Gerard Pons-Moll
Max Planck Institute for Intelligent Systems

Perceiving Systems
June 06, 2016

MAX-PLANCK-GESELLSCHAFT

11.04.2016
18.04.2016
25.04.2016
02.05.2016
09.05.2016
23.05.2016
30.05.2016
06.06.2016
13.06.2016
20.06.2016
27.06.2016
04.07.2016
11.07.2016
18.07.2016

Schedule

Introduction
Graphical Models 1
Graphical Models 2 (Sand 6/7)
Graphical Models 3
Graphical Models 4
Body Models 1
Body Models 2
Body Models 3
Body Models 4
Stereo

Optical Flow
Segmentation
Object Detection 1
Object Detection 2

A Body Model is a function
8 o oL

/
f
3

/BN | | L]

j /A\ ‘\
M (XP0867 Xshape)

What kind of function ?

A

Body vertices f(:l?) = W T + Wo

>

Pose & shape

Linear ?

What kind of function ?

A

Body vertices

>

Pose & shape

Polynomial ?

Given the function, what w ?

flx;w) = wiz® + wex® + w1 + W
f(x;w)

Input parameters Hyper-parameters

And also why our input X is
shape and pose ?

—

NOtat|On Xpose — 9—) Xshape — 6

How do we parameterize pose ?

« Parameterize every body part separately ?

ROatOQ Xpose — {ROatOw-'RNvtN}

= ’ = Problems ?
-—

How do we parameterize pose?

SN =

Articulated constraints not satisfied!

Rotation parameterization

» Rotations are composed of 9 numbers

6 additional constraints to ensure that
the matrix is orthonormal

« Suboptimal for optimization

Rotation with Exponential Maps
Wy

Hcc_fj H : Angle of rotation

—

wj : scaled axis of rotation

Rotation obtained with Rodrigues formula:

)

-~ ~ . . ~2 —
R=e“"=7+ W Sm(ijH) + W (1 — COS(H“J’H)

Joint Rigid Body Motion

The transformation associated with a rotational
joint is (D’j

Joint location

e“I3x3 J3x1 Rigid Body
1 Motion

i 01x3

-

Kinematic Chains

J1
W1

Kinematic Chains

Kinematic Chains ¢

The coordinates of the point in the spatial
frame are:

Ps = G(W1,w2,j1,J2) = G(&1,J1)G (W2, j2)\Ps

Pose Parameters

J1
== (iven a set of joint locations

J= (1, 0drx)”

The pose defined as the vector
of concatenated part axis-angles

) K é’:(ﬁ’,%)T

Pons-Moll & Rosenhahn 2011
Model-based Pose Estimation. Looking at People.

Kinematic Chain Problems

Different poses

 Different poses using no blendweights
>>python visualize ablated smpl.py

Linear Blend Skinning

; 4 —

k=1

Blend weights Part transformations

Points transformed as blended linear combination
of joint transformation matrices

Binding Matrices

Pss

Linear Blend Skinning

Different poses using BW

 Different poses using no blendweights
>>python visualize ablated smpl.py

Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN
— Joint locations: J < RSK
— Weights: })) € RVXE

— Pose parameters: 9_)6 R3K

Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN

— Joint locations: J RSK

— Weights: })) € RVXE

— Pose parameters: g ¢ R3K

Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < R3N

— Joint locations: J ¢ R3K ——===

— Weights: })) ¢ RVXE

— Pose parameters: g < R3K

25

Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T ¢ RBN
— Joint locations: J < RSK
— Weights: })) € RVXE

— Pose parameters: 9_)6 R3K

Skinning function

— Rest pose vertices: T € R3N
_ Joint locations: J € R3%
— Weights: YV €]RNXK

— Pose parameters:) c R3K

—

W(T,J, W, 0) — vertices

LBS problems

Solution: Blend Shapes

* A blend shape is a set of vertex

displacements in a rest pose

— Pose blend shapes: correct for LBS problems

_A.Tl Ayl AZl |

AxN AyN AZN

Offset 1
) e RV

Pose Blend Shapes

* With blend shape correction

How to predict Blend Shapes ?

