Graphical Models in Computer Vision

Andreas Geiger

Max Planck Institute for Intelligent Systems Perceiving Systems

May 2, 2016

Syllabus

Todays topic

\blacktriangleright Recap

- \triangleright Belief Networks
- ► Markov Networks & Markov Random Fields
- \blacktriangleright Filter View
- ► Factor Graphs
- \triangleright Belief Propagation on Trees
- \blacktriangleright Approximate Inference
	- ► Loopy Belief Propagation on General Graphs
	- \blacktriangleright Sampling

Belief Networks

Belief network

A belief network is a distribution of the form

$$
p(x_1,\ldots,x_D)=\prod_{i=1}^D p(x_i\mid pa(x_i))
$$

where $pa(x)$ denotes the parental variables of x

Markov Networks & Markov Random Fields

Markov Network

For a set of variables $\mathcal{X} = \{x_1, \ldots, x_D\}$ a Markov network is defined as a product of potentials over the maximal cliques \mathcal{X}_c of the graph $\mathcal G$

$$
p(x_1,\ldots,x_D)=\frac{1}{Z}\prod_{c=1}^C \phi_c(\mathcal{X}_c)
$$

Filter View

- \triangleright Each graph describes a family of probability distributions
- \blacktriangleright Extremes:
	- \blacktriangleright Fully connected, no constraints, all p pass
	- \triangleright no connections, only product of marginals may pass

Factor Graphs

 \triangleright Now consider we introduce an extra node (a square) for each factor:

- \blacktriangleright (a) Markov Network
- \blacktriangleright (b) Factor graph representation of $\phi(a, b, c)$
- \blacktriangleright (c) Factor graph representation of $\phi(a, b)\phi(b, c)\phi(c, a)$
- ► Both factor graphs have the same Markov network $(b, c) \Rightarrow (a)$

Factor Graphs

Factor Graph

Given a function

$$
f(x_1,\ldots,x_n)=\prod_i\psi_i(\mathcal{X}_i)
$$

the factor graph (FG) has a node (represented by a square) for each factor $\psi_i(\mathcal{X}_i)$ and a variable node (represented by a circle) for each variable x_i When used to represent a distribution

$$
p(x_1,\ldots,x_n)=\frac{1}{Z}\prod_i\psi_i(\mathcal{X}_i)
$$

a normalization constant Z is assumed.

Belief Propagation on a Chain

$$
\begin{array}{ccc}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}
$$

$$
p(a, b, c, d) = f_1(a, b) f_2(b, c) f_3(c, d) f_4(d)
$$

$$
p(a, b, c) = \sum_{d} p(a, b, c, d)
$$

= $f_1(a, b) f_2(b, c) \underbrace{\sum_{d} f_3(c, d) f_4(d)}_{\mu_{d \to c}(c)}$

$$
p(a,b) = \sum_{c} p(a,b,c) = f_1(a,b) \underbrace{\sum_{c} f_2(b,c) \mu_{d \to c}(c)}_{\mu_{c \to b}(b)}
$$

[Recap](#page-3-0) [Loopy Belief Propagation](#page-12-0) [Sampling](#page-32-0)

Belief Propagation on a Tree

 \blacktriangleright Idea: compute messages

Belief Propagation: Finding Marginals

Sum-Product Algorithm for Trees

- 1. Initialize messages
- 2. Iterate from leaves of the tree to target variable:
	- \triangleright Factor-to-variable messages ("sum-product")

$$
\mu_{f\to x}(x) = \sum_{\mathcal{X}_f\setminus x} \phi_f(\mathcal{X}_f) \prod_{y\in \{\text{ne}(f)\setminus x\}} \mu_{y\to f}(y)
$$

 \triangleright Variable-to-factor messages (at target \Rightarrow marginal!)

$$
\mu_{x \to f}(x) = \prod_{g \in \{\text{ne}(x) \setminus f\}} \mu_{g \to x}(x)
$$

- \blacktriangleright \mathcal{X}_f : Variables that connect to factor f
- $ne(x)$: Factors that connect to variable x
- If all marginals are desired: 1) leaves \rightarrow root 2) root \rightarrow leaves

Belief Propagation: Find Most Likely State (MAP)

