
06	
 Body	
 Models	
 3	

Gerard Pons-Moll
Max Planck Institute for Intelligent Systems
Perceiving Systems
June 06, 2016

Schedule
•  11.04.2016 Introduction
•  18.04.2016 Graphical Models 1
•  25.04.2016 Graphical Models 2 (Sand 6/7)
•  02.05.2016 Graphical Models 3
•  09.05.2016 Graphical Models 4
•  23.05.2016 Body Models 1
•  30.05.2016 Body Models 2
•  06.06.2016 Body Models 3
•  13.06.2016 Body Models 4
•  20.06.2016 Stereo
•  27.06.2016 Optical Flow
•  04.07.2016 Segmentation
•  11.07.2016 Object Detection 1
•  18.07.2016 Object Detection 2

A Body Model is a function

What kind of function ?

f(x) = w1x+ w2

Pose & shape

Body vertices

Linear ?

What kind of function ?

Pose & shape

Body vertices

Polynomial ?

Given the function, what w ?

f(x;w)

f(x;w) = w1x
3 + w2x

2 + w1x+ w0

Hyper-parameters Input parameters

And also why our input X is
shape and pose ?

Notation: X
pose

= ~✓ X
shape

= ~�

How do we parameterize pose ?
•  Parameterize every body part separately ?

R0, t0

Rj , tj

X
pose

= {R
0

, t
0

, . . .RN , tN}

Problems ?

How do we parameterize pose?

Articulated constraints not satisfied!

Rotation parameterization

•  Rotations are composed of 9 numbers

•  6 additional constraints to ensure that
the matrix is orthonormal

•  Suboptimal for optimization

Rotation with Exponential Maps

k~!jk
~!j

: Angle of rotation

: scaled axis of rotation

Rotation obtained with Rodrigues formula:

~!j

k~!jk

R = e
b~!
= I +

b̄!j sin(k~!jk) + b̄!2
(1� cos(k~!jk)

Joint Rigid Body Motion
The transformation associated with a rotational
joint is

Rigid Body
Motion

~!j

k~!jk

j

G(~!, j) =


[e~!]3⇥3 j3⇥1

01⇥3 1

�

 Joint location

Kinematic Chains

S

B

~!1 ~!2

j1
j2

pb

Kinematic Chains

S k~!2k

~!1 ~!2

j1
j2

pb

Kinematic Chains

S

The coordinates of the point in the spatial
frame are:

k~!1k

k~!2k

~!1

~!2

j1

j2

pb

p̄s = G(~!1, ~!2, j1, j2) = G(~!1, j1)G(~!2, j2)p̄b

Pose Parameters

The pose defined as the vector
of concatenated part axis-angles

~✓ = (~!1, . . . , ~!k)
T

J = (j1, . . . , jK)T
Given a set of joint locations

j1

jK

T
Pons-Moll & Rosenhahn 2011
Model-based Pose Estimation. Looking at People.

Kinematic Chain Problems

~✓ = (~!1, . . . , ~!k)
T

Different poses

•  Different poses using no blendweights
 >>python visualize_ablated_smpl.py

Points transformed as blended linear combination
of joint transformation matrices

Blend weights

Number of parts

0.8 0.2

Linear Blend Skinning

Part transformations

Binding Matrices

Zero pose Posed space Skinning space
~✓~0~✓⇤

pss

G(~✓,J)

Gk(~✓
⇤
k,J)

�1

t̄i = Gk(~✓k,J)
�1pss

t0i

ti

Linear Blend Skinning

Different poses using BW

•  Different poses using no blendweights
 >>python visualize_ablated_smpl.py

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

23

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

24

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

25

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

26

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

– Rest pose vertices:
– Joint locations:
– Weights:
– Pose parameters:

Skinning function

27

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

W (T,J,W, ~✓) 7! vertices

LBS problems

Solution: Blend Shapes

•  A blend shape is a set of vertex
displacements in a rest pose

– Pose blend shapes: correct for LBS problems

Offset 1

P = vec(

2

66664

�x1 �y1 �z1
...
...

�xN �yN �zN

3

77775
) 2 R3N

Pose Blend Shapes
•  With blend shape correction

How to predict Blend Shapes ?