* Animators sculpt it manually!

* Time consuming, does not scale

Can we leverage training data ?

Scattered Data Interpolation

| Pose 1 Q |

Pose 2 \2 Pose N \\Q

e
4
O
—

Query pose ’
{ J.P.Lewis et.al. 2000

Problems Scattered Data
Interpolation

* 1) Computationally expensive (need to find
closest poses in a database)

» 2) Does not extrapolate very well to novel
poses

Problems

 If we don’t use scattered data interpolation,
how do we define pose blend shapes ?

—

Bp(6")

* How to set the skinning parameters ?

TcRY JeR¥P WeRNVNXE

More Problems

How do we model shape identity
variations ?

MRS

SMPL Model Results

SMPL: A Skinned Multi-Person Linear Model

V4

Mathew Loper Naureen Mahmood Javier Romero

. SIGGRAPH
Gerard Pons-Moll Michael Black ASIA 2615

SMPL Philosophy

We aim for the simplest possible model
while having state-of-the-art performance

 Makes training easier
* Enables compatibility

2015 Loper et.al. SIGGRAPH Asia

Pipeline

_rvxz..,

Template Mesh

Pipeline

,T , ?i

Template Mesh Shape
Blend Shapes

Pipeline

D

4 1
Template Mesh Shape Pose Given Pose
Blend Shapes Blend Shapes

Pipeline

~D

A 1
Template Mesh Shape Pose Final Mesh
Blend Shapes Blend Shapes

Standard Skinning

Parameterized Skinning

—

Standard skinning W (T, J, W, 0) — vertices

SMPL model
M6, 8) = W(Tp(B,6),I(5),W,0) — vertices

—

SMPL is skinning parameterized by pose 6
and shape f3

SMPL: BS are a parametric
function of pose

* We parameterize the skinning equation by pose

Remember: Pose Blend Shapes

* With blend shape correction

Parameterized Skinning

—

W(r@),J, W, 0) — vertices

— —

T(@) =T+ Bp(0)

» Our rest vertices are linear in f(6)

Each is

) ") |) / a blend shape
Bp(0) = Z fi(0)P;

Parameterized Skinning

—

« What function f(6)?

—

— —

Bp(0) = fi(0)P;

Neck Rotation

Joint Angles

Parameterized Skinning

—

- What function f(0) ?

—

- ldea: we consider f(0) as the vectorized
joint rotation matrices

- Blend shapes are linear in rotation matrix
elements

Pose Blend Shapes

Not a minus
f0)=lety...e5y ... ek ...ek

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes

Neck Rotation

Joint Angles

Pose Blendshapes demo

« >> python visualize pose blends.py

Joint Location Estimation

« How to get the joints J for a new shape?
What is the simplest way?

e Joints are considered linear in rest vertices
(much like in Allen et al. ’06)

J=J(T;9)=JT

Joint regressor matrix

Joint Location Estimation

s oS
o e
w v

Adding a shape space

Problem: want a shape space with different identities

— —

W(r@),J(T),W,0) — vertices

con’rribS’rCi);ﬁ { BP(—)) — fz()Pz

Adding a shape space

Solution: add blend shapes linear with g

W(T(é;), J(E),W, 5) — vertices

Shape Blend shape matrix

Bs(B)=> BiS; . .S5=[8, Sy ... Sn..]

Shape
contribution

con’rribS’rCi);ﬁ { BP(—)) — Z fz(_))Pz

SMPL

Additive Model

7 =

ka G (0, J(B)) (| +bsi(B) + br:(8))

Blendwelghts Vertices Shape-bs Pose-bs

SMPL Skinning

Parameterized Skinning

—

Standard skinning W (T, J, W, 0) — vertices

SMPL model
M6, 8) = W(Tp(B,6),I(5),W,0) — vertices

—

SMPL is skinning parameterized by pose 6
and shape f3

SMPL
poge s?iape

M(@_),B);T,S,P,W,j)
I ..

