

I Sample from a proposal distribution q(x)

I Choose q(·) which we can easily sample and a k exists with

k q(x) ≥ p̃(x) ∀x

46 / 62



Recap Loopy Belief Propagation Sampling

Rejection Sampling

I Sample two random variables:
1. z0 ∼ q(x)
2. u ∼ [0, kq(z0)] uniform

I Reject sample z0 if u0 > p̃(z0)

I z0 from q is accepted with probability p̃(z)/kq(z)

p(accept) =

∫
p̃(z)

kq(z)
q(z)dz =

1

k

∫
p̃(z)dz

I k = 1 and q(x) = p(x) ⇒ p(accept) = 1
I But often: p(accept | x) =

∏D
i=1 p(accept | xi ) = O(γD)

47 / 62



Recap Loopy Belief Propagation Sampling

Rejection Sampling

Robot Localization Example
I You bought a vaccum robot for your living room (1× 1 m)
I For proper cleaning, the robot needs to localize itself
I No prior knowledge on location: x ∼ U([0, 1]× [0, 1])
I Independent measurements: di |x ∼ N (‖x− ei‖, σ2)

p(x|d1, d2, d3, d4) ∝ p(x)p(d1|x)p(d2|x)p(d3|x)p(d4|x)

∝ [0 ≤ x1, x2 ≤ 1]

× exp

(
− 1

2σ2

4∑
i=1

[‖x− ei‖ − di ]
2

)

R

48 / 62



Recap Loopy Belief Propagation Sampling

Rejection Sampling

Robot Localization Example

I The maximum of the unnormalized posterior is 1

I Thus we can choose: q(x) = [0 ≤ x1, x2 ≤ 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

2699 rejected
50 accepted

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

6193 rejected
50 accepted

49 / 62



Recap Loopy Belief Propagation Sampling

Metropolis-Hastings Sampling

50 / 62



Recap Loopy Belief Propagation Sampling

Metropolis-Hastings Sampling

Markov Chain

I Discrete random process with Markov property:

P(xi |xi−1, ..., x1) = P(xi |xi−1) = P(x ′|x)

Markov Chain Monte Carlo (MCMC)

I We want to sample from p(x) = 1
Z p̃(x) with Z unknown

I Idea: Establish a Markov chain with transition kernel T (x ′ | x)
and with stationary distribution p(x):

p(x ′) =

∫
x
T (x ′ | x) p(x)dx

I Task: Find T (x ′ | x) such that p(x) is its stationary distribution!

51 / 62



Recap Loopy Belief Propagation Sampling

Metropolis-Hastings Sampling

Metropolis-Hastings

I Initialize x and specify proposal distribution q(x ′|x)

I Sample x ′ from q(x ′|x) and accept with probability

A(x ′, x) = min

(
1,

p(x ′) q(x |x ′)
p(x) q(x ′|x)

)
= min

(
1,

p̃(x ′) q(x |x ′)
p̃(x) q(x ′|x)

)

I If accepted: x ← x ′

I If not accepted: stay at x

I Iterate (sample again)

52 / 62



Recap Loopy Belief Propagation Sampling

Example: 2D Gaussian

I 150 proposal steps, 43 are rejected (red)

53 / 62



Recap Loopy Belief Propagation Sampling

Why does it work?

I Remember the acceptance probability:

A(x ′, x) = min

(
1,

p(x ′) q(x |x ′)
p(x) q(x ′|x)

)

I Let us write down the transition kernel T (x ′|x)
i.e., the probability to transition the state from x to x ′:

T (x ′|x) = q(x ′|x)A(x ′, x)

+ δ(x ′ − x)

∫
q(x̃ |x) [1− A(x̃ |x)] dx̃

54 / 62



Recap Loopy Belief Propagation Sampling

Why does it work?∫
T (x ′|x)p(x)dx =

∫
min{p(x)q(x ′|x), p(x ′)q(x |x ′)}dx

+

∫
p(x ′)q(x̃ |x ′)[1− A(x̃ |x ′)]dx̃

=

∫
min{p(x)q(x ′|x), p(x ′)q(x |x ′)}dx

+ p(x ′)
∫

q(x̃ |x ′)d̃x

−
∫

p(x ′)q(x̃ |x ′)A(x̃ |x ′)dx̃

=

∫
min{p(x)q(x ′|x), p(x ′)q(x |x ′)}dx

+ p(x ′)

−
∫

min{p(x ′)q(x̃ |x ′), p(x̃)q(x ′|x̃)}dx̃

= p(x ′)

55 / 62



Recap Loopy Belief Propagation Sampling

Why does it work?

Other requirements that need to be fulfilled:

I Irreducibility: Any state x ′ can be reached by
any other state x in a finite number of steps

I Aperiodicity: The occurrence of states is not restricted
to periodic events (any state may occur at any time).

56 / 62



Recap Loopy Belief Propagation Sampling

Example: Irreducibility

I q(x ′|x) needs to be able to bridge the gap

57 / 62



Recap Loopy Belief Propagation Sampling

Metropolis-Hastings Sampling

Robot Localization Example
I Now inferring 2 variables: location x and sensor noise σ
I Uniform prior on location: x ∼ U([0, 1]× [0, 1])
I Uniform prior on sensor noise: σ ∼ U(0.01, 0.5)
I Measurements depend on σ: di |x, σ ∼ N (‖x− ei‖, σ2)

p(x, σ|d1, ...d16) ∝ p(x)p(σ)p(d1|x, σ) · · · p(d16|x, σ)

∝ [0 ≤ x1, x2 ≤ 1]× [0.01 ≤ σ ≤ 0.5]

×
exp

(
− 1

2σ2

∑16
i=1[‖x− ei‖ − di ]

2
)

(2πσ2)8

R

58 / 62



Recap Loopy Belief Propagation Sampling

Metropolis-Hastings Sampling

Robot Localization Example

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

 

 

2465 rejected
Markov chain
500 accepted

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sample number

si
gm

a

59 / 62



Recap Loopy Belief Propagation Sampling

Gibbs Sampling

Special case of MH Sampling:
I Cyclic MH kernel that updates one variable at a time
I Sample directly from the full conditional distribution

q(x ′|x) = p(xk |x1, ..., xk−1, xk+1, ..., xD)

I Samples get accepted with probability 1 (exercise)
I But: conditionals must be easy to sample from!
I Danger of slow convergence and non-irreducibility:

60 / 62



Recap Loopy Belief Propagation Sampling

Approximate Inference Overview

I Deterministic Inference
I Junction Tree (not approximate but intractable)
I Loopy Belief Propagation
I Variational Approximation
I Expectation Propagation
I Mean field
I Gradient Descent
I ...

I Sampling
I Rejection Sampling
I Slice Sampling
I Metropolis-Hastings Sampling
I Gibbs Sampling
I ...

61 / 62



Recap Loopy Belief Propagation Sampling

Next Time ...

I Learning

I And after that: Computer Vision, finally!

I No more toy examples, but real stuff - promised ;)

62 / 62


	Recap
	Loopy Belief Propagation
	Sampling