Max-Product Algorithm for Trees

- 1. Initialize messages
- 2. Iterate from leaves of the tree to target variable:
	- ▶ Factor-to-variable messages ("max-product")

$$
\mu_{f\to x}(x) = \max_{\mathcal{X}_f\setminus x} \phi_f(\mathcal{X}_f) \prod_{y\in \{\text{ne}(f)\setminus x\}} \mu_{y\to f}(y)
$$

 \triangleright Variable-to-factor messages (at target \Rightarrow most likely state!)

$$
\mu_{x \to f}(x) = \prod_{g \in \{\text{ne}(x) \setminus f\}} \mu_{g \to x}(x)
$$

- \blacktriangleright \mathcal{X}_f : Variables that connect to factor f
- $ne(x)$: Factors that connect to variable x
- If all states are of interest: 1) leaves \rightarrow root 2) root \rightarrow leaves

Fantastic, this is all very nice!

BUT ...

[Recap](#page-3-0) [Loopy Belief Propagation](#page-12-0) [Sampling](#page-32-0)

What if the graph is not singly connected?

 $p(a, b, c, d) = f_1(a, b) f_2(b, c) f_3(c, d) f_4(d, a)$

What if the graph is not singly connected?

$$
p(a, b, c, d) = f_1(a, b) f_2(b, c) f_3(c, d) f_4(d, a)
$$

$$
p(a, b, c) = \sum_{d} p(a, b, c, d) = f_1(a, b) f_2(b, c) \underbrace{\sum_{d} f_3(c, d) f_4(d, a)}_{\mu_{d \to a, c}(a, c)}
$$

$$
p(a,b) = \sum_{c} p(a,b,c) = f_1(a,b) \underbrace{\sum_{c} f_2(b,c) \mu_{d\rightarrow a,c}(a,c)}_{\mu_{c\rightarrow a,b}(a,b)}
$$

$$
p(a) = \sum_{b} p(a,b) = \sum_{b} f_1(a,b) \mu_{c \to a,b}(a,b)
$$

2D messages now \Rightarrow simply buy more RAM and wait a bit longer?

What if the graph gets bigger?

 $p(all) = f_1(a, b) f_2(b, c) f_3(a, d) f_4(b, e) f_5(c, g) f_6(d, e)$ $f_7(e,g)f_8(d,h)f_9(e,i)f_{10}(g,j)f_{11}(h,i)f_{12}(i,j)$ What if the graph gets bigger?

$$
p(all) = f_1(a,b) f_2(b,c) f_3(a,d) f_4(b,e) f_5(c,g) f_6(d,e)
$$

$$
f_7(e,g) f_8(d,h) f_9(e,i) f_{10}(g,j) f_{11}(h,i) f_{12}(i,j)
$$

$$
p(a||\langle j \rangle) = f_1(a,b)f_2(b,c)f_3(a,d)f_4(b,e)f_5(c,g)f_6(d,e) f_7(e,g)f_8(d,h)f_9(e,i)f_{11}(h,i)\mu_{j\to i,g}(i,g)
$$

$$
p(all \setminus \{i,j\}) = f_1(a,b) f_2(b,c) f_3(a,d) f_4(b,e) f_5(c,g) f_6(d,e) f_7(e,g) f_8(d,h) \mu_{i\to e,h,g}(e,h,g)
$$

3D messages now \Rightarrow this is getting intractable!

How can we handle general loopy graphs?

Loopy Belief Propagation

 \triangleright Messages are well defined for loopy graphs:

$$
\mu_{x \to f}(x) = \prod_{g \in \{\text{ne}(x)\} \neq f} \mu_{g \to x}(x)
$$

$$
\mu_{f\to x}(x) = \sum_{\mathcal{X}_f\setminus x} \phi_f(\mathcal{X}_f) \prod_{y\in \{\text{ne}(f)\setminus x\}} \mu_{y\to f}(y)
$$

- \triangleright Simply apply them to loopy graphs as well
- \triangleright We loose exactness (\Rightarrow approximate inference)
- \triangleright No guarantee of convergence [Yedida et al. 2004]
- \triangleright But often works astonishingly well in practice
- \triangleright Same algorithm works for trees (exact) as well as for loopy graphs (approximate) \Rightarrow Programming exercise

Outline of the algorithm:

- Initialize messages to fixed value (e.g., uniform distribution)
- \triangleright Perform message updates in fixed or random order
- \triangleright After convergence: Calculate approximate marginals
- \triangleright Note: LBP does not always converge
- ▶ There exist converging variants: TRW-S [Kolmogorov, PAMI 2006]

Which message passing schedule?

