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A Body Model is a function
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What kind of function ?

A

Body vertices f(:l?) = W T + Wo

>

Pose & shape

Linear ?



What kind of function ?

A

Body vertices

>

Pose & shape

Polynomial ?



Given the function, what w ?

flx;w) = wiz® + wex® + w1 + W
f(x;w)

Input parameters Hyper-parameters



And also why our input X is
shape and pose ?

—

NOtat|On Xpose — 9—) Xshape — 6



How do we parameterize pose ?

« Parameterize every body part separately ?

ROatOQ Xpose — {ROatOw-'RNvtN}

= ’ = Problems ?
-—




How do we parameterize pose?

SN =

Articulated constraints not satisfied!



Rotation parameterization

» Rotations are composed of 9 numbers

6 additional constraints to ensure that
the matrix is orthonormal

« Suboptimal for optimization



Rotation with Exponential Maps
Wy

Hcc_fj H : Angle of rotation

—

wj : scaled axis of rotation

Rotation obtained with Rodrigues formula:
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Joint Rigid Body Motion

The transformation associated with a rotational
joint is (D’j

Joint location

e“I3x3  J3x1 Rigid Body
1 Motion

i 01x3
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Kinematic Chains

J1
W1



Kinematic Chains




Kinematic Chains ¢

The coordinates of the point in the spatial
frame are:

Ps = G(W1,w2,j1,J2) = G(&1,J1)G (W2, j2)\Ps



Pose Parameters

J1
== (iven a set of joint locations

J= (1, 0drx)”

The pose defined as the vector
of concatenated part axis-angles

) K é’:(ﬁ’,%)T

Pons-Moll & Rosenhahn 2011
Model-based Pose Estimation. Looking at People.



Kinematic Chain Problems




Different poses

 Different poses using no blendweights
>>python visualize ablated smpl.py



Linear Blend Skinning

; 4 —

k=1

Blend weights Part transformations

Points transformed as blended linear combination
of joint transformation matrices



Binding Matrices

Pss




Linear Blend Skinning




Different poses using BW

 Different poses using no blendweights
>>python visualize ablated smpl.py



Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN
— Joint locations: J < RSK
— Weights: })) € RVXE

— Pose parameters: 9_)6 R3K




Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN

— Joint locations: J RSK

— Weights: })) € RVXE

— Pose parameters: g ¢ R3K




Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < R3N

— Joint locations: J ¢ R3K ——===

— Weights: })) ¢ RVXE

— Pose parameters: g < R3K

25



Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T ¢ RBN
— Joint locations: J < RSK
— Weights: })) € RVXE

— Pose parameters: 9_)6 R3K



Skinning function

— Rest pose vertices: T € R3N
_ Joint locations: J € R3%
— Weights: YV € ]RNXK

— Pose parameters: ) c R3K

—

W(T,J, W, 0) — vertices



LBS problems




Solution: Blend Shapes

* A blend shape is a set of vertex

displacements in a rest pose

— Pose blend shapes: correct for LBS problems

_A.Tl Ayl AZl |

_AxN AyN AZN_

Offset 1
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Pose Blend Shapes

* With blend shape correction




How to predict Blend Shapes ?

* Animators sculpt it manually!

* Time consuming, does not scale

Can we leverage training data ?




Scattered Data Interpolation

| Pose 1 Q |

Pose 2 \2 Pose N \\Q
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Query pose ’
{ J.P.Lewis et.al. 2000



Problems Scattered Data
Interpolation

* 1) Computationally expensive (need to find
closest poses in a database)

» 2) Does not extrapolate very well to novel
poses



Problems

 If we don’t use scattered data interpolation,
how do we define pose blend shapes ?

—

Bp(6")

* How to set the skinning parameters ?

TcRY JeR¥P WeRNVNXE



More Problems

How do we model shape identity
variations ?

MRS




SMPL Model Results



SMPL: A Skinned Multi-Person Linear Model

V4

Mathew Loper Naureen Mahmood Javier Romero

. SIGGRAPH
Gerard Pons-Moll Michael Black ASIA 2615



SMPL Philosophy

We aim for the simplest possible model
while having state-of-the-art performance

 Makes training easier
* Enables compatibility

2015 Loper et.al. SIGGRAPH Asia



Pipeline

_rvxz..,

Template Mesh



Pipeline

,T , ?i

Template Mesh Shape
Blend Shapes



Pipeline

D

4 1
Template Mesh Shape Pose Given Pose
Blend Shapes Blend Shapes



Pipeline

~D

A 1
Template Mesh Shape Pose Final Mesh
Blend Shapes Blend Shapes



Standard Skinning




Parameterized Skinning

—

Standard skinning W (T, J, W, 0) — vertices

SMPL model
M6, 8) = W(Tp(B,6),I(5),W,0) — vertices

—

SMPL is skinning parameterized by pose 6
and shape f3



SMPL: BS are a parametric
function of pose

* We parameterize the skinning equation by pose




Remember: Pose Blend Shapes

* With blend shape correction




Parameterized Skinning

—

W(r@),J, W, 0) — vertices

— —

T(@) =T+ Bp(0)

» Our rest vertices are linear in f(6)

Each is

) ") | ) / a blend shape
Bp(0) = Z fi(0)P;



Parameterized Skinning

—

« What function f(6)?

—

— —

Bp(0) = fi(0)P;



Neck Rotation

Joint Angles




Parameterized Skinning

—

- What function f(0) ?

