Javier Romero

Max Planck Institute for Intelligent Systems
Perceiving Systems

June 1 3, 20706 MAX-PLANCK-GESELLSCHAFT

11.04.2016 Introduction
18.04.2016 Graphical Models 1
25.04.2016 Graphical Models 2 (Sand 6/7)
02.05.2016 Graphical Models 3
09.05.2016 Graphical Models 4
23.05.2016 Body Models 1
30.05.2016 Body Models 2
06.06.2016 Body Models 3
13.06.2016 Body Models 4
20.06.2016 Stereo

27.06.2016 Optical Flow
04.07.2016 Segmentation
11.07.2016 Object Detection 1

18.07.2016

Obiject Detection 2

What have we learned so far about bodies”

« BM1: Procrustes for rigid alignment

................

L,

......::-.m.....--u;.-,-_-.- ..

"'"""'"'"""'"'""""'"‘"‘"‘"'"H ..

2
f = argmfinzi: Hf(Xz) — y@”

What have we learned so far about bodies”

« BM1: Procrustes for rigid alignment

« BM2: ICP, gradient-based ICP

.............'.'.'.'.'.':::::

-..;,,-.---:

O(X) R4
in || f

1 _ S 1R

I —

2
Y gl
X
11
fl :afgmf 1

X

and Iterate!

b

fr= argm}nz | f(x}) =yl

x; = argmin || f(x) —y;

2
xEeX H

and Iterate!

fl = argm];nz | f(x]) = yill?

1 are min || £ (x) — v,
X/ = argmin || (x) — y;

and Iterate!

fl = argm];nz | f(x]) = yill?

1 are min || £ (x) — v,
X/ = argmin || (x) — y;

and Iterate!

fl = argm];nz | f(x]) = yill?

1 are min || £ (x) — v,
X/ = argmin || (x) — y;

What have we learned so far about bodies”

« BM1: Procrustes for rigid alignment
« BM2: ICP, gradient-based ICP

« BM3: Articulated models, Blendshapes, SMPL

SMPL Model Pipeline

\

Template Mesh Shape Pose Final Mesh
Blend Shapes Blend Shapes

I
Parameterized Skinning

—

Standard skinning W (T, J, W, #) — vertices

SMPL model
M(0,8) = W(Tp(B,60),J(5),W,0) — vertices

—

SMPL is skinning parameterized by pose
and shape (3

What Is missing: today

 How do we fit SMPL to meshes without correspondences?

* ThisIs a computer vision course.
Where is the color in those meshes”?

e Autodiff in images”? OpenDR

e Fitting bodies to images

N
Fitting SMPL to a scan/mesh

* Problem: Given a registration, find the model pose and
shape.

N
Fitting SMPL to a scan/mesh

* Problem: Given a registration, find the model pose and
shape.

from smpl.serialization import load_model
sm = load_model (path_to_downloaded_model)
ch.minimize(point2point_squared(dst_pts=sm, org_pts=Xch),

x0=[sm.betas, sm.pose]) k////////////// z///////

Model Scan

e
SMPL tree: sm.show_tree()

* Chumpy minimizes the of a vector
valued error function

Optimization variables (vector)

e(x) =) e;(x)? =e(x) e(x)

()

v v
Sum of squares Residuals
(scalar)

(vector valued error function)

* Chumpy minimizes the of a vector
valued error function

e(x) =) e;(x)? =e(x) e(x)

()

1pdb> p2p_yx = point2point_squared(org_pts=Xch, dst_pts=sm)
ipdb> print(p2p_yx)
[9.001 0. 0.00
1pdb> p2p_yx.shape
(6890,) as many elements as correspences between model and scan

., ©0.012 0.012 0.012]

Jacobian of the vector valued error function:

291 dei1 7 Z
X1 "t Oxp —~
Jo(x) = de(x) _ >
° dx -2
oen oen QO
6x1 S aXp - o

\ .) =

P parameters

oeq dei1 71~ Z
OX1 "t Oxp —~
Jo(x) = de(x) _ 2
° dx =
oen oen QO
8X1 S aXP—- @

\ .) =

P parameters

1pdb> print(p2p_yx.dr_wrt(sm.betas).shape)

(6890, 10)

ipdb> print(p2p_yx.dr_wrt(sm.betas)[:5, :5].todense())

[[-1.144e-04 -1.148e-04 3.350e-05 -2.048e-05 8.550e-06_
3.490e-04 -4.617e-05 -1.243e-04 -7.371e-05 3.262e-05]

E 5.642e-04 -1.518e-04 -2.017e-04 -1.487/e-04 9.339e-05_
[2.437e-04 -2.448e-04 -9.368e-05 -1.272e-04 9.360e-05_
~ 8.284e-04 -1.090e-04 -2.925e-04 -1.700e-04 9.579e-05]]

?

