
Body Models II
Javier Romero

Max Planck Institute for Intelligent Systems
Perceiving Systems
May 24, 2016

11.04.2016 Introduction
18.04.2016 Graphical Models 1
25.04.2016 Graphical Models 2 (Sand 6/7)
02.05.2016 Graphical Models 3
09.05.2016 Graphical Models 4
23.05.2016 Body Models 1
30.05.2016 Body Models 2
06.06.2016 Body Models 3
13.06.2016 Body Models 4
20.06.2016 Stereo
27.06.2016 Optical Flow
04.07.2016 Segmentation
11.07.2016 Object Detection 1
18.07.2016 Object Detection 2

What have we learned so far about bodies?

• Holistic vs part-based models

• Translations and rotations as basic building blocks

• Procrustes: algorithm for computing optimal similarity
(+mirroring) transformation between two point sets

Why are we doing this?

Solve for the camera parameters!

Reconstructing 3D Human Pose from 2D Image Landmarks, Ramakrishna et al.

Why are we doing this?

Transfer information from one point set to another
A Method for Registration of 3D Shapes, Besl and McKay

Why are we doing this?

Transfer information from one point set to another
A Method for Registration of 3D Shapes, Besl and McKay

Robinette	et	al.,	Civilian	American	and	
European	Surface	Anthropometry	Resource	
(CAESAR)	final	report,	2002.

Why are we doing this?

Extract common information across point sets

Why are we doing this?

Extract common information across point sets

What is missing

• How do we map 3D to 2D?

• If we don’t have information about those shapes,  
how do we find correspondences?

• Rigid deformations do not work, what do we do?

• next week, a complete articulated body model

Today

• Mapping the 3D world to 2D: camera models

• Optimise rigid 3D -> 2D correspondences

• Optimising alignment and correspondences: ICP

• Alignment through gradient descent

Mapping 3D to 2D: what is an image?

x

p

Orthographic projection

Orthographic projection

X 2 RN⇥3

P 2 RN⇥2

PT =

"
1 0 0

0 1 0

#
RXT

Weak Perspective projection

X 2 RN⇥3

P 2 RN⇥2

PT =

"
s 0 0

0 s 0

#
RXT

image
axes

2D-3D Procrustes with weak perspective

• Weak perspective: depth of 3D points has no effect on
projection

• Procrustes: pad the projections with a column of zeros
and solve for the 3D-3D procrustes problem!

• The case of anisotropic scale (different scale for x and y)
complicates the rotation optimisation

• See [1] for more information

[1]: Procrustes Problems, Gower and Dijksterhuis, Chapter 8

2D-3D Procrustes with weak perspective

Application: computing camera parameters for inferred 3D
poses from 2D

Reconstructing 3D Human Pose from 2D Image Landmarks, Ramakrishna et al.

Is that what happens in reality?

Projective geometry

Procrustes with projective camera?

• no closed form solution

• good initialisations (e.g. procrustes, DLT) + non-
linear optimisation

• No need to worry, this is not the worst

Procrustes with projective camera?

• no closed form solution

• good initialisations (e.g. procrustes, DLT) + non-
linear optimisation

• No need to worry, this is not the worst

Recap

2D-2D 3D-3D 3D-2D

Recap: Correspondences?

• Given correspondences, we know how to find the
optimal “similarity” transformation

• But who is giving us the correspondences?

• If the correspondences are not optimal, is there
anything better than the procrustes “step”?

Ideas?

Ideas?

Ideas?

?

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we make up some reasonable correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we make up some reasonable correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we make up some reasonable correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

original unsorted points

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we make up some reasonable correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

Make up reasonable correspondences

YX

Make up reasonable correspondences

x

1
0

y0

Neutral initialisation.
Initialising t to align centroids should work better!

f0 = {R = I, t = 0, s = 1}
x

1
0 = argmin

x2X

kf0(x)� y0k2

X ⌘ f0(X)

y1

Make up reasonable correspondences

f0 = {R = I, t = 0, s = 1}
x

1
i = argmin

x2X

kf0(x)� yik2

x

1
0

x

1
1

y0

Solve for the best transformation

solve with procrustes

x

1
i = argmin

x2X

kf0(x)� yik2

f1 = argmin
f

X

i

kf(x1
i)� yik2

Apply it …

f1(X)

and iterate!

f1 = argmin
f

X

i

kf(x1
i)� yik2

x

2
i = argmin

x2X

kf1(x)� yik2

f1(X)

and iterate!