—

- ldea: we consider f(0) as the vectorized
joint rotation matrices

- Blend shapes are linear in rotation matrix
elements



Pose Blend Shapes

Not a minus
f0)=lety...e5y ... ek ...ek

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes



Neck Rotation

Joint Angles




Pose Blendshapes demo

« >> python visualize pose blends.py



Joint Location Estimation

« How to get the joints J for a new shape?
What is the simplest way?

e Joints are considered linear in rest vertices
(much like in Allen et al. ’06)

J=J(T;9)=JT

Joint regressor matrix



Joint Location Estimation
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Adding a shape space

Problem: want a shape space with different identities

— —

W(r@),J(T),W,0) — vertices

con’rribS’rCi);ﬁ { BP( —)) — fz( )Pz



Adding a shape space

Solution: add blend shapes linear with g

W(T(é; ), J(E),W, 5) — vertices

Shape Blend shape matrix

Bs(B)=> BiS; . .S5=[8, Sy ... Sn..]

Shape
contribution

con’rribS’rCi);ﬁ { BP( —)) — Z fz( _))Pz



SMPL

Additive Model

7 =

ka G (0, J(B)) (| +bsi(B) + br:(8))

Blendwelghts Vertices Shape-bs Pose-bs




SMPL Skinning




Parameterized Skinning

—

Standard skinning W (T, J, W, 0) — vertices

SMPL model
M6, 8) = W(Tp(B,6),I(5),W,0) — vertices

—

SMPL is skinning parameterized by pose 6
and shape f3



SMPL
poge s?iape

M(@_),B);T,S,P,W,j)
I ..

Input Model parameters to
be learned from data

T Template (average shape)
S Shape blend shape matrix

P Pose blend shape matrix
VW Blendweights matrix
J

Joint regressor matrix




Remember ?

Input parameters |Hyper-parameters ? |




DATA



Model Training

Multipose database: 20 males, 24 females
1800 registrations

et s T4
arzisied




Model Training

Multishape database: PCA on ~2000
single-pose registrations per gender

g . : ' - ' - .
y . & A . '
g 4 U *
L7 ol 4
# 3




Model Training

W:argmvinZ‘|M(5,g;W)— X HQ
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Training

\VIE
Tsr%lrvlvjzmmuM 0;,8; T,S,P,W,J) -V,

Model Registrations

ldeally one wants to find the model parameters
that minimize a single objective measuring the
distance between model and registrations

Gradient based optimization!



Training Details

« P,W,J are trained from our multipose dataset
« P reqgularized towards zero (ridge regression)
* W regularized towards initialization

* J reqgularized towards predicting part boundary
centers and is forced to be sparse

« T, S are trained from our multishape dataset




Number of Parameters Learned

For a model with 6890 vertices

« P 9x23x6890 = 4,278,690

* W 4x3x6890 = 82,680

« J 3x6890x23x3 = 1,426,230

T, S 3x6890 + 3x6890x10blendshapes = 227,370

A total of 6.014.970 parameters are learned



.

[Vl ]ZT—|— SNubJ]B
Average of shapes Shape blend shapes are

the first eigenvectors



|

Average of shapes Shape blend shapes matrix

Before doing PCA all shapes have to be in the same
pose (pose needs to be optimized)



Shape Blend Shapes- Female

PC 1 varied between +/-3 std dev



Shape Blend Shapes- Male

PC 1 varied between +/-3 std dev



Pose Blendshapes

D 8




Conclusion

Speed: fast run-time

Fidelity: superior accuracy to Blend-
SCAPE, trained on the same data

Compatibility: works in Maya, other
platforms soon

Is publicly available for research purposes

Download: http://[smpl.is.tue.mpqg.de




SMPL results

-

SMPL Model



Model Decomposition

}

Template Pose & Shape Blend Shapes Dynamics Final Mesh
T Bp(6) + Bs(p) Br(D,p) M(Tp, Jg, W, 0)




Dynamics of Soft Tissue

Pose Dynamic DMPIL.
Blend Shapes Blend Shapes



DMPL exaggeration

Registrations to
4D Scans



Applications 1

* Given a new registration, find the pose
and shape. Correspondences are known.

* >> align_3Dpoints.py



Fitting SMPL to a scan/mesh

* Problem: Given a registration, find the
model pose and shape.

H,B—argmmHM( , ) VH2
7/8

Model Registration



Chumpy does it for you but you
have to know what you are doing!!



* Chumpy minimizes the
a vector valued error function

Optimization variab

of

es (vector)

N

e(x) = ) ei(x)? = e(x) e(x)

j i
Sum of squares
(scalar)

Residuals
(vector valued error function)



Jacobian of the vector valued error function:

- Jeq Oeq T
8x1 o aXp
(96]\7 aeN

— 8x1 tUe aXP—

P parameters

sjenpisal N



Gradient of sum
of squares

Gradient

— 86 —_
8x1

Oe

_Ox p -

Jacobian of
vector valued
error function



Who cares about the Jacobian 7

» Gradient is just a direction not a step.

* To compute the step most optimizers need to
approximate the Hessian which requires the
Jacobian.

* Many optimizers exploit the structure of the
Jacobian.

 Direct application of chain rule makes you
compute Jacobians



If optimization takes too long, or breaks etc..

ask yourself the following:
 |s my Jacobian too big ?

 |sittoo dense ? (sparsity is exploited for speed).

 |s my Jacobian full rank ? If Jacobian loses rank

optimization can break. A typical case is when
the error function does not depend on a
particular variable x_1.



Wasn't this supposed to be vision ?

* Where are the images here ?

* Model the 3D world first, then explain image
observations

* In the next lecture Javier will cover modeling
appearance and fitting models to images



Thank you!