. L | S RO
;AT a » . “ = VAN s aat
~ d N TAY

ich one will fa

te s S

T

Wh

Which one will fail?

o
Problems?

* Unlikely pose

o
Problems?

* Unlikely pose
* Unlikely shape

o
Problems?

* Unlikely pose
* Unlikely shape
* Bad initialization

N
Fitting SMPL to a scan/mesh

f,3 = ar g m |M(0,3) — V|

in
B

N
Fitting SMPL to a scan/mesh

N
Fitting SMPL to a scan/mesh

N
Fitting SMPL to a scan/mesh

A, 3 = argmin |M(0,3) — V||
0,8
+ Ey(0)
— Mahalanobis distance
+ E@ (B) induced by distribution N (g, X¢)

N
Fitting SMPL to a scan/mesh

* What makes it so jumpy?

* Correspondences change abruptly!

R
Point-to-point distance

vo €V @

L}
L}
L}
L}
L}
~
L
-
L
~
-
-
-~
L}
..
L]

R
Point-to-point distance

vo €V @

x e M

vp € V vi €V

R
Point-to-point distance

vo €V @

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

e
Point-to-surface distance

e
Point-to-surface distance

e
Point-to-surface distance

vg €V vi €V

Implementation requires taking care of special cases
when v falls in edges or points

N
Advanced registration

e Better pose priors

. Non—parametric

A Non-parametric Bayesian Network Prior of Human Pose, Lehrman et al

Fitting SMPL to a scan/mesh

e Better pose priors

* Non-parametric o i T\ decsion 7
Zt—2 Zt—1 2t tree |
* Dynamic '/
e
- - L9 Ti_1 / 1neal

regression

i

Efficient Nonlinear Markov Models for Human Motion, Lehrman et al

N
Fitting SMPL to a scan/mesh

o,

e Better pose priors
 Non-parametric
 Dynamic

e Better Iinitialisation

iter. 5

* From previous frame, from discriminative approaches,
from graphical models

The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose, Zuffi and Black

Fitting SMPL to a scan/mesh

e Better pose priors

| ﬁ Vs
 Non-parametric /

,‘;
 Dynamic \].

e Better Iinitialisation

* From previous frame, from discriminative approaches,
from graphical models

* Other information: appearance (color)!

R
Why appearance

More realism More accurate correspondences

-2 o
a
y h A

Representing appearance

Vertex coloring

V e RV
F < NMXS,FZ']' S [O,N)
W € RV*3 W, € [0, 256)

fO — [VO7 Vi, VQ]

X = oV + 1V] + Q9Vo

C(X) = QoW + 1 W1 + Q9 W9

R
Decouple geometry ana

appearance resolution

v e R* v/, €[0,1]
f' e N°, f'; €[0,N')

Catmull, PhD Thesis, 1974.

Representing appearance

Texture mapping
V e RV

FcNY*3 F,.c[0,N

V' e RV %2 V' 0,1

F' ¢ NY*2 F'., € [0, N’

U € N**EX3 U, € 10,256

I
Texture mapping

Vi V/1
e /
VO V2 0 V2

fo = [vo, V1, V2

X = QogVpog + 1V] + o'V
/! / / /
f() _ [V07 Vi, VQ]

c(x) = Ulagvy + a1v] + agvs]

Catmull, PhD Thesis, 1974.

R
How do we create texture maps?

N
From 2D images to textures

Problem: combining multiple views of a 3D surface

N
From 2D images to textures

Problem: combining multiple views of a 3D surface

N
From 2D images to textures

N
From 2D images to textures

original image visibility of original pixels in U original pixels mapped to U

Y, |
o "..Q’ N . . ™
e :
- -
d
Qﬁ_’j‘a-‘; ® 3 \
& » ‘

N
From 2D images to textures

N
From 2D images to textures

N
From 2D images to textures

ravid
!

