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Introduction Belief Networks Learning Markov Networks

What is there to learn?

I Given
I Training data : D = {x1, . . . , xn}

I For example coin tosses xi ∈ {0, 1}
I Training data: D = {(x1, y1), . . . , (xn, yn)}

I Images yi with labels xi , for example face/non-face

I So what is there to learn? What do we want?
I Unsupervised Learning: density estimate of D

I Score new examples x with p(x) (or (x , y) with p(x , y))

I Supervised learning. Predict with f (y) = x . Need p(x |y) then predict
with

x̂ = argmin
x ′∈X

Ep(x |y)[∆(x ′, x)]

I Supervised learning. Just predict f (y) = x , do not need density
p(x |y)
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Learning Methods – Overview

I Given
I Training data : X = {x1, . . . , xn}
I Choose a model class : p(x | θ), θ ∈ Θ (e.g. Gaussian, or 2x2 MRF)

I Problem : Find θ̂ such that p(x | θ̂) “best fits” the data X
I What does “best fits” mean?
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Parametric Models - Learning

I For parametric distributions we write

p(x | θ)

I x can be discrete/continuous and scalar/multi-variate

I In the Gaussian case: θ = (µ, σ2)

I Which θ to use?
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Parameter Estimation

I Point Estimates
I Try to estimate one value of θ
I Several possible choices of estimators
I Usually simpler (compared to Bayesian estimation)
I Commonly used: Maximum Likelihood, Maximum-A-Posteriori

I Bayesian Estimation
I Specify all knowledge about θ in a prior distribution p(θ)
I Integrate out the variable θ

p(x | D) =

∫
θ

p(x | θ)p(θ | D)dθ

I Often intractable due to the integral

Let’s discuss both options. Running example: Gaussian distribution.
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Maximum Likelihood Estimator

I Aim to estimate one single θ

I Likelihood of the data

L(θ) = L(θ;D) = p(D | θ)

I Assume that the data is independent and identically distributed (iid)

L(θ) = p(D | θ) =
n∏

i=1

p(xi | θ)

I Now choose θ such that it maximizes the likelihood

θML = argmax
θ
L(θ;D)
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Maximum Likelihood Estimator

I Maximum Likelihood

θML = argmax
θ
L(θ;D)

is equivalent with

I minimizing the negative log-Likelihood

θML = argmax
θ

logL(θ) = argmax
θ

L(θ)

= argmin
θ
−L(θ)

= argmin
θ
−

n∑
i=1

log p(xi | θ)

I Numerically more stable
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Kullback-Leibler divergence

I Measure of difference of probability distributions

I Discrete:
DKL(q‖p) =

∑
i

qi log
qi
pi

I Continuous:

DKL(q‖p) =

∫ ∞
−∞

q(x) log
q(x)

p(x)

I In general non-symmetric:

DKL(q‖p) 6= DKL(p‖q)
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Kullback-Leibler divergence
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Let q(x) denote the empirical distribution: q(x) = 1
N

∑N
i=1[x = xi ]

argmin
θ

DKL(q(x)‖p(x | θ))

= argmin
θ

∫
x
q(x) log

q(x)

p(x | θ)

= argmin
θ

∫
x
q(x) log q(x)−

∫
x
q(x) log p(x | θ)

= argmax
θ

∫
x
q(x) log p(x | θ)

= argmax
θ

n∑
i=1

log p(xi | θ)

= argmax
θ

n∏
i=1

p(xi | θ)
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Maximum Likelihood and Kullback-Leibler Divergence

I Maximum Likelihood is equivalent to
minimizing KL divergence with empirical distribution

q(x) =
1

N

N∑
i=1

[x = xi ]
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Remember:
I Two choices to find p(x | θ)

I Point Estimates (eg Maximum Likelihood)
I Bayesian Estimation

I Now apply the two to the Gaussian distribution
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ML Estimate for Gaussian Distribution

I Maximum Likelihood for Gaussian distribution

argmin
θ
− logL(θ) = argmin

θ
−

n∑
i=1

log p(xi | µ, σ)

I Let’s compute ...

