

Body Models IV

Javier Romero

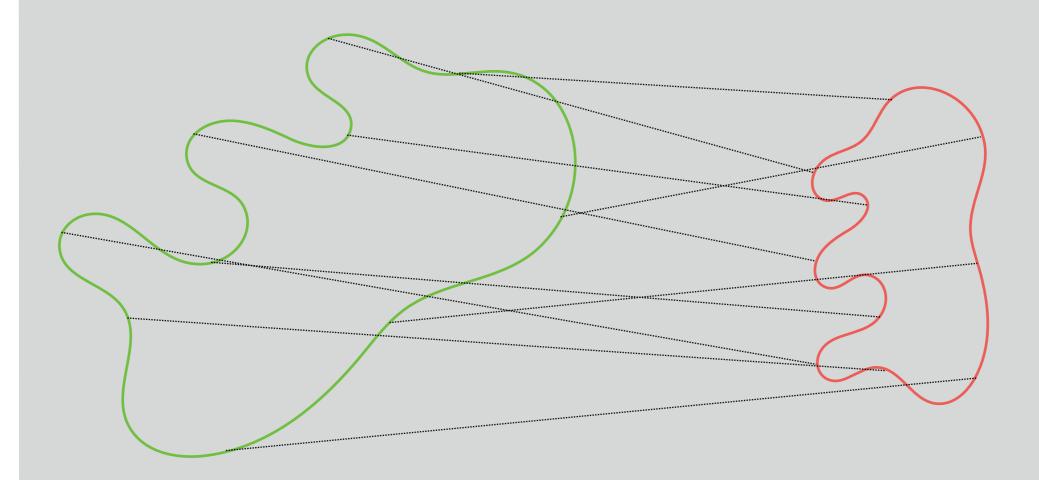
Max Planck Institute for Intelligent Systems
Perceiving Systems

June 13, 2016

11.04.2016	Introduction
18.04.2016	Graphical Models 1
25.04.2016	Graphical Models 2 (Sand 6/7)
02.05.2016	Graphical Models 3
09.05.2016	Graphical Models 4
23.05.2016	Body Models 1
30.05.2016	Body Models 2
06.06.2016	Body Models 3
13.06.2016	Body Models 4
20.06.2016	Stereo
27.06.2016	Optical Flow
04.07.2016	Segmentation
11.07.2016	Object Detection 1
18.07.2016	Object Detection 2

What have we learned so far about bodies?

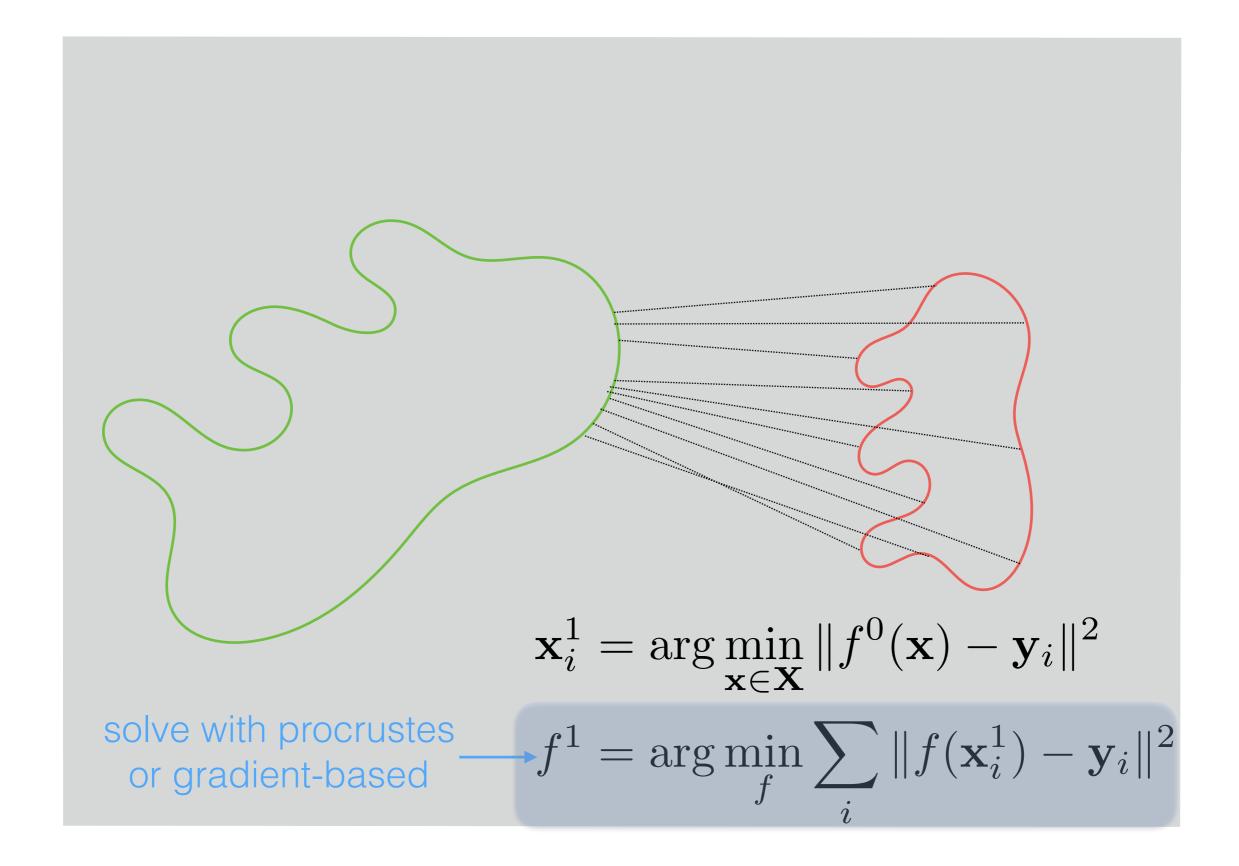
• BM1: Procrustes for rigid alignment

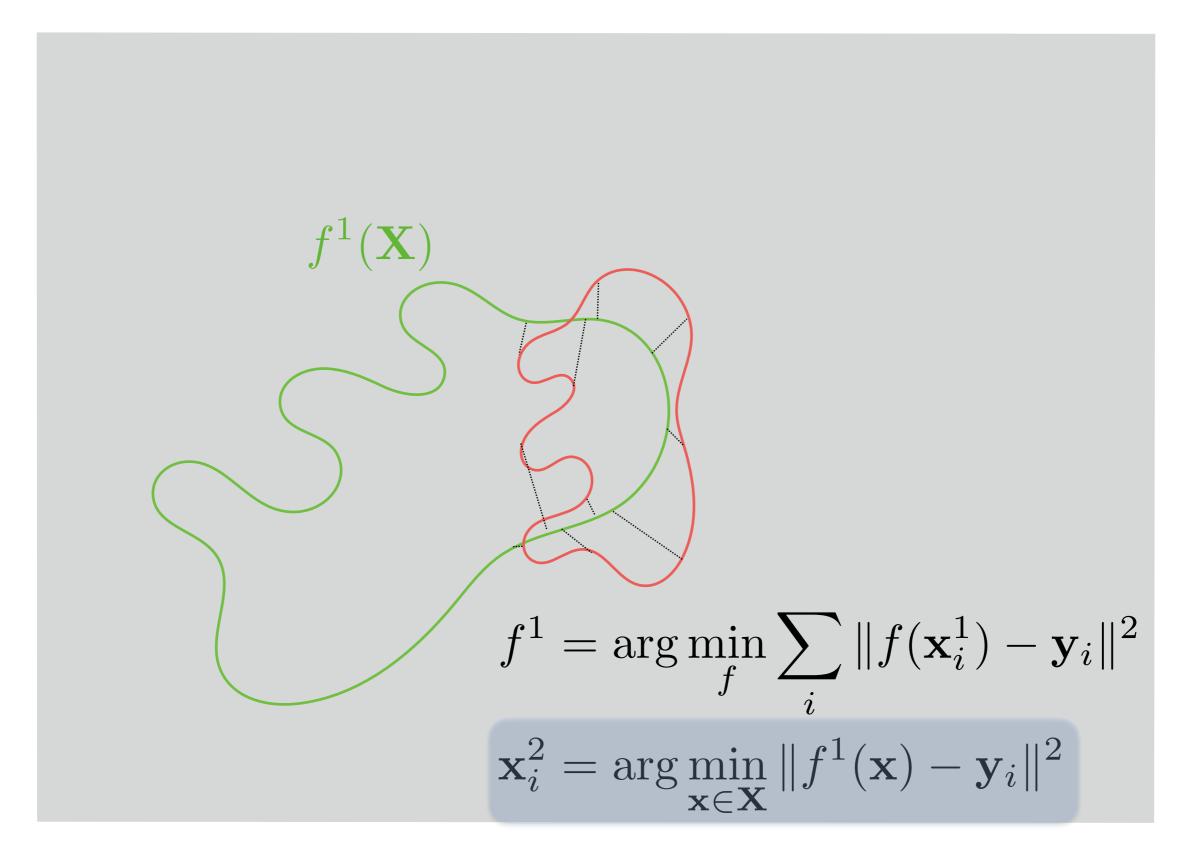


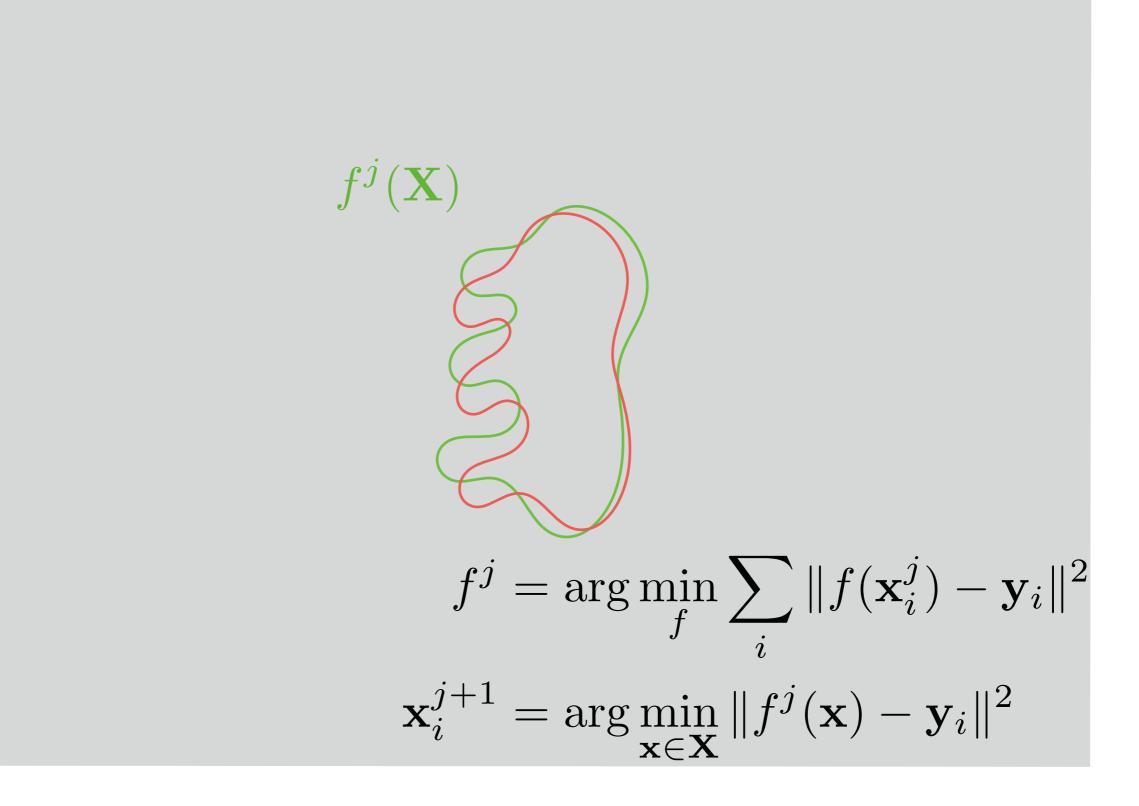
solve with procrustes
$$f = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_i) - \mathbf{y}_i\|^2$$

What have we learned so far about bodies?

- BM1: Procrustes for rigid alignment
- BM2: ICP, gradient-based ICP







$$f^{j}(\mathbf{X})$$

$$f^{j} = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j}) - \mathbf{y}_{i}\|^{2}$$

$$\mathbf{x}_{i}^{j+1} = \arg\min_{\mathbf{x} \in \mathbf{X}} \|f^{j}(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

$$f^{j}(\mathbf{X})$$

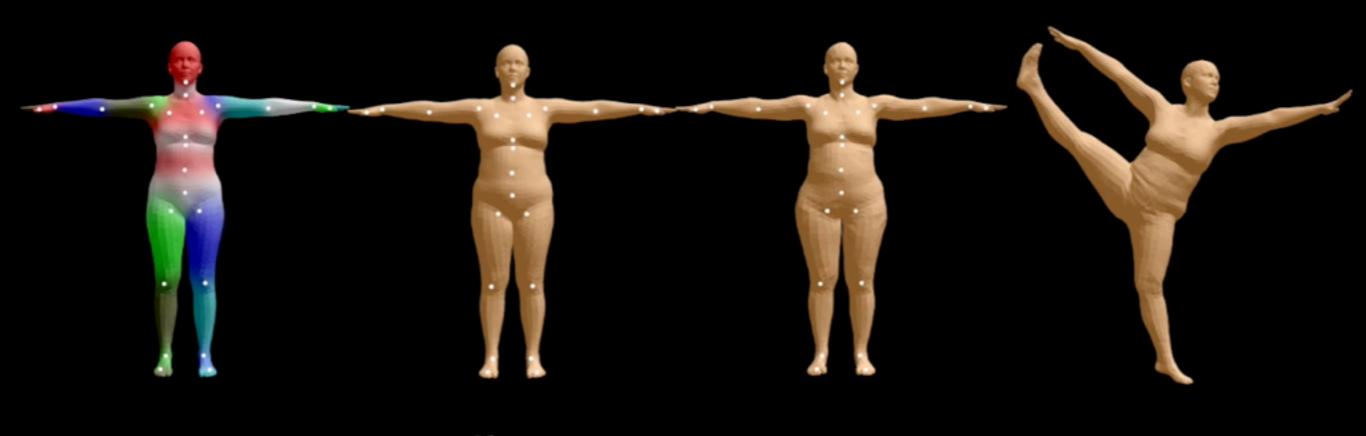
$$f^{j} = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j}) - \mathbf{y}_{i}\|^{2}$$

$$\mathbf{x}_{i}^{j+1} = \arg\min_{\mathbf{x} \in \mathbf{X}} \|f^{j}(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

What have we learned so far about bodies?