Generating an image

) image
u '
__/i E - g ' =
— ‘} ;‘ 1 Ve Y
-~ -
" . 4

Generating an image

shape pose

Generating an image

shape pose

camera

O

Generating an image

camera

O

That’s all, no?

shape pose |mage

UV map /’\ " . ~." -

camera

O

This slide Is wrong:
have all the vertices the same albedo?
shape pose | iImage

camera

O

This one has a single albedo

shape pose iImage

camera

O

Generating an image

shape pose
lighting
camera

O

R
Albedo and shading

Albedo is constant: depends on physical properties of the surface

Shading is transient: given by the interplay between surface
reflectance and lighting

real image shading

Reflectance models

Lambertian reflectance

e = (Mg - Uy)agl

VN

surface surface direction albedo light
color normal from xto Intensity
light source

Lighting models

Point light sources .

R
Lighting models

Spherical Harmonics (SH)

Lighting as a function over
the sphere, projected onto a
low-order SH basis

Simple and efficient
for diffuse environments

Sloan et al., SIGGRAPH 2002.
Basri et al., IEEE TPAMI, 2003

R
Lighting models

Spherical Harmonics (SH) 1

Lighting as a function over
the sphere, projected onto a
low-order SH basis

Simple and efficient
for diffuse environments

Sloan et al., SIGGRAPH 2002.
Basri et al., IEEE TPAMI, 2003

Modeling all together

shape pose iImages

UV map lighting

ORO

camera

O

Forward rendering process

shape pose iImages
UV map lighting f(/B’ a U’ l’ K)

camera Rendering takes model
@ parameters and
produces images.

Gradient-based optimization?

* We want to exploit images to obtain better registrations

* We saw that we can optimise a function given its
derivatives

+ Most of the functions involved in the rendering are
linear operators

- Anybody wants to write the jacobians by hand?

R
OpenDR

An open source differentiable rendering

framework for:
OpenbDR

* finding parameter estimates htto.://open-dr.org

Loper and Black, ECCV 2014.

* approximating a rendering proce

 differentiating this approximation

OpenDR

root (TexturedRenderer)

~—

camera (ProjectPoints)

ve (SphericalHarmonics)

V

import chumpy as ch

M from opendr.everything import *

Load mesh

B m = load mesh('/Users/matt/geist/OpenDR/test dr/nasa earth.obj')

m.v += ch.array([0,0,4])
w, h = (320, 240)
M trans = ch.array([[0,0,0]])

Construct renderer
rn = TexturedRenderer()

S @ O\ > J

Appearance-based
registration

Building an appearance model

initial
reglstratlonsf Cb

j geometry -based
registration g\

appearance model
(texture map)

Blending

Appearance-based error term

/ /

- y -
light
modeling

/ h\

registration V;

real albedo
Images

per-pixel squared
difference

7N

w -

rendered
iImages

texture map U

New registration objective

by = Z HI@ — T’(M(J,)7U7KZ)||2

()

With OpenDR...

import chumpy as ch

import cv2

from opendr.camera import ProjectPoints

from opendr.renderers import TexturedRenderer

Load meshes, create other objectives..
o
encoded in vc

Construct renderer appearance oded in
rn = TexturedRenderer ()
rn.camera = ProjectPoints(v=m.v, vc=m.vc, rt=ch.zeros(3), t=ch.zeros(3),

f=ch.array([w,wl)/2., ¢ = ch.array([w,h])/2., k=ch.zeros(5))
rn.frustum = {'near’: 1., 'far’': 10., 'width': w, 'height’: h}
rn.set(f=m.f, texture_image=m.texture_img, ft=m.ft, vt=m.vt, bgcolor=ch.zeros(3))

Define the error term
obj = rn — cv2.imread(real_img_path)

Minimize
ch.minimize(obj, x@=[m.v], method=‘dogleg’)

N
lexture-based registration

* The appearance objective function has MANY local minima

scan model scan model

<

N
lexture-based registration

* The appearance objective function has MANY local minima

* Pyramids of blurred images help

scan model scan model

< <

N
lexture-based registration

* The appearance objective function has MANY local minima

* Pyramids of blurred images help

 The dimensionality of this objective is much bigger than the
geometric one

* Optimisation will be slower

N
lexture-based registration

 The appearance objective function has MANY local minima
* Pyramids of blurred images help

 The dimensionality of this objective is much bigger than the
geometric one

* Optimisation will be slower

* Open problems: Lighting optimisation? Occlusions”

N
lake-nome message

* Optimising SMPL pose and shape with chumpy is easy
* But the devil is in the details: point2surface, regularisers

 \We can add color to our model either with per-vertex
colors, or texture maps

* Apart from making the model match the scan
geometrically, we can make it match in terms of COLOR

* OpenDR differentiates the rendering process for us