- \blacktriangleright Random or fixed order
- \blacktriangleright Popular choice:
	- 1. Factors \rightarrow variables
	- 2. Variables \rightarrow factors
	- 3. Repeat for N iterations
- \triangleright Can be run in parallel as factor graph is bipartite:

Sum-Product Belief Propagation

- \triangleright Goal: Compute marginals of distribution
- \triangleright Multiplying many double-precision numbers is not a good idea
- Better use log messages $\lambda(x) = \log \mu(x)$:
	- Factor-to-variable messages:

$$
\mu_{f \to x}(x) = \sum_{\mathcal{X}_f \backslash x} \phi_f(\mathcal{X}_f) \prod_{y \in \mathcal{X}_f \backslash x} \mu_{y \to f}(y)
$$

$$
\lambda_{f \to x}(x) = \log \left(\sum_{\mathcal{X}_f \backslash x} \phi_f(\mathcal{X}_f) \exp \left\{ \sum_{y \in \text{ne}(f)} \lambda_{y \to f}(y) \right\} \right)
$$
 (1)

- ▶ Variable-to-factor messages: $\mu_{\mathsf{x} \rightarrow \mathsf{f}}(\mathsf{x}) = \prod_{\mathsf{g} \in \{\mathsf{ne}(\mathsf{x}) \setminus \mathsf{f}\}} \mu_{\mathsf{g} \rightarrow \mathsf{x}}(\mathsf{x})$ $\lambda_{x \to f}(x) = \sum_{g \in \{\text{ne}(x) \setminus f\}} \lambda_{g \to x}(x)$ (2) $\blacktriangleright \sum_{\mathcal{X}_f \setminus \mathsf{x}}$: Summation over all states in $\mathcal{X}_f \setminus \mathsf{x}$
- $\blacktriangleright \sum_{\mathsf{y}\in \mathsf{ne}(f)}$: Summation over all incoming messages
- ► To avoid numbers from getting too large, normalize $\lambda_{x\to f}(x)$ after the message update (Eq. 2), for example by subtracting its mean

Max-Product/Sum Belief Propagation

- \triangleright Goal: Find most likely state (MAP state)
- \triangleright Very similar to sum-product, only factor-to-variable message changes
- As before, we better use log messages $\lambda(x) = \log \mu(x)$:
	- \blacktriangleright Factor-to-variable messages:

$$
\mu_{f\to x}(x) = \max_{\mathcal{X}_f\setminus x} \left[\phi_f(\mathcal{X}_f) \prod_{y\in \mathcal{X}_f\setminus x} \mu_{y\to f}(y) \right]
$$

$$
\lambda_{f \to x}(x) = \max_{\mathcal{X}_f \setminus x} \left[\log \phi_f(\mathcal{X}_f) + \sum_{y \in \mathsf{ne}(f)} \lambda_{y \to f}(y) \right] \quad (3)
$$

$$
\text{Variable-to-factor messages:}
$$
\n
$$
\mu_{x \to f}(x) = \prod_{g \in \{\text{ne}(x) \setminus f\}} \mu_{g \to x}(x)
$$
\n
$$
\lambda_{x \to f}(x) = \sum_{g \in \{\text{ne}(x) \setminus f\}} \lambda_{g \to x}(x) \tag{2}
$$

- \blacktriangleright max $_{\mathcal{X}_f \setminus \mathsf{x}}$: Maximization over all states in $\mathcal{X}_f \setminus \mathsf{x}$
- $\blacktriangleright \sum_{\mathsf{y}\in \mathsf{ne}(f)}:$ Summation over all incoming messages
- ► To avoid numbers from getting too large, normalize $\lambda_{x\rightarrow f}(x)$ after the message update (Eq. 2), for example by subtracting its mean

Unary and Pairwise Factor-to-Variable Messages

Factor-to-variable messages simplify as follows if you only consider unary or pairwise factors. Variable-to-factor messages don't simplify.