- BM1: Procrustes for rigid alignment
- BM2: ICP, gradient-based ICP
- BM3: Articulated models, Blendshapes, SMPL

SMPL Model Pipeline



Template Mesh

Shape Blend Shapes

Pose Blend Shapes

Final Mesh

Parameterized Skinning

Standard skinning

$$W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

SMPL model

$$M(\vec{\theta}, \vec{\beta}) = W(\mathbf{T}_F(\vec{\beta}, \theta), \mathbf{J}(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

SMPL is skinning parameterized by pose $\bar{\theta}$ and shape $\bar{\beta}$

What is missing: today

- How do we fit SMPL to meshes without correspondences?
- This is a computer vision course.
 Where is the color in those meshes?
- Autodiff in images? OpenDR
- Fitting bodies to images

 Problem: Given a registration, find the model pose and shape.



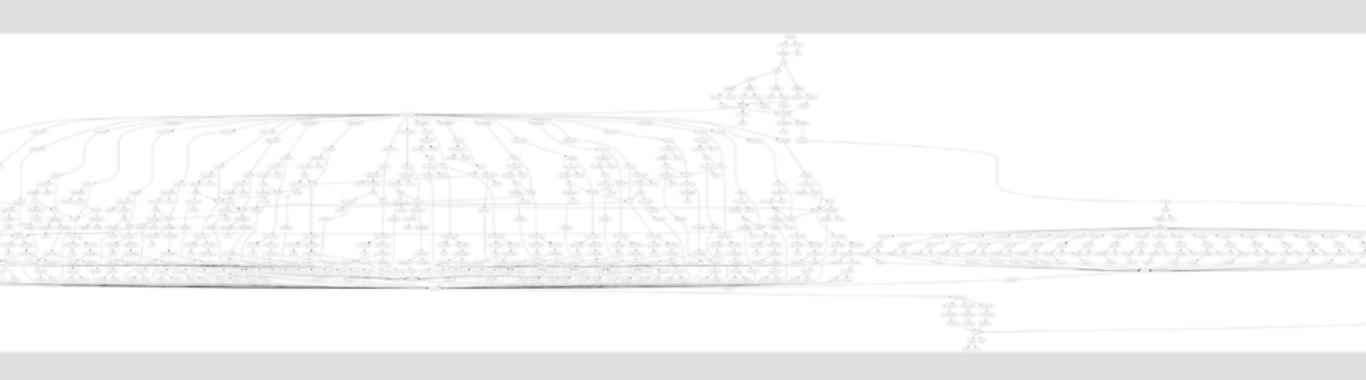
 Problem: Given a registration, find the model pose and shape.

```
from smpl.serialization import load_model
sm = load_model(path_to_downloaded_model)
ch.minimize(point2point_squared(dst_pts=sm, org_pts=Xch),
x0=[sm.betas, sm.pose])
```

Model

Scan

SMPL tree: sm.show_tree()



Chumpy minimizes the sum of squares of a vector valued error function

Optimization variables (vector)

$$e(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{2} = \mathbf{e}(\mathbf{x})^{T} \mathbf{e}(\mathbf{x})$$

Sum of squares (scalar)

Residuals (vector valued error function)

Chumpy minimizes the sum of squares of a vector valued error function

$$e(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{2} = \mathbf{e}(\mathbf{x})^{T} \mathbf{e}(\mathbf{x})$$

Jacobian of the vector valued error function:

$$J_{\mathbf{e}}(\mathbf{x}) = rac{d\mathbf{e}(\mathbf{x})}{d\mathbf{x}} = egin{bmatrix} rac{\partial \mathbf{e}_1}{\partial \mathbf{x}_1} & \cdots & rac{\partial \mathbf{e}_1}{\partial \mathbf{x}_P} \\ & \ddots & \\ rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_1} & \cdots & rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \end{bmatrix} egin{bmatrix} \mathbf{Z} \\ \mathbf{e} \\ \mathbf{o} \\ \mathbf{o}$$

P parameters

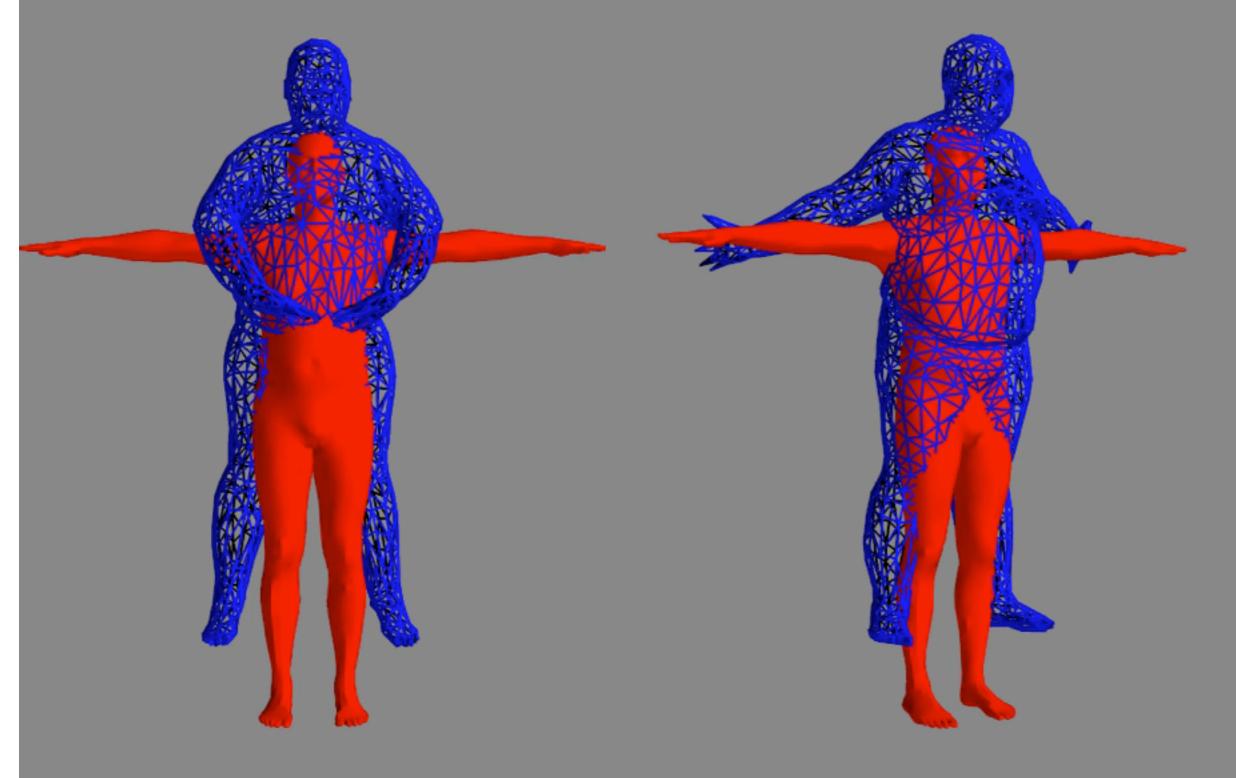
$$J_{\mathbf{e}}(\mathbf{x}) = rac{d\mathbf{e}(\mathbf{x})}{d\mathbf{x}} = egin{bmatrix} rac{\partial \mathbf{e}_1}{\partial \mathbf{x}_1} & \dots & rac{\partial \mathbf{e}_1}{\partial \mathbf{x}_P} \\ & \ddots & \\ rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_1} & \dots & rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \end{bmatrix} \end{bmatrix}$$

P parameters

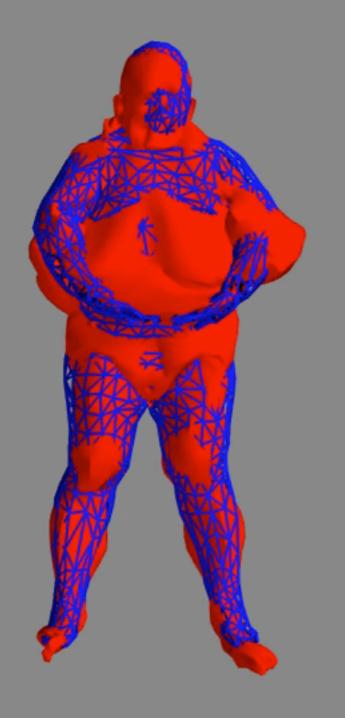
```
ipdb> print(p2p_yx.dr_wrt(sm.betas).shape)
(6890, 10)
ipdb> print(p2p_yx.dr_wrt(sm.betas)[:5, :5].todense())
[[ -1.144e-04
             -1.148e-04
                           3.350e-05
                                      -2.048e-05
                                                   8.550e-06]
   3.490e-04
             -4.617e-05
                          -1.243e-04
                                      -7.371e-05
                                                   3.262e-05]
   5.642e-04
             -1.518e-04
                          -2.017e-04
                                      -1.487e-04
                                                   9.339e-05]
   2.437e-04
             -2.448e-04
                          -9.368e-05
                                      -1.272e-04
                                                   9.360e-05]
   8.284e-04
              -1.090e-04
                          -2.925e-04
                                      -1.700e-04
                                                   9.579e-05]]
```

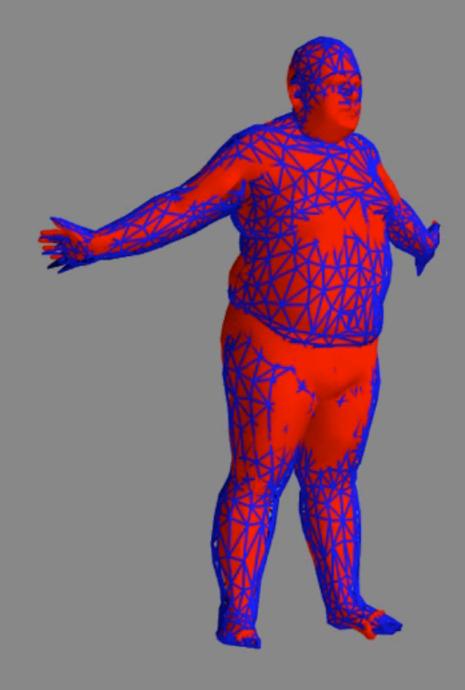
Try it!

Which one will fail?



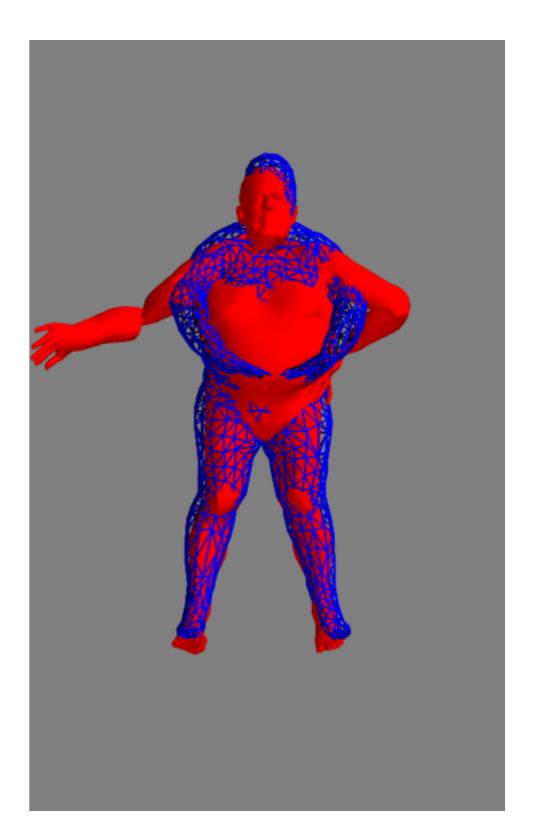
Which one will fail?





Problems?

Unlikely pose

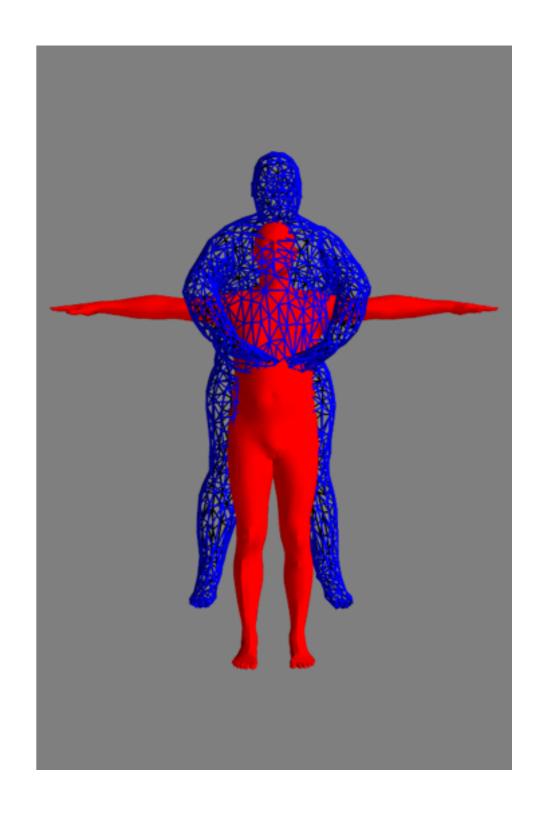


Problems?

