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•  11.04.2016  Introduction   
•  18.04.2016  Graphical Models 1   
•  25.04.2016  Graphical Models 2 (Sand 6/7)   
•  02.05.2016  Graphical Models 3   
•  09.05.2016  Graphical Models 4   
•  23.05.2016  Body Models 1   
•  30.05.2016  Body Models 2   
•  06.06.2016  Body Models 3   
•  13.06.2016  Body Models 4   
•  20.06.2016  Stereo   
•  27.06.2016  Optical Flow   
•  04.07.2016  Segmentation   
•  11.07.2016  Object Detection 1   
•  18.07.2016  Object Detection 2   



A Body Model is a function 



What kind of function ? 

f(x) = w1x+ w2

Pose & shape 

Body vertices 

Linear ? 



What kind of function ? 

Pose & shape 

Body vertices 

Polynomial ? 



Given the function, what w ? 

f(x;w)

f(x;w) = w1x
3 + w2x

2 + w1x+ w0

Hyper-parameters Input parameters 



And also why our input X is  
shape and pose ? 

Notation:  X
pose

= ~✓ X
shape

= ~�



How do we parameterize pose ? 
•  Parameterize every body part separately ? 

R0, t0

Rj , tj

X
pose

= {R
0

, t
0

, . . .RN , tN}

Problems ?  



How do we parameterize pose? 

Articulated constraints not satisfied! 



Rotation parameterization 

•  Rotations are composed of 9 numbers 

•  6 additional constraints to ensure that 
the matrix is orthonormal 

•  Suboptimal for optimization 



Rotation with Exponential Maps 

k~!jk
~!j

: Angle of rotation 

:  scaled axis of rotation 

Rotation obtained with Rodrigues formula: 

~!j

k~!jk

R = e
b~!
= I +

b̄!j sin(k~!jk) + b̄!2
(1� cos(k~!jk)



Joint Rigid Body Motion 
The transformation associated with a rotational 
joint is 

Rigid Body 
Motion 

~!j

k~!jk

j

G(~!, j) =


[e~!]3⇥3 j3⇥1

01⇥3 1

�

 Joint location 



Kinematic Chains 

S 

B 

~!1 ~!2

j1
j2

pb



Kinematic Chains 

S k~!2k

~!1 ~!2

j1
j2

pb



Kinematic Chains 

S 

The coordinates of the point in the spatial 
frame are: 

k~!1k

k~!2k

~!1

~!2

j1

j2

pb

p̄s = G( ~!1, ~!2, j1, j2) = G(~!1, j1)G( ~!2, j2)p̄b



Pose Parameters 

The pose defined as the vector 
of concatenated part axis-angles 

~✓ = (~!1, . . . , ~!k)
T

J = (j1, . . . , jK)T
Given a set of joint locations 

j1

jK

T
Pons-Moll & Rosenhahn 2011 
Model-based Pose Estimation. Looking at People.  



Kinematic Chain Problems 

~✓ = (~!1, . . . , ~!k)
T



Different poses 

•  Different poses using no blendweights 
 >>python visualize_ablated_smpl.py 



Points transformed as blended linear combination 
of joint transformation matrices 

Blend weights 

Number of parts 

0.8 0.2 

Linear Blend Skinning 

Part transformations 



Binding Matrices 

Zero pose Posed space Skinning space 
~✓~0~✓⇤

pss

G(~✓,J)

Gk(~✓
⇤
k,J)

�1

t̄i = Gk(~✓k,J)
�1pss

t0i

ti



Linear Blend Skinning 



Different poses using BW 

•  Different poses using no blendweights 
 >>python visualize_ablated_smpl.py 



Standard skinning produces vertices from… 
 

– Rest pose vertices: 

– Joint locations: 

– Weights: 

– Pose parameters:  

Standard Skinning 

23 

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K



Standard skinning produces vertices from… 
 

– Rest pose vertices: 

– Joint locations: 

– Weights: 

– Pose parameters:  

Standard Skinning 

24 

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K



Standard skinning produces vertices from… 
 

– Rest pose vertices: 

– Joint locations: 

– Weights: 

– Pose parameters:  

Standard Skinning 

25 

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K



Standard skinning produces vertices from… 
 

– Rest pose vertices: 

– Joint locations: 

– Weights: 

– Pose parameters:  

Standard Skinning 
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T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K



– Rest pose vertices: 
– Joint locations: 
– Weights: 
– Pose parameters:  

Skinning function 

27 

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

W (T,J,W, ~✓) 7! vertices



LBS problems 



Solution: Blend Shapes 

•  A blend shape is a set of vertex 
displacements in a rest pose 

– Pose blend shapes: correct for LBS problems 

Offset 1 

P = vec(

2

66664

�x1 �y1 �z1
...
...