 \triangleright Sum-Product Belief Propagation:

►
$$
\frac{\lambda_{f\to x}(x) = \log \phi_f(x)}{\lambda_{f\to x}(x) = \log \phi_f(x)}
$$
\n►
$$
\frac{\lambda_{f\to x}(x) = \log (\sum_{y} \phi_f(x, y) \exp{\lambda_{y\to f}(y)})}{\lambda_{f\to x}(x) = \log (\sum_{y} \phi_f(x, y) \exp{\lambda_{y\to f}(y)})}
$$
\n(1)

\triangleright Max-Product Belief Propagation:

► Unary factor $\phi_f(x)$: $\lambda_{f \to x}(x) = \log \phi_f(x)$ (3)

$$
\sum_{\lambda_{f \to x}} \text{Pairwise factor } \phi_f(x, y):
$$
\n
$$
\lambda_{f \to x}(x) = \max_{y} \left[\log \phi_f(x, y) + \lambda_{y \to f}(y) \right]
$$
\n(3)

Note: The sum/max here run over all states of variable $v!$

Let's implement this now! Which data structures to use?

- \triangleright A vector variables containing the #labels each variable can take
- \triangleright A vector factors; each factor contains;
	- \triangleright The variable id or id's of the variables it is connected to
	- \triangleright A vector or matrix storing the factor values for all states
- A vector of factor-to-variable messages $(\lambda_{f\rightarrow x})$
- ► A vector of variable-to-factor messages $(\lambda_{x\rightarrow f})$
- \blacktriangleright Each message contains:
	- \triangleright The id's of the involved variables, factors and input messages it depends on for enabling quick updates according to the formulas on the previous slide
	- \triangleright The message log values themselves (a vector, length: #labels)
- \triangleright variables and factors are the inputs to the algorithm
- messages are computed by the algorithm

Belief Propagation Algorithm (handles both cases)

- \blacktriangleright Input: variables and factors
- \blacktriangleright Allocate all messages
- Initialize the message log values to 0 (=uniform distribution)
- \blacktriangleright For $N = 10$ iterations do
	- \triangleright Update all factor-to-variable messages (Eq. 1 or Eq. 3)
	- \triangleright Update all variable-to-factor messages (Eq. 2)
	- ▶ Normalize all variable-to-factor messages: $\mu_{x\to f}(x) \leftarrow \mu_{x\to f}(x)$ – mean $(\mu_{x\to f}(x))$
- \triangleright Read off marginal or MAP state at each variable:

$$
\lambda(x) = \sum_{g \in \{\text{ne}(x)\}} \lambda_{g \to x}(x) \qquad x^* = \underset{x}{\text{argmax}} \sum_{g \in \{\text{ne}(x)\}} \lambda_{g \to x}(x)
$$
\n
$$
p(x) = \exp\{\lambda(x)\} / \sum_{x} \exp\{\lambda(x)\}
$$

Imagine ...

Can we recover the original image from the noisy observation?

- \blacktriangleright Let us model this using a MRF!
- \triangleright Variables: $x_1, \ldots, x_{100} \in \{0, 1\}$
- In Unary potentials: $\psi_1(x_1), \ldots, \psi_{100}(x_{100})$
- $\blacktriangleright \psi_i(x_i) = [x_i = o_i]$ with observation o_i
- **I** Log representation: $\psi_i(x_i) = \log f_i(x_i)$ $p(x) = \frac{1}{Z} \prod_i f_i(x_i) = \frac{1}{Z} \exp \{ \sum_i \psi_i(x_i) \}$

What will be the outcome of MAP inference with unary factors only?

- \triangleright Maximizing a MRF with unary factors only is equivalent to maximizing each factor individually (no dependencies)
- \blacktriangleright Thus the result equals the observation

What can we do?