- Unlikely pose
- Unlikely shape

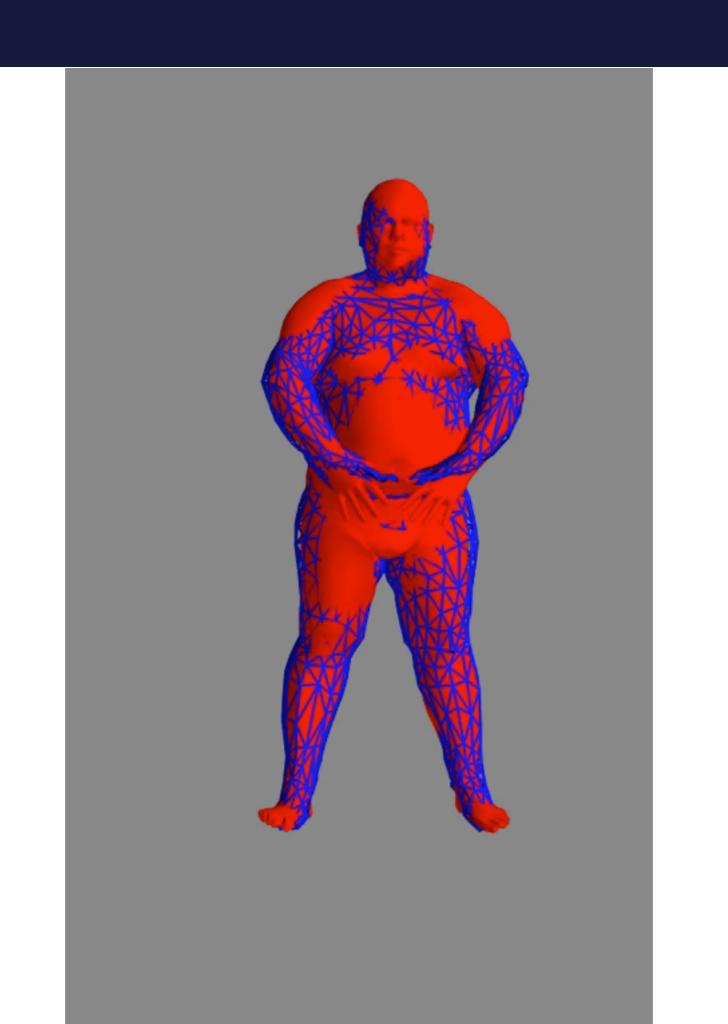
Problems?

- Unlikely pose
- Unlikely shape
- Bad initialization

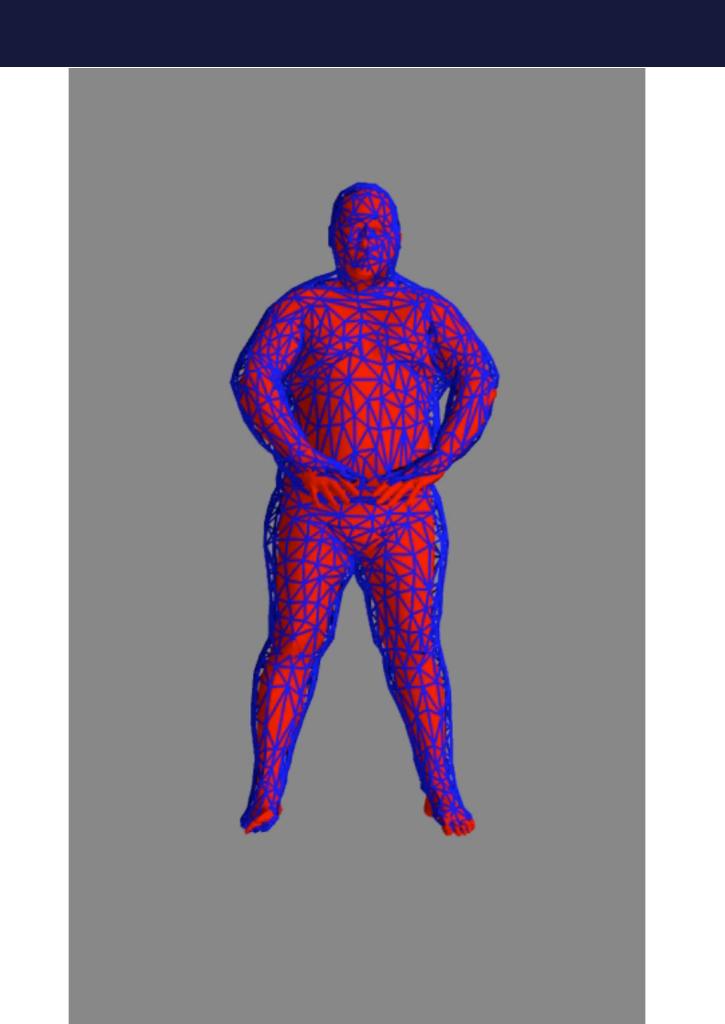


$$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} ||M(\vec{\theta}, \vec{\beta}) - \mathbf{V}||^2$$

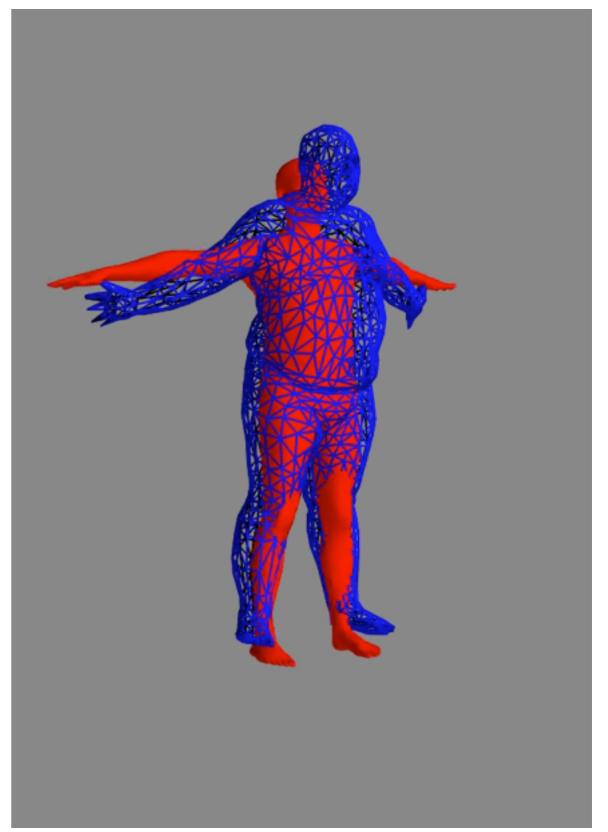
$$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} ||M(\vec{\theta}, \vec{\beta}) - \mathbf{V}||^2 + E_{\theta}(\vec{\theta})$$



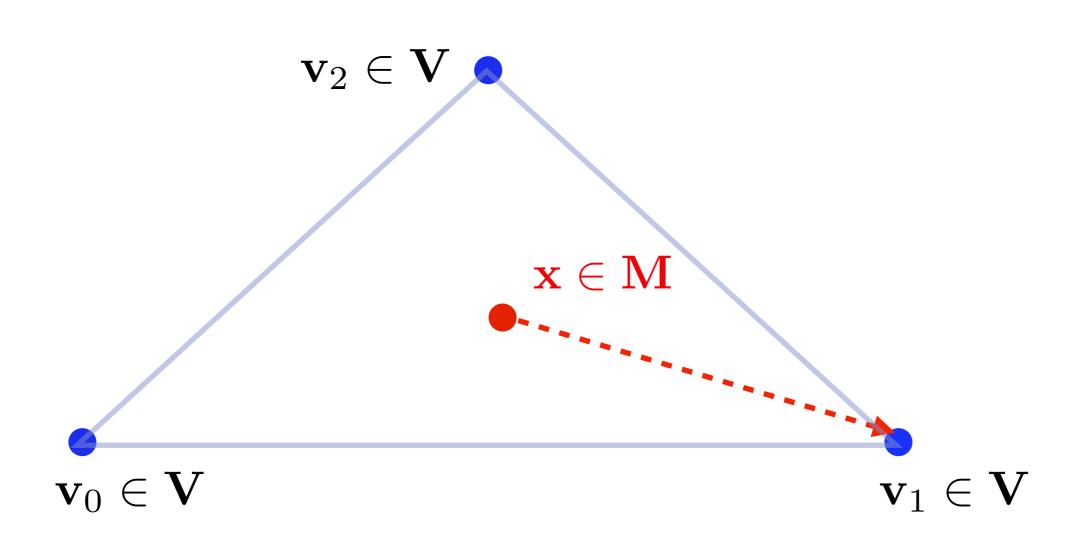
$$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} ||M(\vec{\theta}, \vec{\beta}) - \mathbf{V}||^2 + E_{\theta}(\vec{\theta}) + E_{\beta}(\vec{\beta})$$



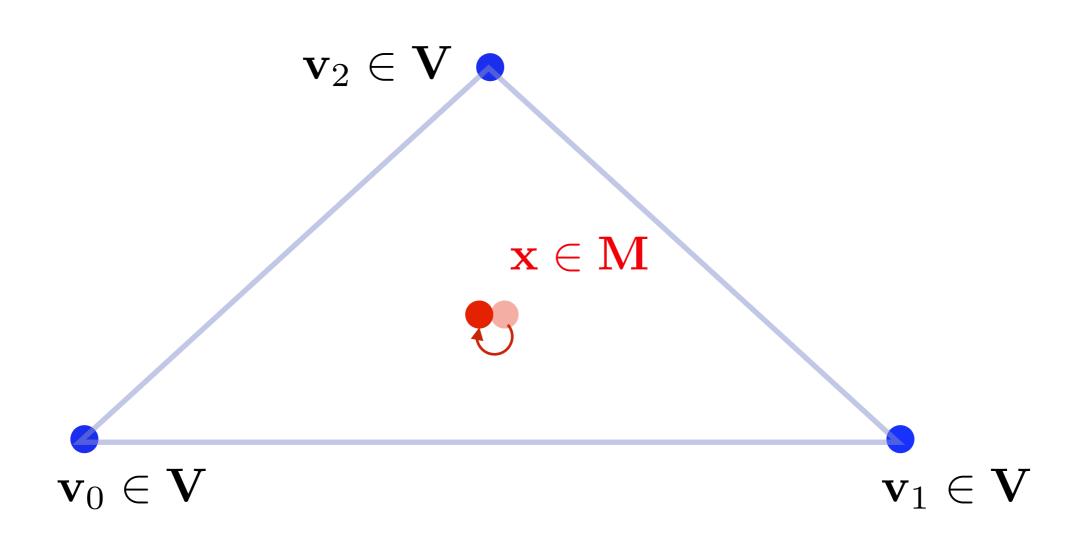
- What makes it so jumpy?
 - Correspondences change abruptly!



