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What have we learned so far about bodies?

• Holistic vs part-based models 

• Translations and rotations as basic building blocks 

• Procrustes: algorithm for computing optimal similarity 
(+mirroring) transformation between two point sets



Why are we doing this?

Solve for the camera parameters!

Reconstructing 3D Human Pose from 2D Image Landmarks, Ramakrishna et al.
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Robinette	et	al.,	Civilian	American	and	
European	Surface	Anthropometry	Resource	
(CAESAR)	final	report,	2002.
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What is missing

• How do we map 3D to 2D? 

• If we don’t have information about those shapes,  
how do we find correspondences? 

• Rigid deformations do not work, what do we do? 

• next week, a complete articulated body model



Today

• Mapping the 3D world to 2D: camera models 

• Optimise rigid 3D -> 2D correspondences 

• Optimising alignment and correspondences: ICP 

• Alignment through gradient descent



Mapping 3D to 2D: what is an image?
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Weak Perspective projection
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2D-3D Procrustes with weak perspective

• Weak perspective: depth of 3D points has no effect on 
projection 

• Procrustes: pad the projections with a column of zeros 
and solve for the 3D-3D procrustes problem! 

• The case of anisotropic scale (different scale for x and y) 
complicates the rotation optimisation 

• See [1] for more information

[1]: Procrustes Problems, Gower and Dijksterhuis, Chapter 8



2D-3D Procrustes with weak perspective

Application: computing camera parameters for inferred 3D 
poses from 2D

Reconstructing 3D Human Pose from 2D Image Landmarks, Ramakrishna et al.



Is that what happens in reality?



Projective geometry



Procrustes with projective camera?

• no closed form solution 

• good initialisations (e.g. procrustes, DLT) + non-
linear optimisation 

• No need to worry, this is not the worst
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Recap

2D-2D 3D-3D 3D-2D



Recap: Correspondences? 

• Given correspondences, we know how to find the 
optimal “similarity” transformation 

• But who is giving us the correspondences? 

• If the correspondences are not optimal, is there 
anything better than the procrustes “step”?
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Ideas

• The idea was to minimise the sum of distances between 
the one set of points and the other set, transformed  
 
 

• What if we make up some reasonable correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale
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Make up reasonable correspondences

YX



Make up reasonable correspondences
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Neutral initialisation. 
Initialising t to align centroids should work better!

f0 = {R = I, t = 0, s = 1}
x
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Make up reasonable correspondences
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Solve for the best transformation

solve with procrustes
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Apply it …

f1(X)



and iterate!
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and iterate!
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1. initialise 

2. compute correspondences according to current best transform  

3. compute optimal transformation (            )with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise 
iterate 

5. converges to local minima
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s,R, t

typically better than 0
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2. compute correspondences according to current best transform  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Is ICP the best we can do?
• iteration j 

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate



Closest points

• Brute force is n^2



Closest points
• Tree based methods (e.g. kdtree) have avg. complexity log(n)

• Random point sampling also reduces the running time



Closest points: avoid local minima

• Outlier removal, weighting according to inverse distance 

• Use additional information (e.g. normals) 

• Compute transformation based on greedy subsets of 
points: RANSAC



Is ICP the best we can do?
• iteration j 

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate



Best transformation?

• Procrustes gives us the optimal transformation given 
correspondences 

• However, nothing guarantees that they are the best when 
correspondences are wrong! 

• Can we do better?



Iterative Closest Point (ICP)
• iteration j 

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

In which direction should I move?



Iterative Closest Point (ICP)
• iteration j 

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

In which direction should I move?

compute a transform that brings me there



Gradient-based ICP
• iteration j 

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Jacobian of distance-based energy

Step in the Jacobian (or Newton, or…) direction



Gradient-based optimisation



1. Energy:  

2. Consider the correspondences fixed in each iteration j+1  

3. Compute gradient of the energy around current estimation  

4. Apply step (gradient descent, dogleg, LM, BFGS…)  

5. terminate if converged, otherwise iterate (go to step 2)

Gradient-based ICP
E ⌘

X

i

kmin
x

f(x)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

(for example                             )                      f j+1 = kstep(g
0...j+1, f0...j)

gj+1 = rE(f j)

f j+1 = f j � ↵gj+1



Gradient-based ICP
• Energy:  

• Consider the correspondences fixed in each iteration j+1  

• Compute gradient of the energy around current estimation  

• Apply step (gradient descent, dogleg, LM, BFGS…)  

• terminate if converged, otherwise iterate



Gradient-based ICP

• gradient: derivative of the sum of squared distances between 
target points and scale, rotated and translated source points, 
with respect to the the scale, rotation and translation 

• Each derivative is easy 

• Who takes the chalk and writes it down? 

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)
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Chumpy
• https://pypi.python.org/pypi/chumpy 

• Automatic differentiation compatible with numpy 

• Jacobian: matrix encoding partial derivative of outputs (rows) 
with respect to inputs (columns)  

• The Jacobians of each operation are encoded for you 

• The final gradient is computed with the chain rule
Ja�b(c) = Ja(b(c))Jb(c)

J =
db

dc
=

2

664

�b1
�c1

. . . �b1
�cn

...
. . .

...
�bm
�c1

. . . �bm
�cn

3

775



Chumpy

E =
X

i

ksRxi + t� yik2

write as if it was numpy code

results in expression tree 
with jacobians available at each step



Gradient-based ICP
• Energy:  

• Consider the correspondences fixed in each iteration j+1  

• Compute gradient of the energy around current estimation  

• Apply step (gradient descent, dogleg, LM, BFGS…)  

• terminate if converged, otherwise iterate
f j+1 = kstep(g

0...j+1, f0...j)



Gradient-based ICP
• The science of computing a good optimisation step is a whole 

field by itself 

• Ask Maren 😀  

• However, lots of standard ways are available in scientific 
libraries like scipy 

• And chumpy integrates well with it 

• Minimisation in a single line: 
 
ch.minimize(fun=energy, x0=[scale, rot, trans], method=‘dogleg')

or 
‘BFGS’, 
‘CG’, 
etc 



Why Gradient-based ICP?
• Formulation is much more generic: the energy can 

incorporate other terms, more parameters, etc 

• Incorporates insights from the vast research community of 
gradient-based optimisation 

• A lot of available software for solving this problem (cvx, 
ceres, …) 

• However, when correspondences are not fixed, it’s not 
guaranteed that a gradient-based step will work better than 
procrustes!



Take-home message

• Procrustes can also be applied to estimate camera 
parameters 

• … but only if we have correspondences!  

• We can compute correspondences and solve for the best 
transformation iteratively with Iterative Closest Point (ICP) 

• Procrustes is optimal given optimal correspondences: we 
might get better updates exploiting other optimisation 
strategies