�xN �yN �zN

3

77775
) 2 R3N



Pose Blend Shapes 
•  With blend shape correction 



How to predict Blend Shapes ? 

•  Animators sculpt it manually! 

•  Time consuming, does not scale 

 
    Can we leverage training data ?  



Scattered Data Interpolation 
Pose 1 Pose 2 Pose N 

Query pose 
J.P.Lewis et.al. 2000 

�i / K(

~✓0, ~✓i) = exp

 
�k~✓0 � ~✓ik2

⌧

!

BP (~✓
0) =

X

i

�i(~✓
0)Pi



Problems Scattered Data 
Interpolation 

•  1) Computationally expensive (need to find 
closest poses in a database) 

•  2) Does not extrapolate very well to novel 
poses 



Problems 
•  If we don’t use scattered data interpolation, 

how do we define pose blend shapes ? 

 
 

T 2 R3N J 2 R3K W 2 RN⇥K

BP (~✓
0) =

X

i

�iPi

•  How to set the skinning parameters ? 
 



More Problems 

How do we model shape identity 
variations ? 



SMPL 



Gerard Pons-Moll 

Mathew Loper Naureen Mahmood 

Michael Black 

Javier Romero 

SMPL: A Skinned Multi-Person Linear Model  



SMPL Philosophy 

 
We aim for the simplest possible model 
while having state-of-the-art performance 
 
•  Makes training easier 
•  Enables compatibility 

2015 Loper et.al. SIGGRAPH Asia 



Pipeline 



Pipeline 



Pipeline 



Pipeline 



Standard Skinning 



Parameterized Skinning 

W (T,J,W, ~✓) 7! vertices

M(~✓, ~�) = W (TF (~�, ✓),J(~�),W, ~✓) 7! vertices

Standard skinning 

SMPL model 

SMPL is skinning parameterized by pose    
and shape   ~�

~✓



SMPL: BS are a parametric 
function of pose 

•  We parameterize the skinning equation by pose 

W (T,J,W, ~✓)

W (T (✓),J,W, ~✓)



Remember: Pose Blend Shapes 
•  With blend shape correction 



Parameterized Skinning 

•  Our rest vertices are linear in 

Each is  
a blend shape 

W (T (✓),J,W, ~✓) 7! vertices

T (~✓) = T+BP (~✓)

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi



Parameterized Skinning 

•  What function        ?  

•  Simplest possible: 

48 

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

f(~✓)

f(~✓) = ~✓



Neck Rotation 



•  What function            ?  

•  Idea: we consider         as the vectorized 
joint rotation matrices 

•  Blend shapes are linear in rotation matrix 
elements 

Parameterized Skinning 

50 

f(~✓)

f(~✓)

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi



Pose Blend Shapes 

~✓ = (~!1, . . . , ~!k)
T

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes  

f(~✓) = [ē!̂1
1,1 . . . ē

!̂1
3,3 . . . ē!̂K

1,1 . . . ē!̂K
3,3 ]

e!̂1 � I e!̂K � I

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Not a minus 



Neck Rotation 



Pose Blendshapes demo 

•  >> python visualize_pose_blends.py 



Joint Location Estimation 

•  How to get the joints     for a new shape? 
What is the simplest way? 

•  Joints are considered linear in rest vertices 
(much like in Allen et al. ’06) 

54 

Joint regressor matrix 

J

J = J(T;J ) = JT



Joint Location Estimation 

55 



Adding a shape space 
Problem: want a shape space with different identities 

Pose 
contribution { BP (~✓) =

|f(~✓|X

i

fi(~✓)Pi

T (~✓) = T+BP (~✓)

W (T (~✓), J(T),W, ~✓) 7! vertices



TP (~✓, ~�) = T+BP (~✓) +BS(~�)+BS(~�)

Adding a shape space 
Solution: add blend shapes linear with  

Pose 
contribution { BP (~✓) =

|f(~✓|X

i

fi(~✓)Pi

{ 

~�

Shape 
contribution 

W (T (~✓, ~�), J(~�),W, ~✓) 7! vertices

S =
⇥
S1 S2 . . . SNsubj

⇤Shape Blend shape matrix 



SMPL 

Vertices Blendweights 

Additive Model 

Shape-bs Pose-bs 





Parameterized Skinning 

W (T,J,W, ~✓) 7! vertices

M(~✓, ~�) = W (TF (~�, ✓),J(~�),W, ~✓) 7! vertices

Standard skinning 

SMPL model 

SMPL is skinning parameterized by pose    
and shape   ~�

~✓



SMPL 

M(~✓, ~�;T,S,P,W ,J )

pose shape 

Input Model parameters to  
be learned from data 

S
P
W

T

J

Template (average shape) 
Shape blend shape matrix 
Pose blend shape matrix 
Blendweights matrix 
Joint regressor matrix 



Remember ?  