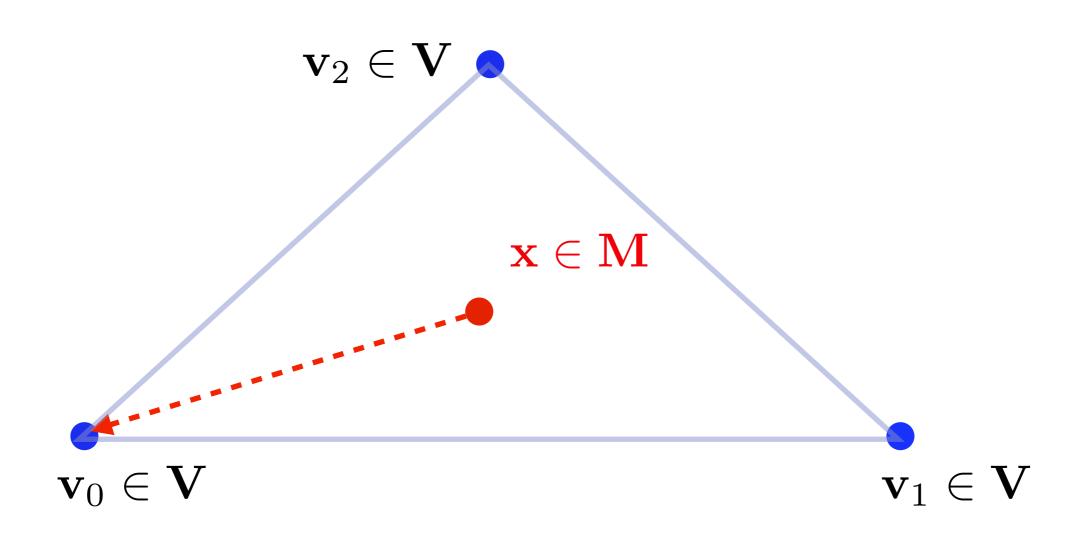
Point-to-point distance



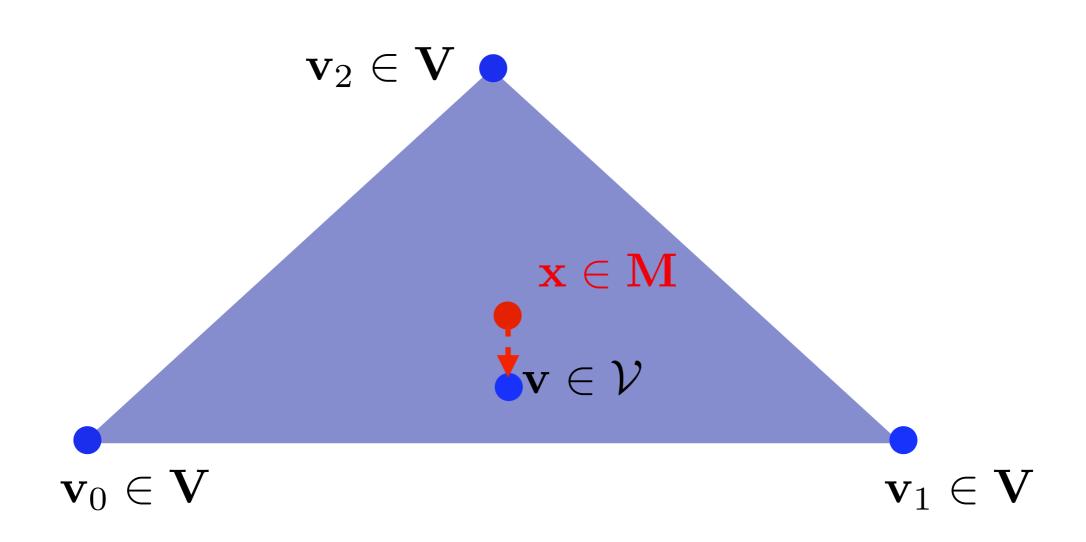
Point-to-point distance



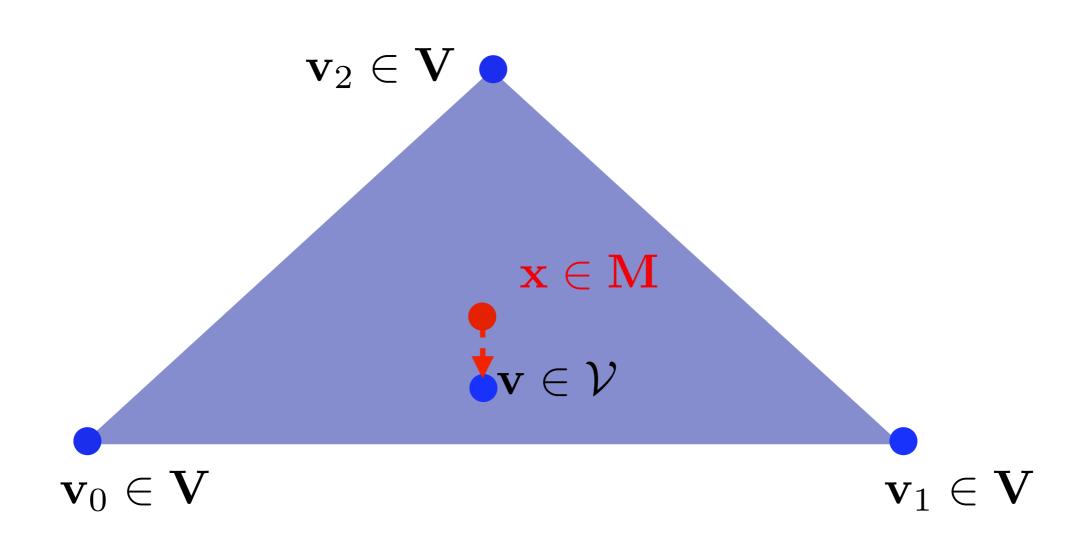
Point-to-point distance



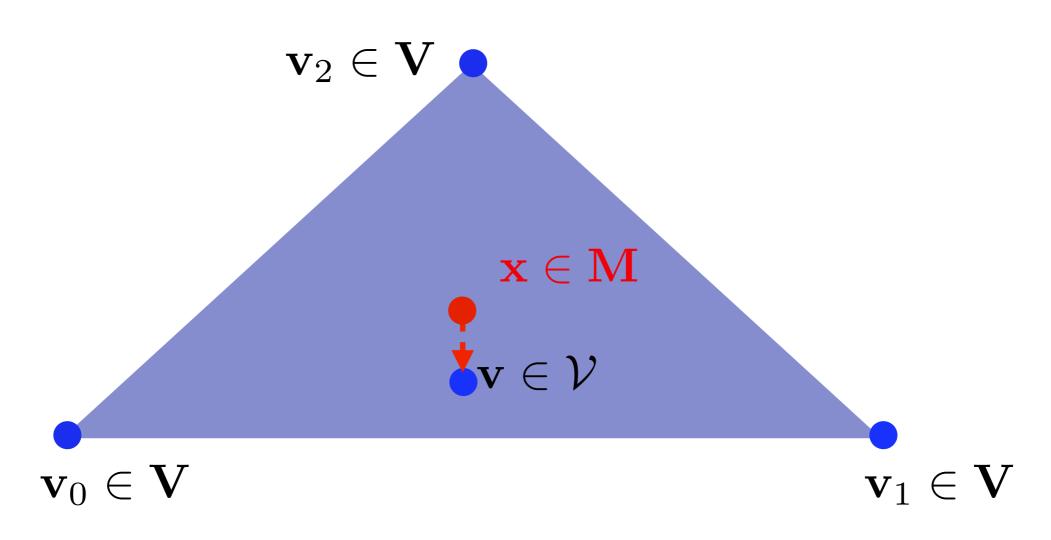
Point-to-surface distance



Point-to-surface distance



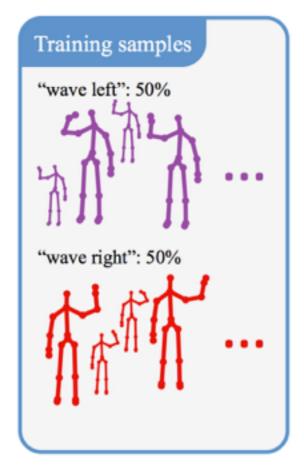
Point-to-surface distance

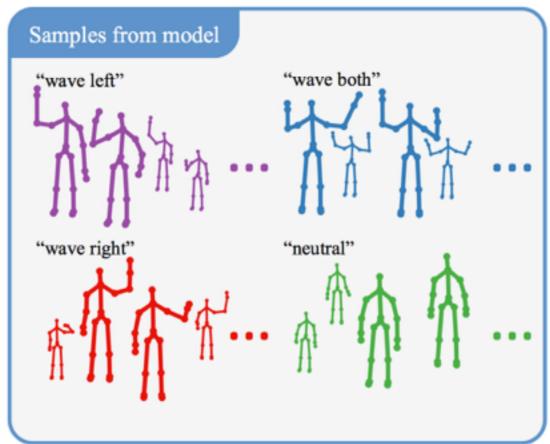


Implementation requires taking care of special cases when v falls in edges or points

Advanced registration

- Better pose priors
 - Non-parametric

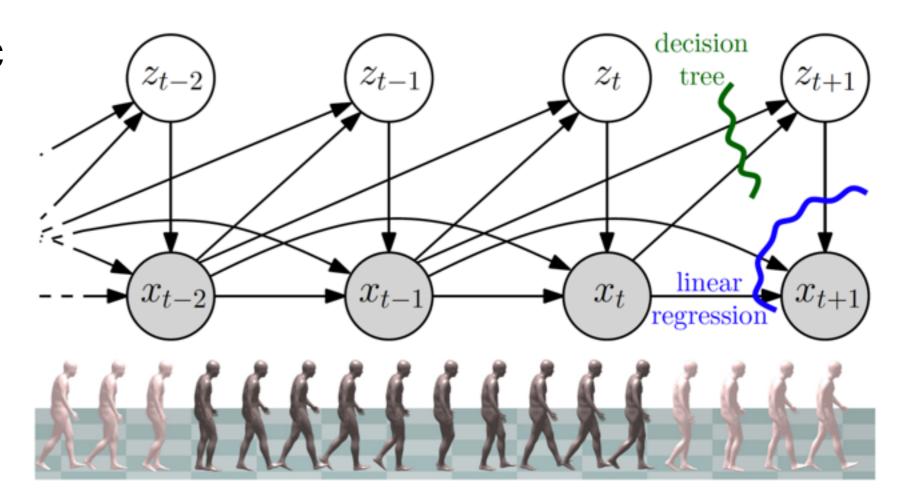




A Non-parametric Bayesian Network Prior of Human Pose, Lehrman et al

Fitting SMPL to a scan/mesh

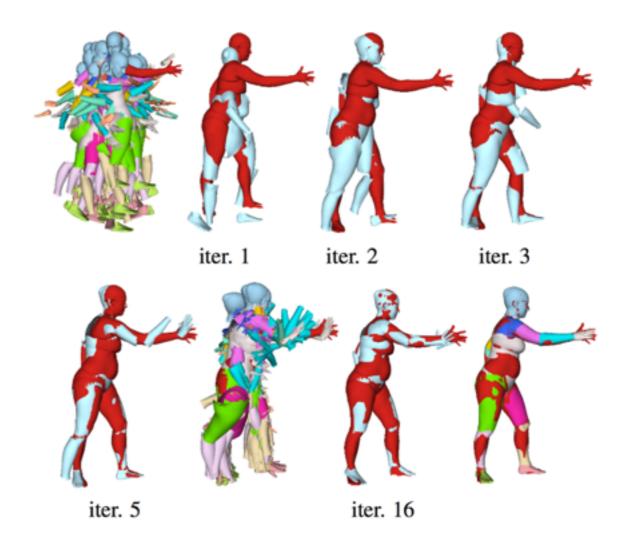
- Better pose priors
 - Non-parametric
 - Dynamic



Efficient Nonlinear Markov Models for Human Motion, Lehrman et al

Fitting SMPL to a scan/mesh

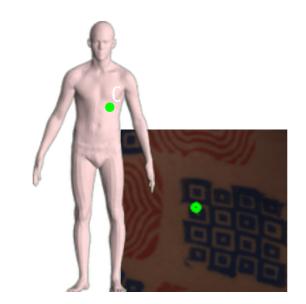
- Better pose priors
 - Non-parametric
 - Dynamic
- Better initialisation

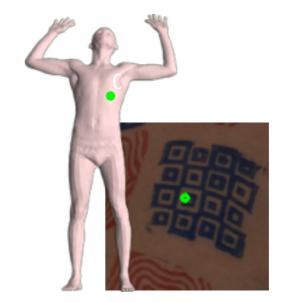


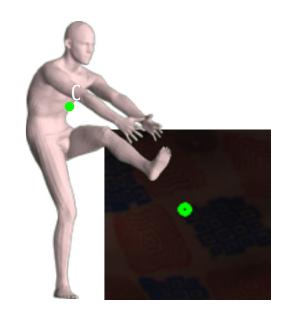
 From previous frame, from discriminative approaches, from graphical models

Fitting SMPL to a scan/mesh

- Better pose priors
 - Non-parametric
 - Dynamic
- Better initialisation





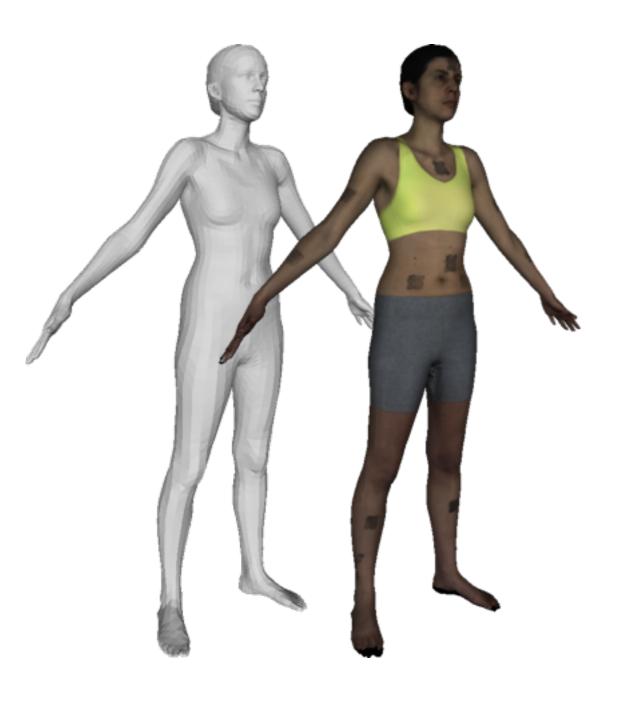


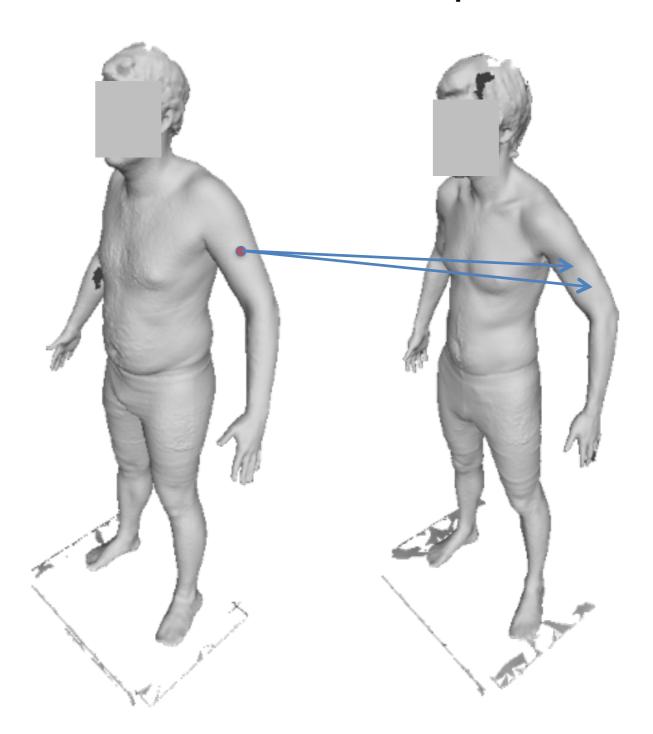
- From previous frame, from discriminative approaches, from graphical models
- Other information: appearance (color)!