- \blacktriangleright Let us look at the clean image again!
- What prior knowledge do we have about this image?
- \triangleright Smoothness! (Neighboring pixels tend to have the same label)
- \triangleright Really? How many neighbors share / don't share their label?
- \blacktriangleright 10 × 10 × 2 − 20 = 180 neighborhood relationships in total
- \triangleright 34× label transition \Rightarrow 146× same label

Introducing a Smoothness Prior

$$
p(x) \propto \exp\left\{\sum_{i=1}^{100} \psi_i(x_i) + \sum_{i \sim j} \psi_{ij}(x_i, x_j)\right\}
$$

- ► Variables: $x_1, \ldots, x_{100} \in \{0, 1\}$
- ► Unary potentials: $\psi_i(x_i) = [x_i = o_i]$ with pixel observation $o_i \in \{0, 1\}$
- ► Pairwise potentials: $\psi_{ij}(x_i, x_j) = \alpha \cdot [x_i = x_j]$
- **Parameter** α controls the strength of the smoothing / prior

Ising Model

Ising Model (1924)

- \triangleright Statistical mechanics
- \blacktriangleright Mathematical model of ferromagnetism
- \triangleright Magnetic dipole moments of atomic spins
- \blacktriangleright Two states: $+1$ and -1, arranged in lattice
- \blacktriangleright Allows identification of phase transitions Ernst Ising (1900-1998)
	- ▶ Studies in Göttingen, Bonn, Hamburg
	- \blacktriangleright Investigated simple chain model
	- \triangleright Grid model solved in 1944 by Osanger
	- \triangleright School teacher (Caputh, Berlin)
	- \triangleright Escaped to US (Bradley University, Illinois)

What will the MAP result look like?

- \blacktriangleright Programming exercise
- \blacktriangleright Play with smoothness parameters α
- \blacktriangleright How to set α in a principled fashion?
- \triangleright Learn from training data! \Rightarrow Next week ...
- \triangleright Next: Approximate inference via sampling

So far:

- \triangleright We learned about one particular deterministic approximation
- \triangleright There are other deterministic techniques (overview at end of lecture)
- \triangleright There is also another way of approaching approximate inference:

Sampling

Deterministic Approximation

- \blacktriangleright Approximate the model or inference procedure
- \triangleright Retrieve a determ solution to this approximation

Stochastic Approximation

- \triangleright Use the true model / target distribution of interest
- \triangleright Draw samples to approximate this distribution

Motivation: Sampling

Many statistical problems involve solving analytically intractable integrals (for example in Bayesian inference with continuous variables and non-conjugate priors). Typical problems that can be solved with sampling:

- ▶ Normalization: $p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x')p(x')dx'}$
- \blacktriangleright Marginalization: $p(x|y) = \int p(x, z|y) dz$
- ► Maximization: $x^* = \text{argmax}_x p(x|y)$ (no integral here)
	-
- \blacktriangleright Expectation: $E_p(f(x)) = \int f(x)p(x)dx$

Examples for functions $f(x)$ in the latter case:

- The expectation: $\int x p(x) dx$
- ► The variance: $\int x^2 p(x) dx (\int x p(x) dx)^2$
- The expected risk: \int risk $(x)p(x)dx$

Monte Carlo Approximation

 \triangleright The more samples we draw, the better the approximation:

$$
\frac{1}{N}\sum_{i=1}^N f(x_i) \xrightarrow{N\to\infty} \int f(x)p(x)dx
$$

- \triangleright The estimate is unbiased and will almost surely converge to the right value by the strong law of large numbers
- \blacktriangleright Difficulties: Obtaining uncorrelated samples for fast convergence $\frac{39}{62}$

Basic Sampling Strategies

- \triangleright For most (multivariate) standard distributions there exist good sampling algorithms that you can just call in Python/MATLAB
- ▶ Uniform, Gaussian, Poisson, Dirichlet, Discrete
- But those are usually not the distributions we are interested in
- \triangleright Our distributions specified by a graphical model are more complex

So how to sample? Let's look at the simple univariate case first

Discrete Case

$$
\triangleright \text{ Assume distribution: } p(x) = \begin{cases} 0.6 & x = 1 \\ 0.1 & x = 2 \\ 0.3 & x = 3 \end{cases}
$$

• Calculate cumulant:
$$
c(y) = \sum_{x \le y} p(x) = \begin{cases} 0.6 & y = 1 \\ 0.7 & y = 2 \\ 1.0 & y = 3 \end{cases}
$$