•  Animators sculpt it manually!

•  Time consuming, does not scale

 Can we leverage training data ?

Scattered Data Interpolation
Pose 1 Pose 2 Pose N

Query pose
J.P.Lewis et.al. 2000

�i / K(

~✓0, ~✓i) = exp

�k~✓0 � ~✓ik2

⌧

!

BP (~✓
0) =

X

i

�i(~✓
0)Pi

Problems Scattered Data
Interpolation

•  1) Computationally expensive (need to find
closest poses in a database)

•  2) Does not extrapolate very well to novel
poses

Problems
•  If we don’t use scattered data interpolation,

how do we define pose blend shapes ?

T 2 R3N J 2 R3K W 2 RN⇥K

BP (~✓
0) =

X

i

�iPi

•  How to set the skinning parameters ?

More Problems

How do we model shape identity
variations ?

SMPL

Gerard Pons-Moll

Mathew Loper Naureen Mahmood

Michael Black

Javier Romero

SMPL: A Skinned Multi-Person Linear Model

SMPL Philosophy

We aim for the simplest possible model
while having state-of-the-art performance

•  Makes training easier
•  Enables compatibility

2015 Loper et.al. SIGGRAPH Asia

Pipeline

Pipeline

Pipeline

Pipeline

Standard Skinning

Parameterized Skinning

W (T,J,W, ~✓) 7! vertices

M(~✓, ~�) = W (TF (~�, ✓),J(~�),W, ~✓) 7! vertices

Standard skinning

SMPL model

SMPL is skinning parameterized by pose
and shape ~�

~✓

SMPL: BS are a parametric
function of pose

•  We parameterize the skinning equation by pose

W (T,J,W, ~✓)

W (T (✓),J,W, ~✓)

Remember: Pose Blend Shapes
•  With blend shape correction

Parameterized Skinning

•  Our rest vertices are linear in

Each is
a blend shape

W (T (✓),J,W, ~✓) 7! vertices

T (~✓) = T+BP (~✓)

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Parameterized Skinning

•  What function ?

•  Simplest possible:

48

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

f(~✓)

f(~✓) = ~✓

Neck Rotation

•  What function ?

•  Idea: we consider as the vectorized
joint rotation matrices

•  Blend shapes are linear in rotation matrix
elements

Parameterized Skinning

50

f(~✓)

f(~✓)

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Pose Blend Shapes

~✓ = (~!1, . . . , ~!k)
T

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes

f(~✓) = [ē!̂1
1,1 . . . ē

!̂1
3,3 . . . ē!̂K

1,1 . . . ē!̂K
3,3]

e!̂1 � I e!̂K � I

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Not a minus

Neck Rotation

Pose Blendshapes demo

•  >> python visualize_pose_blends.py

Joint Location Estimation

•  How to get the joints for a new shape?
What is the simplest way?

•  Joints are considered linear in rest vertices
(much like in Allen et al. ’06)

54

Joint regressor matrix

J

J = J(T;J) = JT

Joint Location Estimation

55

Adding a shape space
Problem: want a shape space with different identities

Pose
contribution { BP (~✓) =

|f(~✓|X

i

fi(~✓)Pi

T (~✓) = T+BP (~✓)

W (T (~✓), J(T),W, ~✓) 7! vertices

TP (~✓, ~�) = T+BP (~✓) +BS(~�)+BS(~�)

Adding a shape space
Solution: add blend shapes linear with

Pose
contribution { BP (~✓) =

|f(~✓|X

i

fi(~✓)Pi

{

~�

Shape
contribution

W (T (~✓, ~�), J(~�),W, ~✓) 7! vertices

S =
⇥
S1 S2 . . . SNsubj

⇤Shape Blend shape matrix

SMPL

Vertices Blendweights

Additive Model

Shape-bs Pose-bs

Parameterized Skinning

W (T,J,W, ~✓) 7! vertices

M(~✓, ~�) = W (TF (~�, ✓),J(~�),W, ~✓) 7! vertices

Standard skinning

SMPL model

SMPL is skinning parameterized by pose
and shape ~�

~✓

SMPL

M(~✓, ~�;T,S,P,W ,J)

pose shape

Input Model parameters to
be learned from data

S
P
W

T

J

Template (average shape)
Shape blend shape matrix
Pose blend shape matrix
Blendweights matrix
Joint regressor matrix

Remember ?