Why appearance

More realism

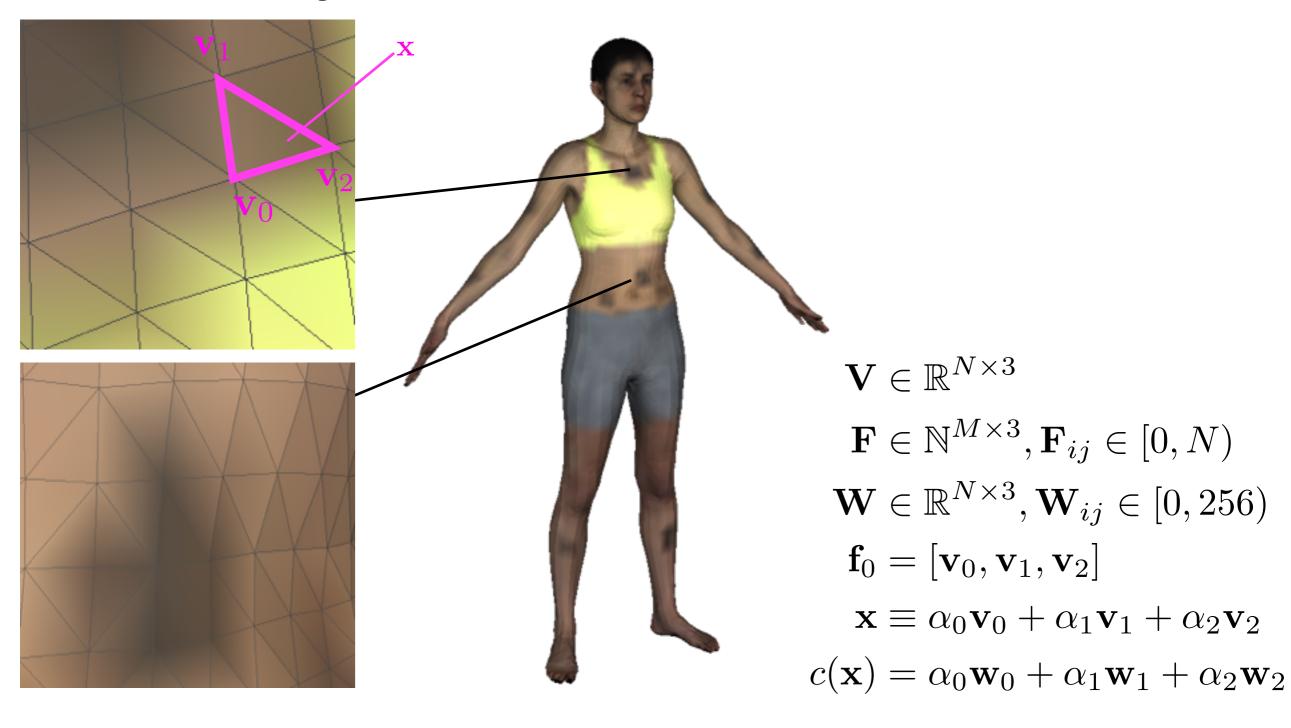
More accurate correspondences



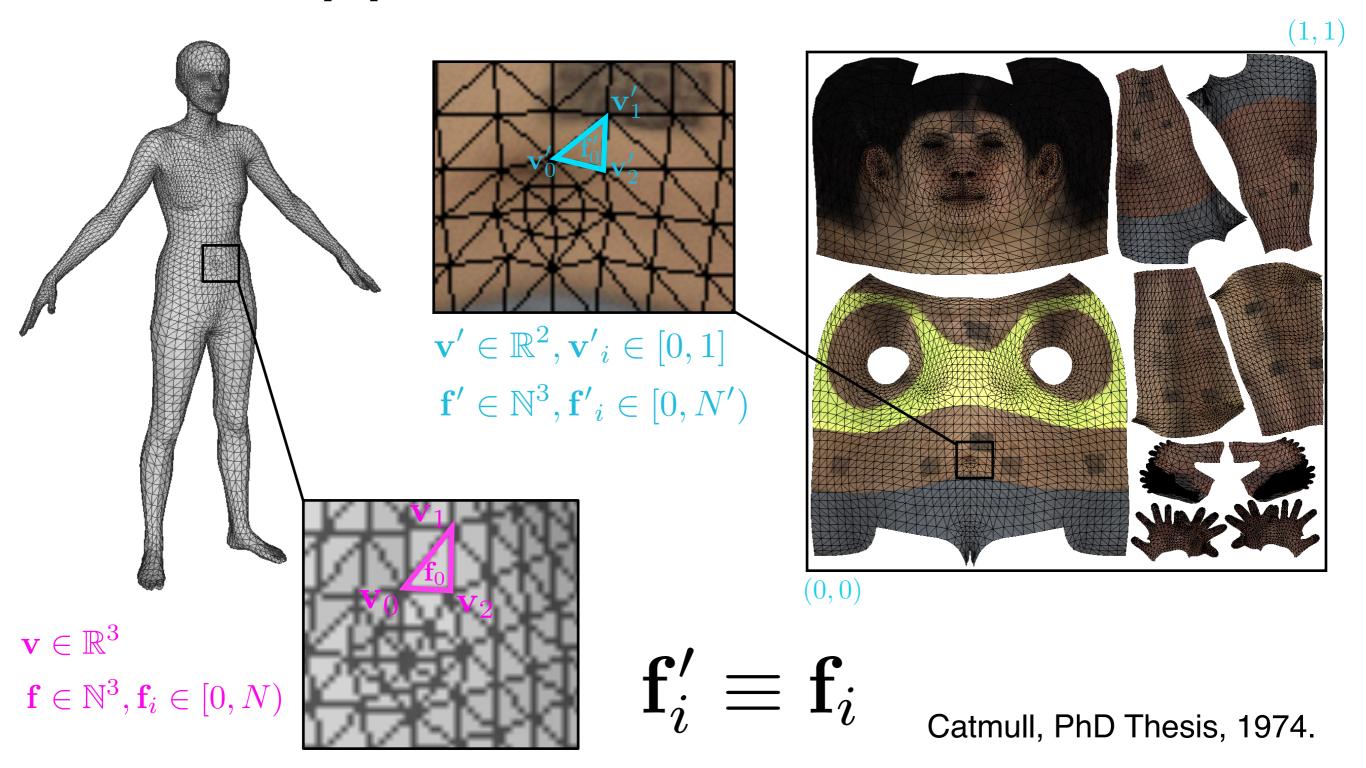


Representing appearance

Vertex coloring

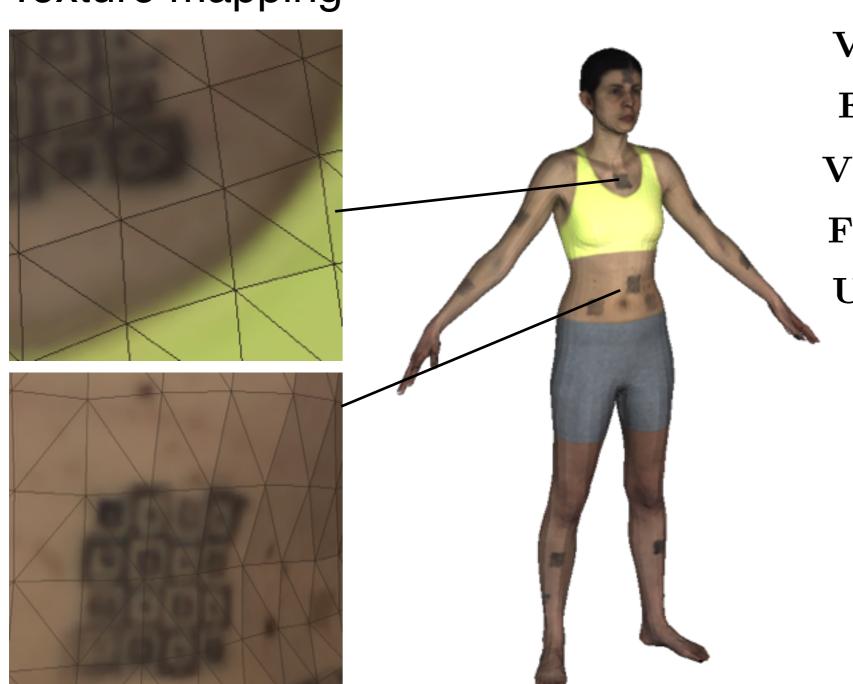


Decouple geometry and appearance resolution



Representing appearance

Texture mapping



$$\mathbf{V} \in \mathbb{R}^{N \times 3}$$

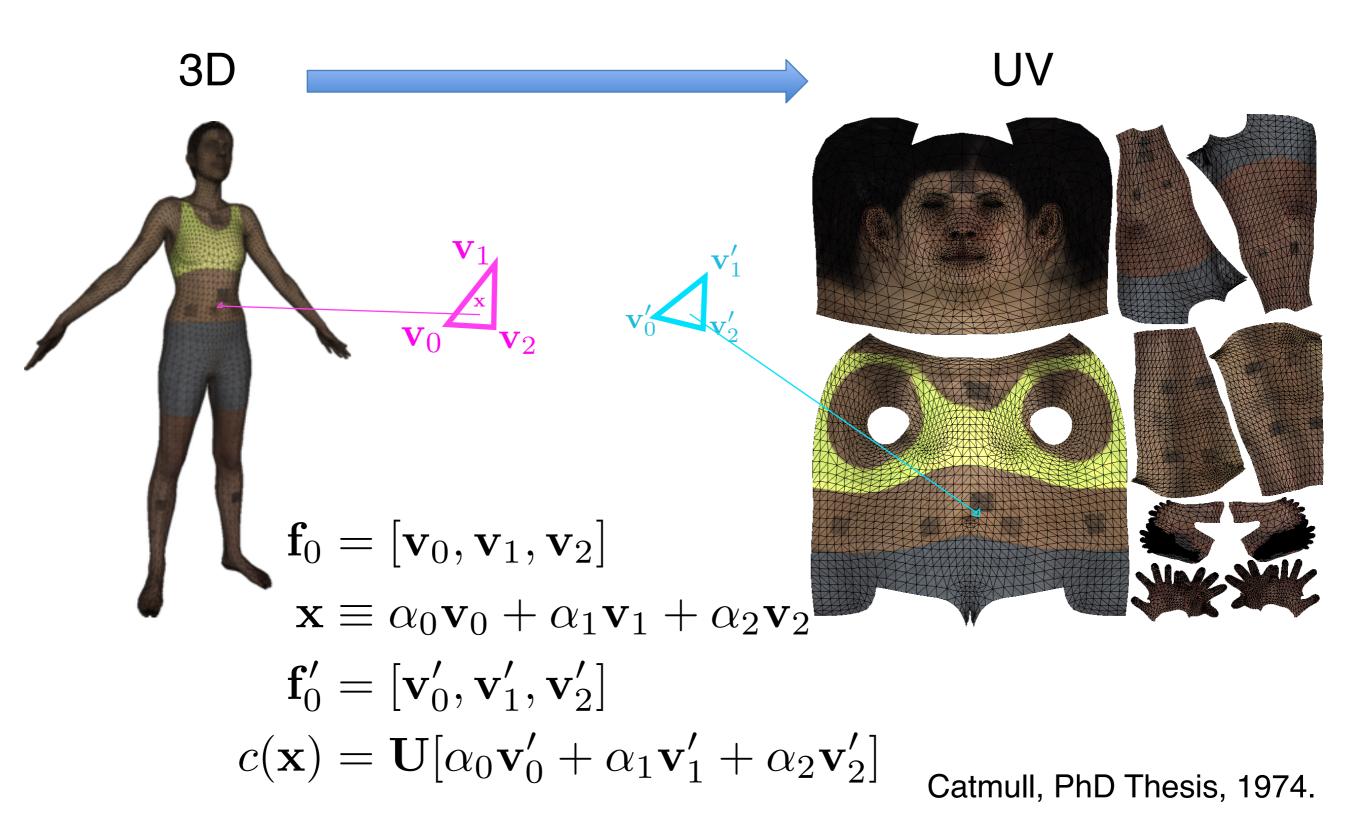
$$\mathbf{F} \in \mathbb{N}^{M \times 3}, \mathbf{F}_{ij} \in [0, N)$$

$$\mathbf{V}' \in \mathbb{R}^{N' \times 2}, \mathbf{V'}_{ij} \in [0, 1]$$

$$\mathbf{F}' \in \mathbb{N}^{M \times 2}, \mathbf{F'}_{ij} \in [0, N')$$

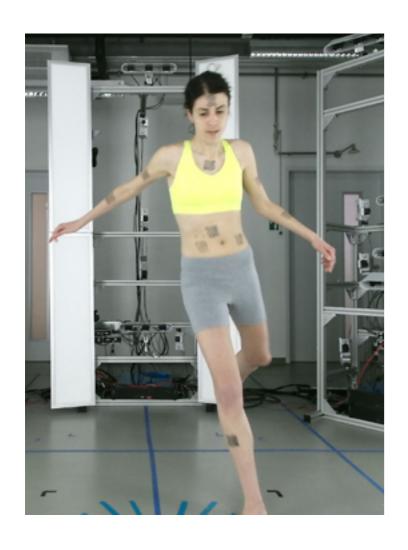
$$\mathbf{U} \in \mathbb{N}^{K \times K \times 3}, \mathbf{U}_{ijk} \in [0, 256)$$