- ► Draw $u \sim [0, 1]$ using pseudo-random number generator
- Find y such that: $c(y 1) < u \leq c(y)$
- Return state y as sample from p

Continuous Case

- \blacktriangleright Similar to the discrete case
- \triangleright Compute the cumulant function:

$$
c(y) = \int_{-\infty}^{y} p(x) dx
$$

- ► Sample $u \sim [0,1] \Rightarrow$ compute $x = c^{-1}(u)$
- \triangleright The integral $c(y)$ can be computed analytically or numerically

Overview: Sampling Methods

- \blacktriangleright Inverse Transform
- \triangleright Ancestral Sampling
- \triangleright Rejection Sampling
- \blacktriangleright Importance Sampling
- \triangleright Slice Sampling
- \triangleright Markov Chain Monte Carlo
	- \blacktriangleright Metropolis-Hastings
	- \triangleright Gibbs Sampling
	- ► Hybrid Monte Carlo
- \triangleright Do I need to know them all?
- \triangleright Yes! Most efficient technique depends on model/application
- \triangleright Today "only" the ones in red;

- \triangleright Suppose a $p(x)$ such that direct sampling is not tractable
- Furthermore assume we can evaluate $p(x)$ up to a constant (e.g., Markov Networks!):

$$
p(x) = \frac{1}{Z}\tilde{p}(x) = \frac{1}{Z}\prod_c \phi_c(\mathcal{X}_c)
$$

- \triangleright Sample from a proposal distribution $q(x)$
- \triangleright Choose $q(\cdot)$ which we can easily sample and a k exists with

$$
k q(x) \geq \tilde{p}(x) \ \forall x
$$

- \triangleright Sample two random variables:
	- 1. $z_0 \sim q(x)$
	- 2. $u \sim [0, kq(z_0)]$ uniform
- Reject sample z_0 if $u_0 > \tilde{p}(z_0)$

 \triangleright z₀ from q is accepted with probability $\tilde{p}(z)/kq(z)$

$$
p(accept) = \int \frac{\tilde{p}(z)}{kq(z)}q(z)dz = \frac{1}{k}\int \tilde{p}(z)dz
$$

 \blacktriangleright $k = 1$ and $q(x) = p(x) \Rightarrow p(a \text{ccept}) = 1$

► But often: $p(\text{accept} \mid x) = \prod_{i=1}^{D} p(\text{accept} \mid x_i) = \mathcal{O}(\gamma^D)$

Robot Localization Example

- \triangleright You bought a vaccum robot for your living room $(1 \times 1 \text{ m})$
- \triangleright For proper cleaning, the robot needs to localize itself
- ► No prior knowledge on location: $\mathbf{x} \sim \mathcal{U}([0,1] \times [0,1])$
- ► Independent measurements: $d_i|\mathbf{x} \sim \mathcal{N}(\|\mathbf{x}-\mathbf{e}_i\|, \sigma^2)$

 $p(\mathbf{x}|d_1, d_2, d_3, d_4) \propto p(\mathbf{x})p(d_1|\mathbf{x})p(d_2|\mathbf{x})p(d_3|\mathbf{x})p(d_4|\mathbf{x})$

Robot Localization Example

- \triangleright The maximum of the unnormalized posterior is 1
- ► Thus we can choose: $q(\mathbf{x}) = [0 \le x_1, x_2 \le 1]$

Markov Chain

 \triangleright Discrete random process with Markov property:

$$
P(x_i|x_{i-1},...,x_1) = P(x_i|x_{i-1}) = P(x'|x)
$$

Markov Chain Monte Carlo (MCMC)

- \blacktriangleright We want to sample from $p(x) = \frac{1}{Z} \tilde{p}(x)$ with Z unknown
- \blacktriangleright Idea: Establish a Markov chain with transition kernel $T(x' \mid x)$ and with stationary distribution $p(x)$:

$$
p(x') = \int_x T(x' | x) p(x) dx
$$

Task: Find $T(x' | x)$ such that $p(x)$ is its stationary distribution!