M(~✓, ~�;T,S,P,W ,J)

f(x;w)

Hyper-parameters ? Input parameters

DATA

Model Training
Multipose database: 20 males, 24 females

1800 registrations

64

Model Training
Multishape database: PCA on ~2000
single-pose registrations per gender

65

Model Training

w = argmin
w

X

j

kM(~✓, ~�;w)� k2

Training

T,S,P,W,J = arg min
T,S,P,W,J

X

j

min
~✓j ,~�j

kM(~✓j , ~�j ;T,S,P,W,J)�Vjk2

Registrations

Ideally one wants to find the model parameters
that minimize a single objective measuring the
distance between model and registrations

Gradient based optimization!

Model

Training Details

•  are trained from our multipose dataset
•  regularized towards zero (ridge regression)
•  regularized towards initialization
•  regularized towards predicting part boundary

centers and is forced to be sparse
•  are trained from our multishape dataset T,S

P,W,J
P
W

J

Number of Parameters Learned

•  9x23x6890 = 4,278,690
•  4x3x6890 = 82,680
•  3x6890x23x3 = 1,426,230
•  3x6890 + 3x6890x10blendshapes = 227,370

T,S

P

W
J

A total of 6.014.970 parameters are learned

For a model with 6890 vertices

…

Average of shapes Shape blend shapes are
the first eigenvectors

⇥
V1 V2 . . . VNsubj

⇤
= T+

⇥
S1 S2 . . . SNsubj

⇤
B

…

Average of shapes Shape blend shapes matrix

Before doing PCA all shapes have to be in the same
pose (pose needs to be optimized)

⇥
V1 V2 . . . VNsubj

⇤
⇡ T+ SB

Shape Blend Shapes- Female

Shape Blend Shapes- Male

Pose Blendshapes

Conclusion

•  Speed: fast run-time
•  Fidelity: superior accuracy to Blend-

SCAPE, trained on the same data
•  Compatibility: works in Maya, other

platforms soon
•  Is publicly available for research purposes

 Download: http://smpl.is.tue.mpg.de

75

SMPL results

Model Decomposition

Dynamics of Soft Tissue

DMPL exaggeration

Applications 1

•  Given a new registration, find the pose
and shape. Correspondences are known.

•  >> align_3Dpoints.py

Fitting SMPL to a scan/mesh

•  Problem: Given a registration, find the
model pose and shape.

~✓, ~� = argmin
~✓,~�

kM(~✓, ~�)�Vk2

Registration Model

Chumpy does it for you but you
have to know what you are doing!!

•  Chumpy minimizes the sum of squares of
a vector valued error function

e(x) =
X

i

ei(x)
2 = e(x)T e(x)

Sum of squares
(scalar)

Residuals
(vector valued error function)

Optimization variables (vector)

J
e

(x) =
de(x)

dx
=

2

64

@e1
@x1

. . . @e1
@xP

. . .
@eN
@x1

. . . @eN
@xP

3

75

Jacobian of the vector valued error function:

P parameters

N
 residuals

Gradient

g(x) =
de

dx
=

2

66664

@e
@x1

...

...
@e
@xP

3

77775
= J

T
e

(x)e(x)

Gradient of sum
of squares

Jacobian of
vector valued
error function

Who cares about the Jacobian ?
•  Gradient is just a direction not a step.

•  To compute the step most optimizers need to
approximate the Hessian which requires the
Jacobian.

•  Many optimizers exploit the structure of the
Jacobian.

•  Direct application of chain rule makes you
compute Jacobians

If optimization takes too long, or breaks etc..
ask yourself the following:
•  Is my Jacobian too big ?

•  Is it too dense ? (sparsity is exploited for speed).

•  Is my Jacobian full rank ? If Jacobian loses rank
optimization can break. A typical case is when
the error function does not depend on a
particular variable x_i.

Wasn’t this supposed to be vision ?

•  Where are the images here ?

•  Model the 3D world first, then explain image
observations

•  In the next lecture Javier will cover modeling
appearance and fitting models to images

Thank you!