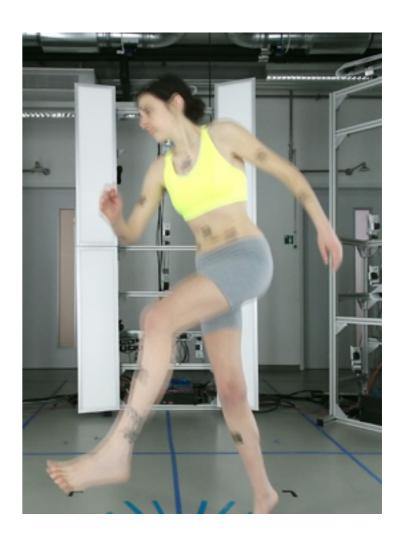
Texture mapping



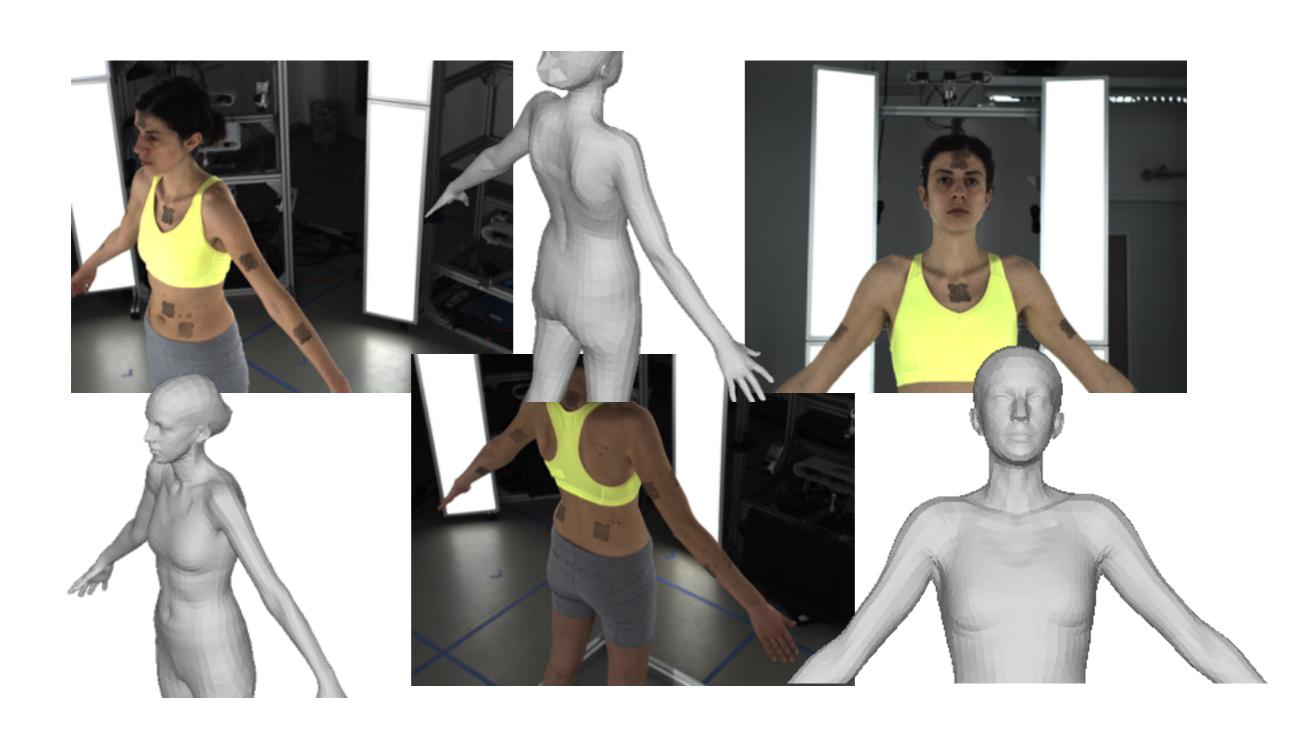
How do we create texture maps?

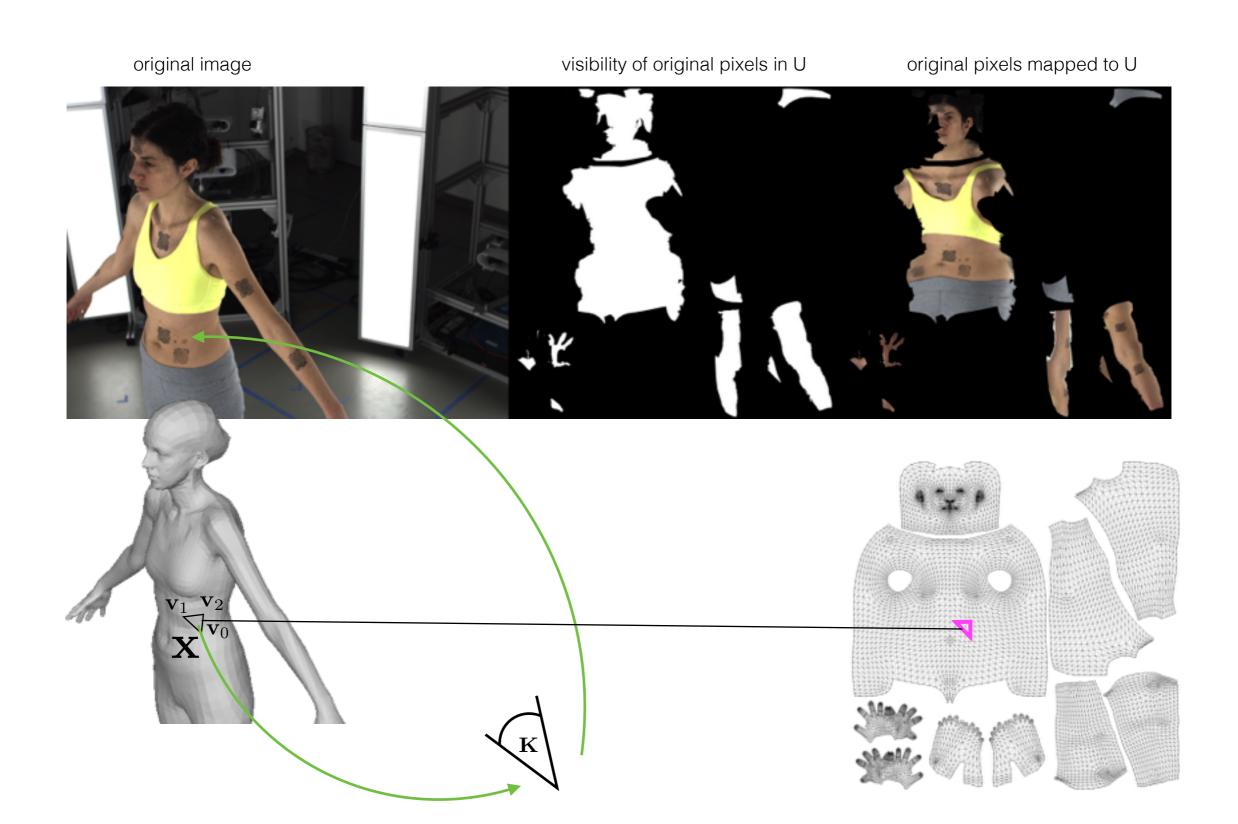
Problem: combining multiple views of a 3D surface

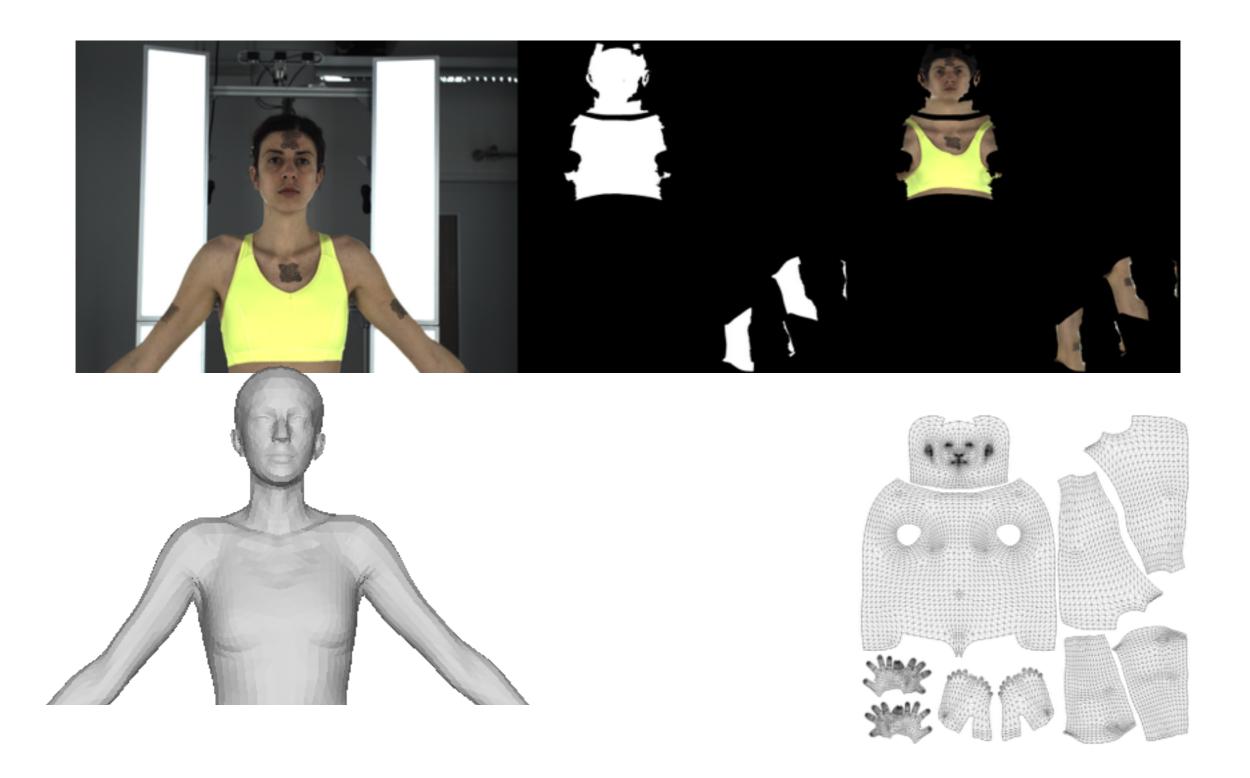


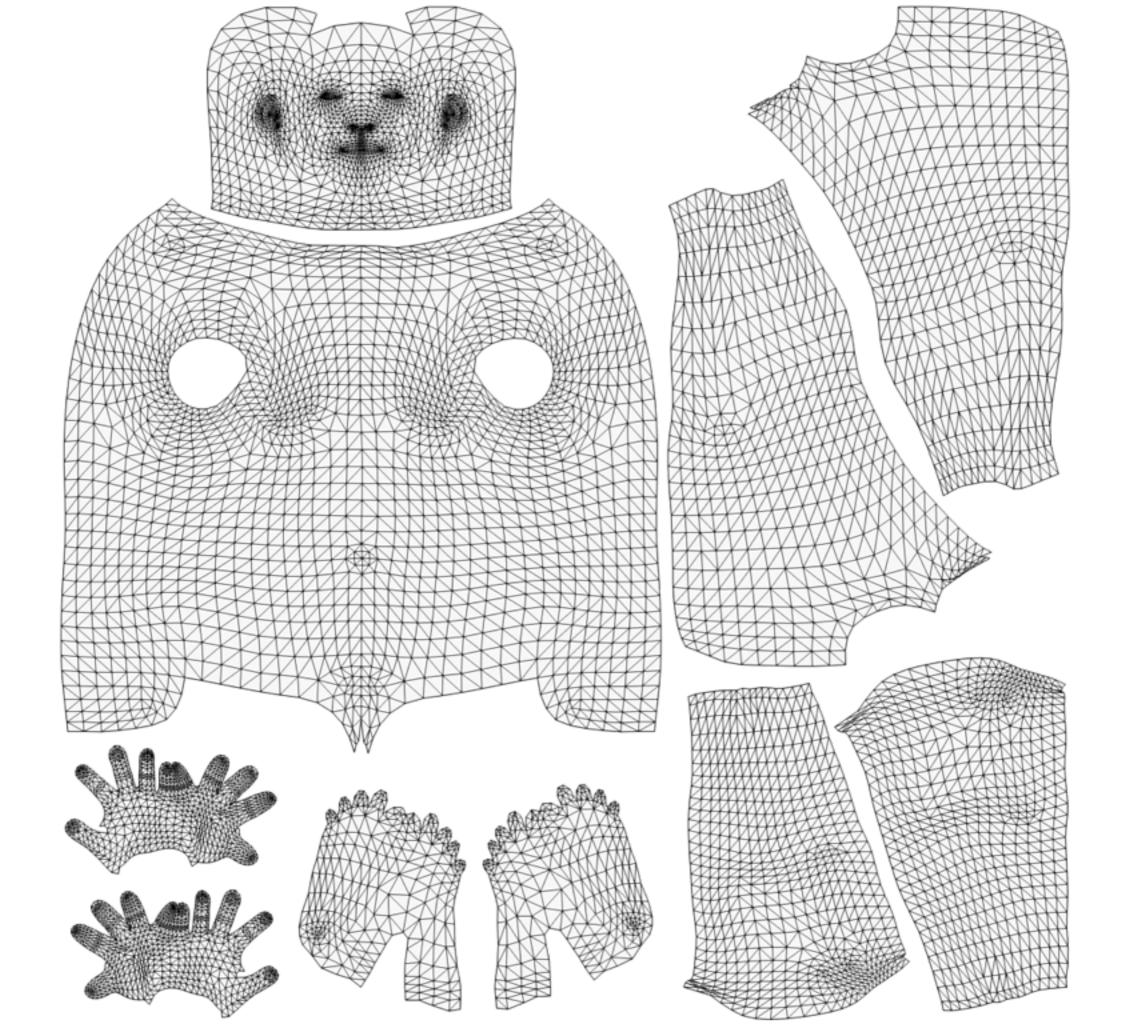


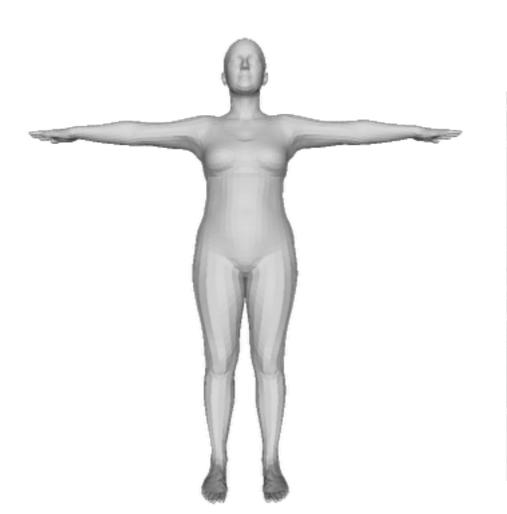
Problem: combining multiple views of a 3D surface