Metropolis-Hastings

- \blacktriangleright Initialize x and specify proposal distribution $q(x' | x)$
- \blacktriangleright Sample x' from $q(x'|x)$ and accept with probability

$$
A(x',x) = \min\left(1, \frac{p(x') q(x|x')}{p(x) q(x'|x)}\right) = \min\left(1, \frac{\tilde{p}(x') q(x|x')}{\tilde{p}(x) q(x'|x)}\right)
$$

- If accepted: $x \leftarrow x'$
- If not accepted: stay at x
- \blacktriangleright Iterate (sample again)

Example: 2D Gaussian

 \blacktriangleright 150 proposal steps, 43 are rejected (red)

Why does it work?

 \blacktriangleright Remember the acceptance probability:

$$
A(x',x) = \min\left(1, \frac{p(x')q(x|x')}{p(x)q(x'|x)}\right)
$$

 \blacktriangleright Let us write down the transition kernel $T(x'|x)$ *i.e.*, the probability to transition the state from x to x' :

$$
T(x'|x) = q(x'|x) A(x',x)
$$

+ $\delta(x'-x) \int q(\tilde{x}|x) [1 - A(\tilde{x}|x)] d\tilde{x}$

Why does it work?

$$
\int T(x'|x)p(x)dx = \int \min\{p(x)q(x'|x), p(x')q(x|x')\}dx
$$

$$
+ \int p(x')q(\tilde{x}|x')[1 - A(\tilde{x}|x')]d\tilde{x}
$$

$$
= \int \min\{p(x)q(x'|x), p(x')q(x|x')\}dx
$$

$$
+ p(x')\int q(\tilde{x}|x')d\tilde{x}
$$

$$
- \int p(x')q(\tilde{x}|x')A(\tilde{x}|x')d\tilde{x}
$$

$$
= \int \min\{p(x)q(x'|x), p(x')q(x|x')\}dx
$$

$$
+ p(x')
$$

$$
- \int \min\{p(x')q(\tilde{x}|x'), p(\tilde{x})q(x'|\tilde{x})\}d\tilde{x}
$$

$$
= p(x')
$$

Why does it work?

Other requirements that need to be fulfilled:

- Irreducibility: Any state x' can be reached by any other state x in a finite number of steps
- \triangleright Aperiodicity: The occurrence of states is not restricted to periodic events (any state may occur at any time).

Example: Irreducibility

 \blacktriangleright $q(x'|x)$ needs to be able to bridge the gap

Robot Localization Example

- \triangleright Now inferring 2 variables: location **x** and sensor noise σ
- ► Uniform prior on location: $\mathbf{x} \sim \mathcal{U}([0,1] \times [0,1])$
- \blacktriangleright Uniform prior on sensor noise: $\sigma \sim \mathcal{U}(0.01, 0.5)$
- ► Measurements depend on $\sigma\colon\thinspace d_i|\mathbf{x},\sigma\sim\mathcal{N}(\|\mathbf{x}-\mathbf{e}_i\|,\sigma^2)$

Robot Localization Example

Gibbs Sampling

Special case of MH Sampling:

- \triangleright Cyclic MH kernel that updates one variable at a time
- \triangleright Sample directly from the full conditional distribution

$$
q(x'|x) = p(x_k|x_1, ..., x_{k-1}, x_{k+1}, ..., x_D)
$$

- Samples get accepted with probability 1 (exercise)
- But: conditionals must be easy to sample from!
- Danger of slow convergence and non-irreducibility:

Approximate Inference Overview

\blacktriangleright Deterministic Inference

- \triangleright Junction Tree (not approximate but intractable)
- **Example 1** Loopy Belief Propagation
- \triangleright Variational Approximation
- \blacktriangleright Expectation Propagation
- \blacktriangleright Mean field
- ► Gradient Descent
- \blacktriangleright ...
- \triangleright Sampling
	- \triangleright Rejection Sampling
	- \triangleright Slice Sampling
	- \triangleright Metropolis-Hastings Sampling
	- \triangleright Gibbs Sampling
	- \blacktriangleright ...

Next Time ...

- \blacktriangleright Learning
- \triangleright And after that: Computer Vision, finally!
- \triangleright No more toy examples, but real stuff promised ;)