I Is available in analytic form

∂L

∂µ

!
= 0 ⇒ µ̂ =

1

n

n∑
i=1

xi

∂L

∂σ

!
= 0 ⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ̂)2
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ML: Multivariate Gaussian Distribution

L(µ,Σ | D) =
N∑
i=1

log p(xi | µ,Σ)

= −1

2

N∑
i=1

(xi − µ)>Σ−1(xi − µ)− N

2
log det(2πΣ)

I Taking the derivative w.r.t. µ

∇µL(µ,Σ) =
N∑
i=1

Σ−1(xi − µ)

I We realize µML to be the sample mean:

µML =
1

N

N∑
i=1

xi
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ML: Multivariate Gaussian Distribution

L(µ,Σ | D) = −1

2

N∑
i=1

(xi − µ)>Σ−1(xi − µ)− N

2
log det(2πΣ)

= −1

2
trace(Σ−1

∑
i=1

(xi − µ)(xi − µ)>︸ ︷︷ ︸
:=M

) +
N

2
log det(2πΣ−1)

I Taking the derivative w.r.t. Σ−1:

∂

∂Σ−1
L = −1

2
M +

N

2
Σ

I We realize ΣML to be the sample covariance:

ΣML =
1

N

n∑
i=1

(xi − µ)(xi − µ)>
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Bayesian Estimation for Gaussian Distribution

I Likelihood

L(θ) =
n∏

i=1

p(xi | µ) =
1

(2πσ2)1/2
exp

(
1

2σ2

n∑
i=1

(xi − µ)2

)

I Let us choose the following prior

p(µ) = N (µ | µ0, σ20)

I Now we can apply Bayes rule

p(µ | D) =
p(D | µ)p(µ)∫

µ p(D | µ)p(µ)dµ
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Bayesian Estimation for Gaussian Distribution

I Applying Bayes rule we obtain

p(µ | D) = N (µ | µn, σ2n)

which is again Gaussian.

I Parameters are a bit involved:

µn =
σ2

nσ0 + σ2
µ0 +

nσ20
nσ20 + σ2

µML

1

σ2n
=

1

σ20
+

n

σ2
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Posterior for the Mean

I Showing p(µ | D) for increasing size of D
I True distribution is p(x) ∼ N (x | µ = 0.8, σ2 = 0.1)
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Conjugate Priors

I For this case
I the likelihood was Gaussian
I the prior was Gaussian
I the posterior was Gaussian

I This was no luck, but a conjugate prior

I “Def”: For a given likelihood a prior is conjugate if the posterior is of
the same parametric form as the prior

I In general very hard
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Maximum Likelihood for Belief Networks
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Lung Cancer

a s

c

I Patient
I has lung cancer c ∈ {0, 1}
I was exposed to asbestos a ∈ {0, 1}
I is a smoker s ∈ {0, 1}

I Given the following relationship

p(a, s, c) = p(c | a, s)p(a)p(s)

I What are the parameters to learn? conditional probability table (CPT)
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Yet another drawing convention: Plate notation

a s

c

a s

c

θa θs

θc

N

I Replicating data points

I The parts in the box factorize

I Priors over parameters for all points
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Lung Cancer

p(a, s, c) = p(c | a, s)p(a)p(s)

I Observe patients: D = {(a1, s1, c1), (a2, s2, c2), . . .}

I The log-likelihood

logL(θ;D) =
∑
i

log p(ai , si , ci )

=
∑
i

log p(ci | ai , si ) + log p(ai ) + log p(si )
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Lung Cancer

logL =
∑
i

log p(ci | ai , si ) + log p(ai ) + log p(si )

I Observe patients: (a1, s1, c1), (a2, s2, c2), . . .

I Now count:

I Denote n(a = 1, s = 1, c = 1) = |{i | ai = 1, si = 1, ci = 1}|
I Similarly n(a = 0, s = 1, c = 1), . . . , n(a = 0, s = 0, c = 0)

I All terms in the log-Likelihood with p(c | a = 1, s = 0)

n(a = 1, s = 0, c = 1) log p(c = 1 | a = 1, s = 0)

+ n(a = 1, s = 0, c = 0) log(1− p(c = 1 | a = 1, s = 0))
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Lung Cancer

I Use shorthand θ = p(c = 1 | a = 1, s = 0)

n(a = 1, s = 0, c = 1) log θ + n(a = 1, s = 0, c = 0) log(1− θ)

I Differentiating wrt. θ

n(a = 1, s = 0, c = 1)

θ
− n(a = 1, s = 0, c = 0)

(1− θ)
= 0

I Therefore

θ =
n(a = 1, s = 0, c = 1)

n(a = 1, s = 0, c = 1) + n(a = 1, s = 0, c = 0)

I Maximum Likelihood solution simply corresponds to counting!
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Formal derivation of ML

I That was too informal, is that general?
I Yes! Belief network can be written as factorization:

p(x) =
K∏
i=1

p(xi | pa(xi ))