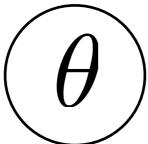






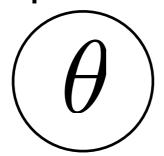
shape

pose

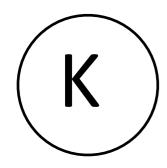


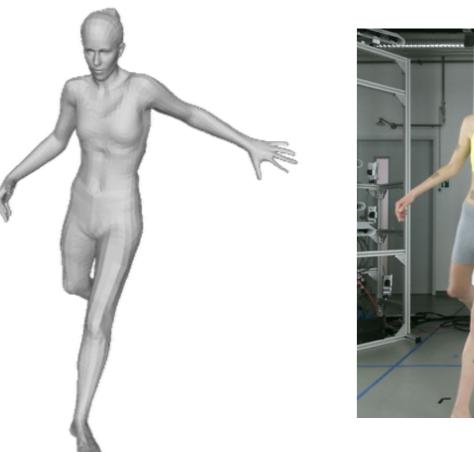
shape

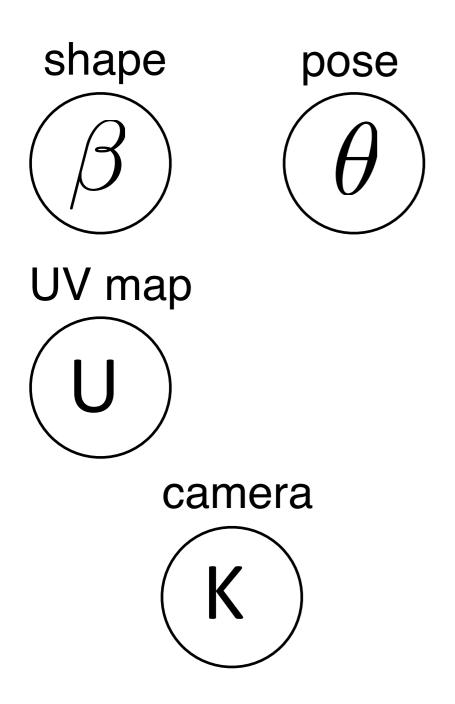
pose



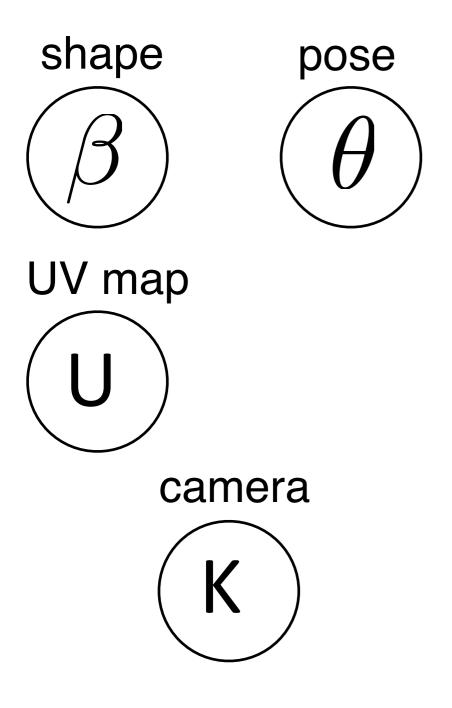
camera







That's all, no?

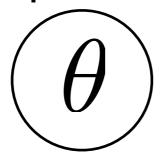




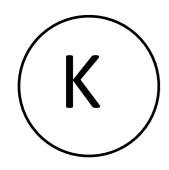
This slide is wrong: have all the vertices the same albedo?

shape

pose



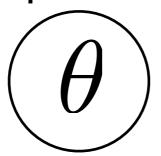
camera



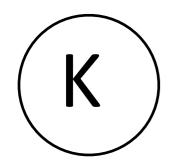
This one has a single albedo

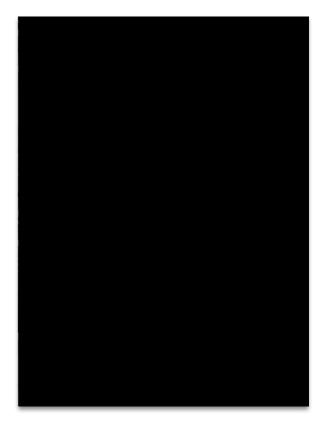
shape

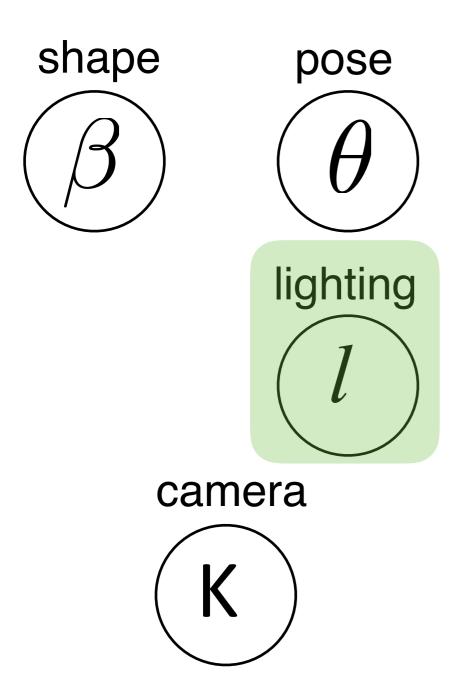
pose



camera







Albedo and shading

Albedo is constant: depends on physical properties of the surface Shading is transient: given by the interplay between surface reflectance and lighting

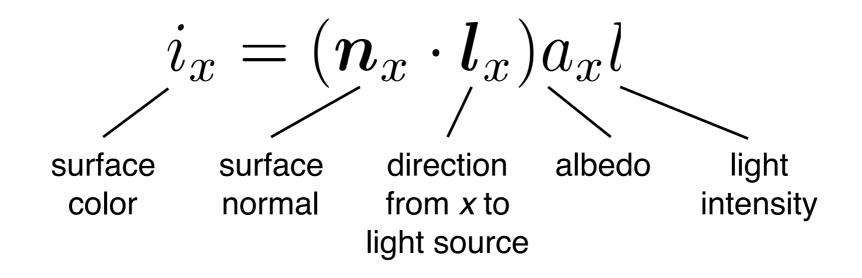
real image

albedo

shading

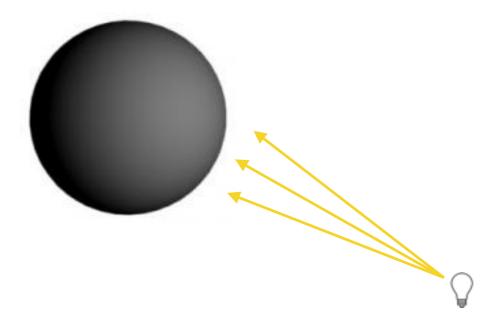
Reflectance models

Lambertian reflectance



Lighting models

Point light sources

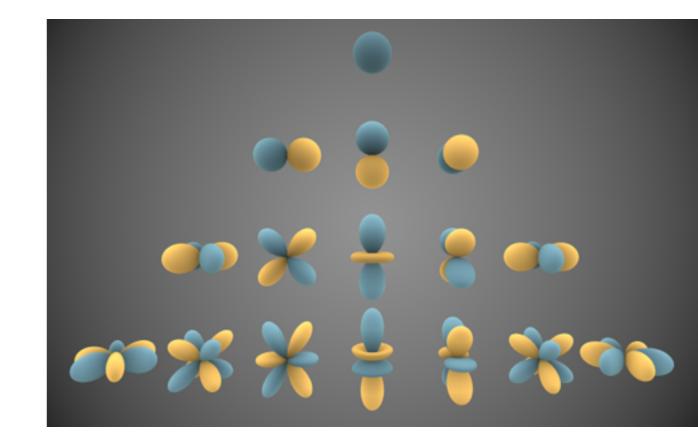


Lighting models

Spherical Harmonics (SH)

Lighting as a function over the sphere, projected onto a low-order SH basis

Simple and efficient for diffuse environments

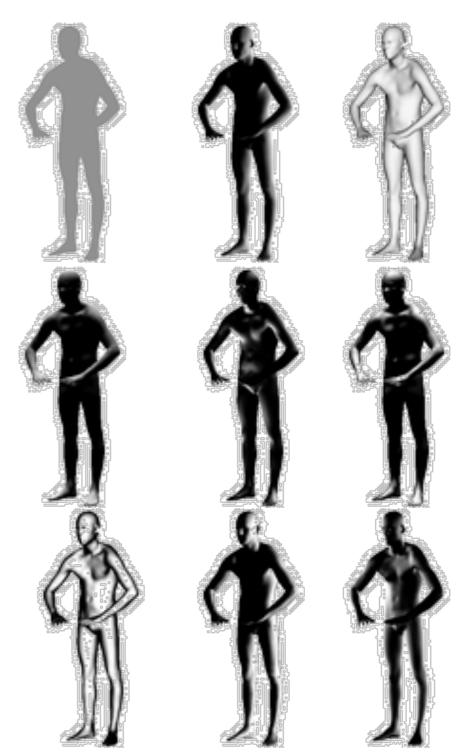


Lighting models

Spherical Harmonics (SH)

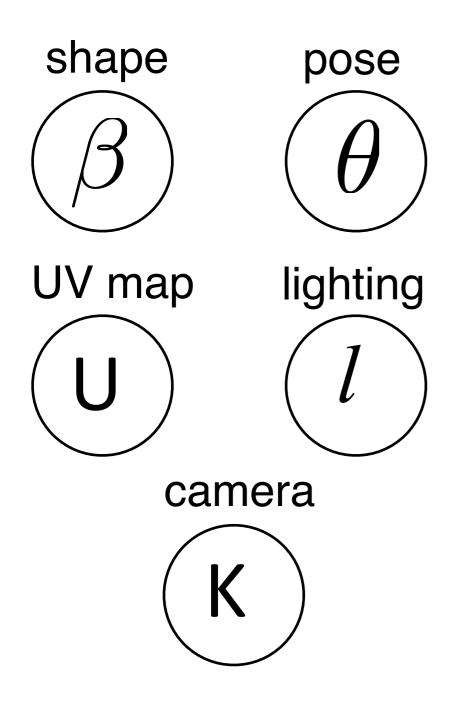
Lighting as a function over the sphere, projected onto a low-order SH basis

Simple and efficient for diffuse environments



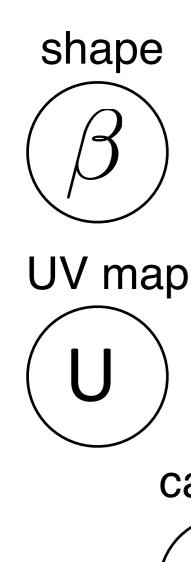
Sloan et al., SIGGRAPH 2002. Basri et al., IEEE TPAMI, 2003.

Modeling all together



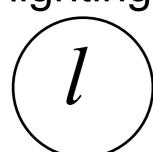
images

Forward rendering process



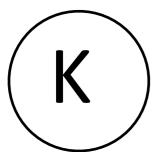
pose

lighting



images

camera



Rendering takes model parameters and produces images.

 $f(\beta, \theta, U, l, K)$

Gradient-based optimization?

- We want to exploit images to obtain better registrations
- We saw that we can optimise a function given its derivatives
- Most of the functions involved in the rendering are linear operators
- Anybody wants to write the jacobians by hand?