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j(X)

and iterate!

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j(X)

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

typically better than 0

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate (go to step 2)

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

x

j+1
i = argmin

x2X

kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

Is ICP the best we can do?
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Closest points

• Brute force is n^2

Closest points
• Tree based methods (e.g. kdtree) have avg. complexity log(n)

• Random point sampling also reduces the running time

Closest points: avoid local minima

• Outlier removal, weighting according to inverse distance

• Use additional information (e.g. normals)

• Compute transformation based on greedy subsets of
points: RANSAC

Is ICP the best we can do?
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Best transformation?

• Procrustes gives us the optimal transformation given
correspondences

• However, nothing guarantees that they are the best when
correspondences are wrong!

• Can we do better?

Iterative Closest Point (ICP)
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

In which direction should I move?

Iterative Closest Point (ICP)
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

In which direction should I move?

compute a transform that brings me there

Gradient-based ICP
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Jacobian of distance-based energy

Step in the Jacobian (or Newton, or…) direction

Gradient-based optimisation

1. Energy:  

2. Consider the correspondences fixed in each iteration j+1  

3. Compute gradient of the energy around current estimation  

4. Apply step (gradient descent, dogleg, LM, BFGS…)  

5. terminate if converged, otherwise iterate (go to step 2)

Gradient-based ICP
E ⌘

X

i

kmin
x

f(x)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

(for example) f j+1 = kstep(g
0...j+1, f0...j)

gj+1 = rE(f j)

f j+1 = f j � ↵gj+1

Gradient-based ICP
• Energy:  

• Consider the correspondences fixed in each iteration j+1  

• Compute gradient of the energy around current estimation  

• Apply step (gradient descent, dogleg, LM, BFGS…)  

• terminate if converged, otherwise iterate

Gradient-based ICP

• gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

• Each derivative is easy

• Who takes the chalk and writes it down?

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)

Gradient-based ICP

• gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

• Each derivative is easy

• Who takes the chalk and writes it down?

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)

Gradient-based ICP

• gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

• Each derivative is easy

• Who takes the chalk and writes it down?

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)

Chumpy
• https://pypi.python.org/pypi/chumpy

• Automatic differentiation compatible with numpy

• Jacobian: matrix encoding partial derivative of outputs (rows)
with respect to inputs (columns)  

• The Jacobians of each operation are encoded for you

• The final gradient is computed with the chain rule
Ja�b(c) = Ja(b(c))Jb(c)

J =
db

dc
=

2

664

�b1
�c1

. . . �b1
�cn

...
. . .

...
�bm
�c1

. . . �bm
�cn

3

775

Chumpy

E =
X

i

ksRxi + t� yik2

write as if it was numpy code

results in expression tree 
with jacobians available at each step

Gradient-based ICP
• Energy:  

• Consider the correspondences fixed in each iteration j+1  

• Compute gradient of the energy around current estimation  

• Apply step (gradient descent, dogleg, LM, BFGS…)  

• terminate if converged, otherwise iterate
f j+1 = kstep(g

0...j+1, f0...j)

Gradient-based ICP
• The science of computing a good optimisation step is a whole

field by itself

• Ask Maren 😀

• However, lots of standard ways are available in scientific
libraries like scipy

• And chumpy integrates well with it

• Minimisation in a single line: 
 
ch.minimize(fun=energy, x0=[scale, rot, trans], method=‘dogleg')

or 
‘BFGS’, 
‘CG’, 
etc

Why Gradient-based ICP?
• Formulation is much more generic: the energy can

incorporate other terms, more parameters, etc

• Incorporates insights from the vast research community of
gradient-based optimisation

• A lot of available software for solving this problem (cvx,
ceres, …)

• However, when correspondences are not fixed, it’s not
guaranteed that a gradient-based step will work better than
procrustes!

Take-home message

• Procrustes can also be applied to estimate camera
parameters

• … but only if we have correspondences!

• We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)

• Procrustes is optimal given optimal correspondences: we
might get better updates exploiting other optimisation
strategies