I Recall: Maximizing the Likelihood corresponds to minimizing the KL
divergence between the empirical distribution q(x) (the training data)
and p(x) (our model)

KL(q‖p) = −
〈

K∑
i=1

log p(xi | pa(xi ))

〉
q(x)

+ const

= −
K∑
i=1

〈log p(xi | pa(xi ))〉q(xi ,pa(xi )) + const
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Formal derivation of ML

argmin
p

KL(q‖p) = argmin
p
−

K∑
i=1

〈log p(xi | pa(xi ))〉q(xi ,pa(xi )) + const

= argmin
p

K∑
i=1

(〈log q(xi | pa(xi ))〉q(xi ,pa(xi ))

− 〈log p(xi | pa(xi ))〉q(xi ,pa(xi )))

= argmin
p

K∑
i=1

〈KL(q(xi | pa(xi ))‖p(xi | pa(xi )))〉q(xi ,pa(xi ))

I Thus the following choice is maximizing ML (minimizing KL)

p(xi | pa(xi )) = q(xi | pa(xi ))
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ML solution

I We should set p as follows

p(xi | pa(xi )) = q(xi | pa(xi ))

I for given empirical distribution

p(xi = s | pa(xi ) = t) ∝
∑

[xi = s, pa(xi ) = t]
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That’s it – that’s all

I ML corresponds to counting, is there more?

I What may be the problem with this BN?

x1 x2

y

· · · xn−1 xn

I CPT contains 2n entries

I Solution: parametrize CPT with fewer variables
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Conditional probability functions

I Instead of storing all 2n entries of the CPT, one could fit a function

I For example

p(y = 1 | x ,w) =
1

1 + exp(−x>w)

I Now the parameters are w of size n

I This also acts as regularization, fewer degrees of freedom

I How to find ML solution wML?
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Bayesian Learning of Belief Networks
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Bayesian Learning of BN

a s

c

I The Bayesian approach:
I Define a prior on the parameters p(θ)
I Then compute p(θ | D)
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Bayesian Learning of BN – Parameters

a s

c

I p(a = 1 | θa) = θa
I p(s = 1 | θs) = θs
I p(c = 1 | a = 0, s = 1, θc) = θ0,1c

I p(c = 1 | a = 1, s = 1, θc) = θ1,1c

I ...

I In total we have parameters

θa, θs , θ
0,0
c , θ1,0c , θ0,1c , θ1,1c︸ ︷︷ ︸

θc
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Bayesian Learning of BN – Prior Assumptions

a s

c

I We model the prior over θ as

p(θa, θs , θc) = p(θa)p(θs)p(θc)

I Several other choices – our model freedom

I For example we could choose

p(θc) = p(θ0,0c )p(θ1,0c )p(θ0,1c )p(θ1,1c )
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Plate notation

a s

c

a s

c

θa θs

θa,sc

N

(a, s) ∈ P

I This situation in plate notation

I Prior p(θc) =
∏

a,s∈P p(θa,sc ), with P = {(0, 0), (1, 0), (0, 1), (1, 1)}
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Bayesian Learning of BN – Prior Assumptions

I Bayes rule

p(θa, θs , θc | D) =
p(D | θa, θs , θc)p(θa, θs , θc)

p(D)

a s

c

θa θs

θa,sc

N

(a, s) ∈ P
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Bayesian Learning

p(θa, θs , θc | D) ∝ p(D | θa, θs , θc)p(θa, θs , θc)

= (p(θa)
∏
n

p(an | θa))(p(θs)
∏
n

p(sn | θs)

(p(θc)
∏
n

p(cn | sn, an, θc))

∝ p(θa | Va)p(θs | Vs)p(θc | Vc)

I Prior p(θ) factorizes ⇒ posterior factorizes

I Each part can be optimized in parallel
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First look at p(θa | Da)

I Now look at one parameter only: p(a = 1 | θa) = θa

I Likelihood contribution of this parameter (Binomial distribution)∏
i

p(ai | θa) = θ
n(a=1)
a (1− θa)n(a=0)

I and the posterior (∝ prior × likelihood)

p(θa | Da) ∝ p(θa)× θn(a=1)
a (1− θa)n(a=0)

I This suggests to set prior to the Beta-distribution (why?)

p(θa) = B(θa | αa, βa) =
1

B(αa, βa)
θαa−1
a (1− θa)βa−1
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The Beta distribution