OpenDR

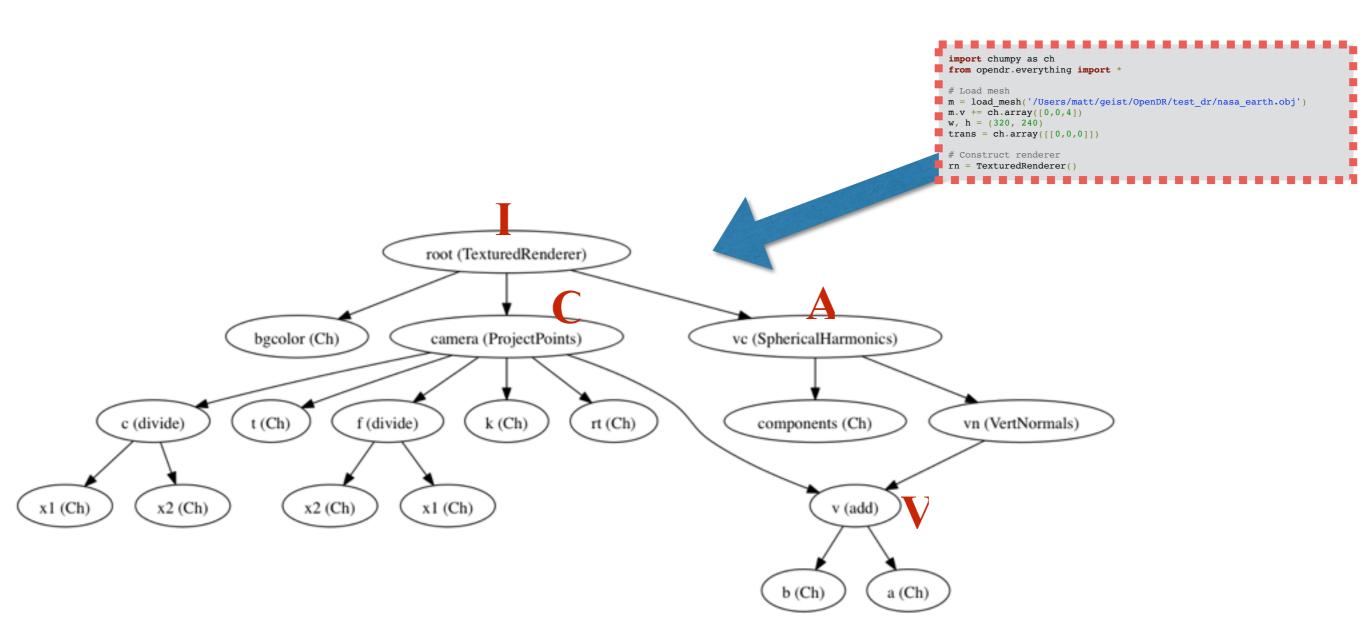
An open source differentiable rendering framework for:

- approximating a rendering proces
- differentiating this approximation
- finding parameter estimates

http://open-dr.org

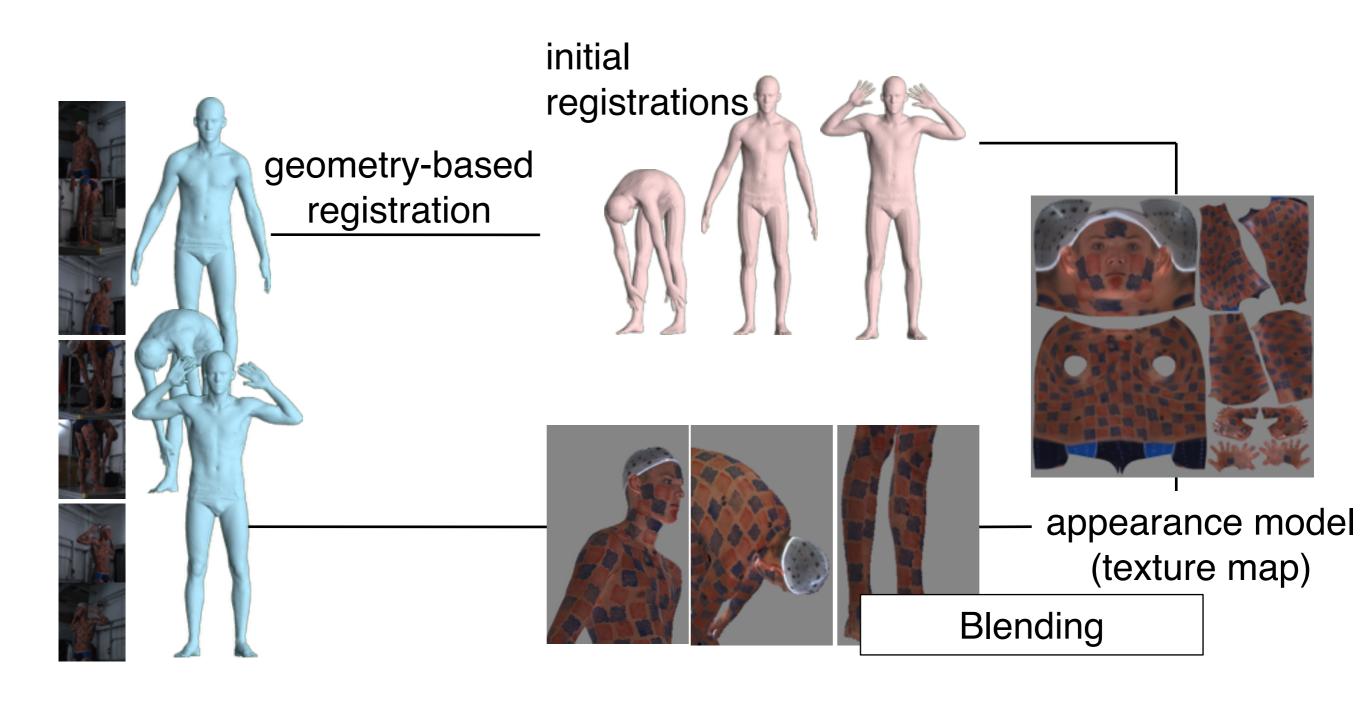
Loper and Black, ECCV 2014.

OpenDR

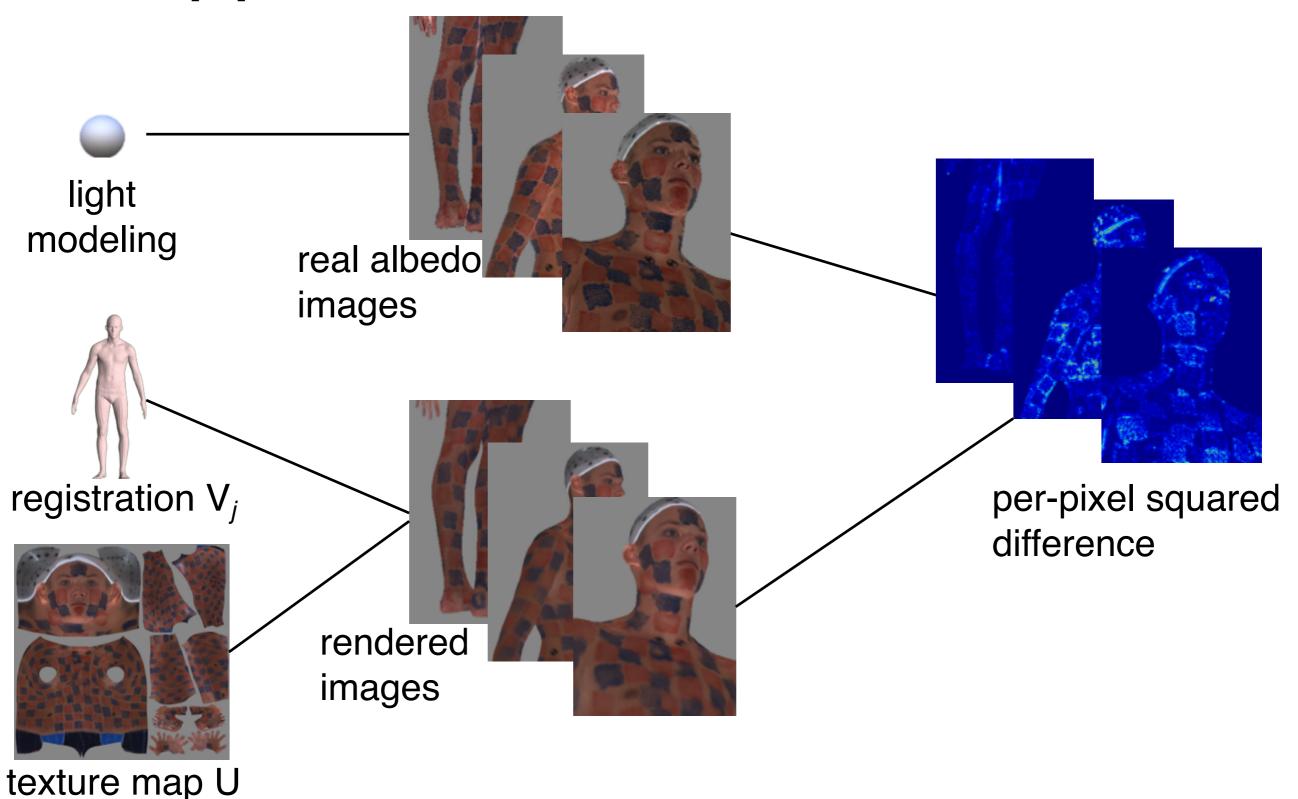


Appearance-based registration

Building an appearance model



Appearance-based error term



New registration objective

$$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} ||M(\vec{\theta}, \vec{\beta}) - \mathbf{V}||^{2}$$

$$+ E_{\theta}(\vec{\theta})$$

$$+ E_{\beta}(\vec{\beta})$$

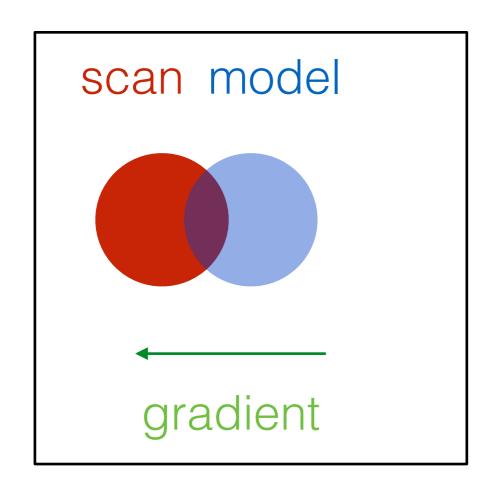
$$+ E_{U}(\mathbf{I}, \mathbf{K}, \mathbf{U}, M(\vec{\theta}, \vec{\beta}))$$

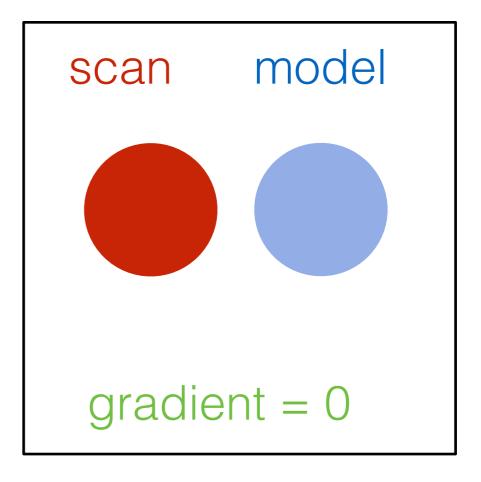
$$E_{U} \equiv \sum_{i} ||\mathbf{I}_{i} - r(M(\vec{\theta}, \vec{\beta}), \mathbf{U}, \mathbf{K}_{i})||^{2}$$

With OpenDR...

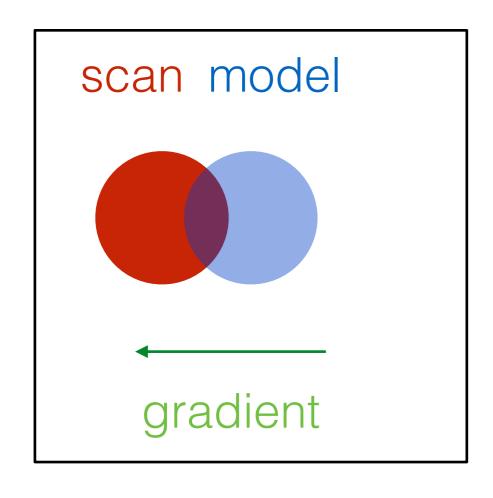
```
import chumpy as ch
import cv2
from opendr.camera import ProjectPoints
from opendr.renderers import TexturedRenderer
# Load meshes, create other objectives...
# ...
                                                          lighting encoded in vo
# Construct renderer
                                                          appearance encoded in
rn = TexturedRenderer()
rn.camera = ProjectPoints(v=m.v, vc=m.vc, rt=ch.zeros(3), t=ch.zeros(3),
             f=ch.array([w,w])/2., c = ch.array([w,h])/2., k=ch.zeros(5))
rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h}
rn.set(f=m.f, texture_image=m.texture_img, ft=m.ft, vt=m.vt, bgcolor=ch.zeros(3))
# Define the error term
obj = rn - cv2.imread(real_img_path)
# Minimize
ch.minimize(obj, x0=[m.v], method='dogleg')
```

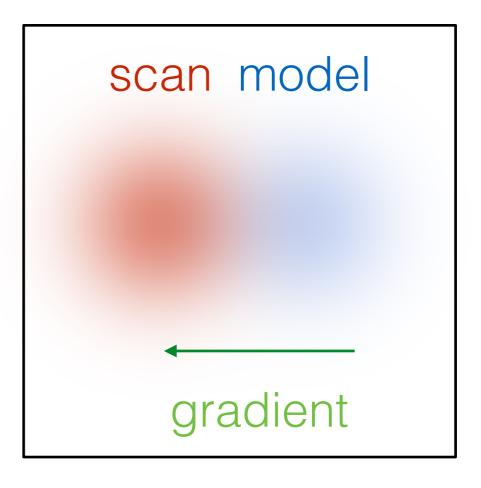
The appearance objective function has MANY local minima





- The appearance objective function has MANY local minima
 - Pyramids of blurred images help





- The appearance objective function has MANY local minima
 - Pyramids of blurred images help
- The dimensionality of this objective is much bigger than the geometric one
 - Optimisation will be slower

- The appearance objective function has MANY local minima
 - Pyramids of blurred images help
- The dimensionality of this objective is much bigger than the geometric one
 - Optimisation will be slower
- Open problems: Lighting optimisation? Occlusions?

Take-home message

- Optimising SMPL pose and shape with chumpy is easy
 - But the devil is in the details: point2surface, regularisers
- We can add color to our model either with per-vertex colors, or texture maps
- Apart from making the model match the scan geometrically, we can make it match in terms of COLOR
- OpenDR differentiates the rendering process for us