Input Model parameters to
be learned from data

T Template (average shape)
S Shape blend shape matrix

P Pose blend shape matrix
VW Blendweights matrix
J

Joint regressor matrix

Remember ?

Input parameters |Hyper-parameters ? |

DATA

Model Training

Multipose database: 20 males, 24 females
1800 registrations

et s T4
arzisied

Model Training

Multishape database: PCA on ~2000
single-pose registrations per gender

g . : ' - ' - .
y . & A . '
g 4 U *
L7 ol 4
3

Model Training

W:argmvinZ‘|M(5,g;W)— X HQ
J

|
bt TN
by e 1S

Training

\VIE
Tsr%lrvlvjzmmuM 0;,8; T,S,P,W,J) -V,

Model Registrations

ldeally one wants to find the model parameters
that minimize a single objective measuring the
distance between model and registrations

Gradient based optimization!

Training Details

« P,W,J are trained from our multipose dataset
« P reqgularized towards zero (ridge regression)
* W regularized towards initialization

* J reqgularized towards predicting part boundary
centers and is forced to be sparse

« T, S are trained from our multishape dataset

Number of Parameters Learned

For a model with 6890 vertices

« P 9x23x6890 = 4,278,690

* W 4x3x6890 = 82,680

« J 3x6890x23x3 = 1,426,230

T, S 3x6890 + 3x6890x10blendshapes = 227,370

A total of 6.014.970 parameters are learned

.

[Vl]ZT—|— SNubJ]B
Average of shapes Shape blend shapes are

the first eigenvectors

|

Average of shapes Shape blend shapes matrix

Before doing PCA all shapes have to be in the same
pose (pose needs to be optimized)

Shape Blend Shapes- Female

PC 1 varied between +/-3 std dev

Shape Blend Shapes- Male

PC 1 varied between +/-3 std dev

Pose Blendshapes

D 8

Conclusion

Speed: fast run-time

Fidelity: superior accuracy to Blend-
SCAPE, trained on the same data

Compatibility: works in Maya, other
platforms soon

Is publicly available for research purposes

Download: http://[smpl.is.tue.mpqg.de

SMPL results

-

SMPL Model

Model Decomposition

}

Template Pose & Shape Blend Shapes Dynamics Final Mesh
T Bp(6) + Bs(p) Br(D,p) M(Tp, Jg, W, 0)

Dynamics of Soft Tissue

Pose Dynamic DMPIL.
Blend Shapes Blend Shapes

DMPL exaggeration

Registrations to
4D Scans

Applications 1

* Given a new registration, find the pose
and shape. Correspondences are known.

* >> align_3Dpoints.py

Fitting SMPL to a scan/mesh

* Problem: Given a registration, find the
model pose and shape.

H,B—argmmHM(,) VH2
7/8

Model Registration

Chumpy does it for you but you
have to know what you are doing!!

* Chumpy minimizes the
a vector valued error function

Optimization variab

of

es (vector)

N

e(x) =) ei(x)? = e(x) e(x)

j i
Sum of squares
(scalar)

Residuals
(vector valued error function)

Jacobian of the vector valued error function:

- Jeq Oeq T
8x1 o aXp
(96]\7 aeN

— 8x1 tUe aXP—

P parameters

sjenpisal N

Gradient of sum
of squares

Gradient

— 86 —_
8x1

Oe

_Ox p -

Jacobian of
vector valued
error function

Who cares about the Jacobian 7

» Gradient is just a direction not a step.

* To compute the step most optimizers need to
approximate the Hessian which requires the
Jacobian.

* Many optimizers exploit the structure of the
Jacobian.

 Direct application of chain rule makes you
compute Jacobians

If optimization takes too long, or breaks etc..

ask yourself the following:
 |s my Jacobian too big ?

 |sittoo dense ? (sparsity is exploited for speed).

 |s my Jacobian full rank ? If Jacobian loses rank

optimization can break. A typical case is when
the error function does not depend on a
particular variable x_1.

Wasn't this supposed to be vision ?

* Where are the images here ?

* Model the 3D world first, then explain image
observations

* In the next lecture Javier will cover modeling
appearance and fitting models to images

Thank you!