M(~✓, ~�;T,S,P,W ,J )

f(x;w)

Hyper-parameters ? Input parameters 



DATA 



Model Training 
Multipose database: 20 males, 24 females 

1800 registrations 
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Model Training 
Multishape database: PCA on ~2000 
single-pose registrations per gender 

65 



Model Training 

w = argmin
w

X

j

kM(~✓, ~�;w)� k2



Training 

T,S,P,W,J = arg min
T,S,P,W,J

X

j

min
~✓j ,~�j

kM(~✓j , ~�j ;T,S,P,W,J )�Vjk2

Registrations 

Ideally one wants to find the model parameters 
that minimize a single objective measuring the 
distance between model and registrations 
 
Gradient based optimization! 

Model 



Training Details 

•              are trained from our multipose dataset       
•      regularized towards zero (ridge regression) 
•      regularized towards initialization 
•      regularized towards predicting part boundary 

centers and is forced to be sparse 
•        are trained from our multishape dataset T,S

P,W,J
P
W

J



Number of Parameters Learned 

•        9x23x6890 = 4,278,690 
•        4x3x6890 = 82,680  
•        3x6890x23x3 = 1,426,230 
•        3x6890 + 3x6890x10blendshapes = 227,370 

 

T,S

P

W
J

A total of 6.014.970 parameters are learned   

For a model with 6890 vertices 



… 

Average of shapes Shape blend shapes are 
the first eigenvectors 

⇥
V1 V2 . . . VNsubj

⇤
= T+

⇥
S1 S2 . . . SNsubj

⇤
B



… 

Average of shapes Shape blend shapes matrix 

Before doing PCA all shapes have to be in the same 
pose (pose needs to be optimized) 

⇥
V1 V2 . . . VNsubj

⇤
⇡ T+ SB



Shape Blend Shapes- Female 



Shape Blend Shapes- Male 



Pose Blendshapes 



Conclusion 

•  Speed: fast run-time 
•  Fidelity: superior accuracy to Blend-

SCAPE, trained on the same data 
•  Compatibility: works in Maya, other 

platforms soon 
•  Is publicly available for research purposes 

 
   Download: http://smpl.is.tue.mpg.de 
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SMPL results 



Model Decomposition 



Dynamics of Soft Tissue 



DMPL exaggeration 



Applications 1 

•  Given a new registration, find the pose 
and shape. Correspondences are known. 

•  >> align_3Dpoints.py  



Fitting SMPL to a scan/mesh 

•  Problem: Given a registration, find the 
model pose and shape.  

~✓, ~� = argmin
~✓,~�

kM(~✓, ~�)�Vk2

Registration Model 



Chumpy does it for you but you 
have to know what you are doing!! 



•  Chumpy minimizes the sum of squares of 
a vector valued error function  

e(x) =
X

i

ei(x)
2 = e(x)T e(x)

Sum of squares 
(scalar) 

Residuals  
(vector valued error function) 

Optimization variables (vector) 



J
e

(x) =
de(x)

dx
=

2

64

@e1
@x1

. . . @e1
@xP

. . .
@eN
@x1

. . . @eN
@xP

3

75

Jacobian of the vector valued error function: 

P parameters 

N
 residuals 



Gradient 

g(x) =
de

dx
=

2

66664

@e
@x1

...

...
@e
@xP

3

77775
= J

T
e

(x)e(x)

Gradient of sum 
of squares 

Jacobian of 
vector valued 
error function 



Who cares about the Jacobian ? 
•  Gradient is just a direction not a step. 

•  To compute the step most optimizers need to 
approximate the Hessian which requires the 
Jacobian. 

•  Many optimizers exploit the structure of the 
Jacobian. 

•  Direct application of chain rule makes you 
compute Jacobians 



If optimization takes too long, or breaks etc.. 
ask yourself the following: 
•  Is my Jacobian too big ?  

•  Is it too dense ? (sparsity is exploited for speed).  

•  Is my Jacobian full rank ? If Jacobian loses rank 
optimization can break. A typical case is when 
the error function does not depend on a 
particular variable x_i. 



Wasn’t this supposed to be vision ? 

•  Where are the images here ? 

•  Model the 3D world first, then explain image 
observations 

•  In the next lecture Javier will cover modeling 
appearance and fitting models to images 



Thank you! 