I Some examples of the Beta distribution

B(x | α, β) =
1

B(α, β)
xα−1(1− x)β−1
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Posterior distribution

I Because of conjugacy
I Prior – Beta distribution
I Likelihood – Binomial distribution
I Posterior – Beta distribution

I Posterior parameters:

p(θa | Da) = B(θa | αa + n(a = 1), βa + n(a = 0))

I and thus (remember: p(a = 1 | θa) = θa)

p(a = 1 | Da) =

∫
θa

p(θa | Da)θa =
αa + n(a = 1)

αa + n(a = 1) + βa + n(a = 0)
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Limits: No data – Infinite amount of data

I No data limit (N → 0)

p(a = 1 | Da) =
αa + n(a = 1)

αa + n(a = 1) + βa + n(a = 0)

→ αa

αa + βa

I CPT entry corresponds to the prior (mean of Beta distribution)

I Infinite data limit (N →∞)

p(a = 1 | Da) =
αa + n(a = 1)

αa + n(a = 1) + βa + n(a = 0)

→ n(a = 1)

n(a = 1) + n(a = 0)

I CPT entry corresponds to ML solution
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Example

I Assume we have observed the following seven patients

a s c

1 1 1
1 0 0
0 1 1
0 1 0
1 1 1
0 0 0
1 0 1

I Let us use a flat prior for p(a = 1) that is αa = βa = 1
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Example – marginal posterior

From last slide:

p(a = 1 | Da) =
αa + n(a = 1)

αa + n(a = 1) + βa + n(a = 0)
, αa = βa = 1

p(a = 1 | Da) =
1 + n(a = 1)

2 + N
=

5

9
≈ 0.556

I Different to the Maximum Likelihood
setting, that is 4/7 = 0.571

I Bayesian result is “pulling” towards
the prior (of 0.5)

a s c

1 1 1
1 0 0
0 1 1
0 1 0
1 1 1
0 0 0
1 0 1
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More states than binary

I So far only binary variables (binomial,Beta)

I Now let a variable v take values in {1, . . . , I}
I Therefore the posterior

p(θ | D) ∝ p(θ)
N∏

n=1

I∏
i=1

θ
[vn=i ]
i

= p(θ)
I∏

i=1

θ
∑N

n=1[vn=i ]
i

I Suggests a Dirichlet prior

p(θ) ∝
I∏

i=1

θui−1i
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The Dirichlet distribution

I Some examples of the Dirichlet distribution

Dirichlet(x | u) =
Γ(
∑

i ui )∏
i Γ(ui )

I∏
i=1

xui−1i
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Maximum Likelihood Learning of Undirected Models
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Maximum Likelihood for MRF

I Markov Network defined on cliques

p(X | θ) =
1

Z (θ)

∏
c

Φc(Xc | θc)

I Partition function

Z (θ) =
∑
X

∏
c

Φc(Xc | θc)

I Training data D = {X 1, . . . ,XN}
I Log-Likelihood

L(θ;D) =
∑
n

∑
c

log Φc(X n
c | θc)− N logZ (θ)
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Comments

I For Belief Networks, the posterior decomposed into different parts
(due to independence of the prior)

I Here this is not the case (in general)

I Difficulty is the unknown partition function Z (θ)
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Optimizing

I If there is no closed form solution of θ,
we can can try to optimize θ numerically!

I For example: gradient descent
I Init at θ0

I Update θt = θt−1 + ε ∂∂θL(θt−1)
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Likelihood Gradient

I The Log-Likelihood (repeated from last slide)

L(θ;D) =
∑
n

∑
c

log Φc(X n
c | θc)− N logZ (θ)

I and its gradient?

∂

∂θc
L(θ) = N

〈
∂

∂θc
log Φc(Xc | θc)

〉
q(X )

−N
〈

∂

∂θc
log Φc(Xc | θc)

〉
p(Xc |θ)

I Empirical distribution/Training Data q(x) = 1
N

∑N
i=1[x = xi ]

I Last term depends on p(Xc | θ) (model average)
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Model Average

I In order to compute the gradient we need to compute〈
∂

∂θc
log Φc(Xc | θc)

〉
p(Xc |θ)

I Either we can compute it
I Tree graphical models

I Or we have to approximate it
I Sampling, Variational Approximation

I Or we could choose a different score for estimating θ
I Pseudo-Likelihood, Max-Margin, Moment Matching, ...
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Next Lectures

... Computer Vision, finally!

I Human Body Models

I Stereo, Optical Flow

I Image Segmentation

I Object Detection
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