
Body Models IV
Javier Romero

Max Planck Institute for Intelligent Systems
Perceiving Systems
June 13, 2016

11.04.2016 Introduction
18.04.2016 Graphical Models 1
25.04.2016 Graphical Models 2 (Sand 6/7)
02.05.2016 Graphical Models 3
09.05.2016 Graphical Models 4
23.05.2016 Body Models 1
30.05.2016 Body Models 2
06.06.2016 Body Models 3
13.06.2016 Body Models 4
20.06.2016 Stereo
27.06.2016 Optical Flow
04.07.2016 Segmentation
11.07.2016 Object Detection 1
18.07.2016 Object Detection 2

What have we learned so far about bodies?

• BM1: Procrustes for rigid alignment

• BM2: ICP, gradient-based ICP

• BM3: Articulated models, Blendshapes, SMPL

solve with procrustes
single step f = argmin

f

X

i

kf(xi)� yik2

What have we learned so far about bodies?

• BM1: Procrustes for rigid alignment

• BM2: ICP, gradient-based ICP

• BM3: Articulated models, Blendshapes, SMPL

solve with procrustes
or gradient-based

x

1
i = argmin

x2X

kf0(x)� yik2

f1 = argmin
f

X

i

kf(x1
i)� yik2

and iterate!

f1 = argmin
f

X

i

kf(x1
i)� yik2

x

2
i = argmin

x2X

kf1(x)� yik2

f1(X)

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

x

j+1
i = argmin

x2X

kf j(x)� yik2

What have we learned so far about bodies?

• BM1: Procrustes for rigid alignment

• BM2: ICP, gradient-based ICP

• BM3: Articulated models, Blendshapes, SMPL

Parameterized Skinning
Standard skinning

SMPL model

SMPL is skinning parameterized by pose
and shape

What is missing: today

• How do we fit SMPL to meshes without correspondences?

• This is a computer vision course. 
Where is the color in those meshes?

• Autodiff in images? OpenDR

• Fitting bodies to images

Fitting SMPL to a scan/mesh
• Problem: Given a registration, find the model pose and

shape.

ScanModel

~✓, ~� = argmin
~✓,~�

d(M(~✓, ~�)�V)2

some distance function between the two meshes

Fitting SMPL to a scan/mesh
• Problem: Given a registration, find the model pose and

shape.

ScanModel

from smpl.serialization import load_model
sm = load_model(path_to_downloaded_model)
ch.minimize(point2point_squared(dst_pts=sm, org_pts=Xch),
x0=[sm.betas, sm.pose])

SMPL tree: sm.show_tree()

• Chumpy minimizes the sum of squares of a vector
valued error function

Sum of squares
(scalar)

Residuals
(vector valued error function)

Optimization variables (vector)

• Chumpy minimizes the sum of squares of a vector
valued error function

ipdb> p2p_yx = point2point_squared(org_pts=Xch, dst_pts=sm)
ipdb> print(p2p_yx)
[0.001 0. 0.001 ..., 0.012 0.012 0.012]
ipdb> p2p_yx.shape
(6890,) as many elements as correspences between model and scan

Jacobian of the vector valued error function:

P parameters

N
 residuals

P parameters

N
 residuals

ipdb> print(p2p_yx.dr_wrt(sm.betas).shape)
(6890, 10)
ipdb> print(p2p_yx.dr_wrt(sm.betas)[:5, :5].todense())
[[-1.144e-04 -1.148e-04 3.350e-05 -2.048e-05 8.550e-06]
 [3.490e-04 -4.617e-05 -1.243e-04 -7.371e-05 3.262e-05]
 [5.642e-04 -1.518e-04 -2.017e-04 -1.487e-04 9.339e-05]
 [2.437e-04 -2.448e-04 -9.368e-05 -1.272e-04 9.360e-05]
 [8.284e-04 -1.090e-04 -2.925e-04 -1.700e-04 9.579e-05]]

Try it!

Which one will fail?

Which one will fail?

Problems?
• Unlikely pose

Problems?
• Unlikely pose
• Unlikely shape

Problems?
• Unlikely pose
• Unlikely shape
• Bad initialization

Fitting SMPL to a scan/mesh
~✓, ~� = argmin

~✓,~�
kM(~✓, ~�)�Vk2

+ E(~✓)

+ E(~�)

E(~✓) ⌘ (~✓ � ~µ✓)
T⌃✓(~✓ � ~µ✓)

E(~�) ⌘ (~� � ~µ�)
T⌃�(~� � ~µ�)

~✓, ~� = argmin
~✓,~�

kM(~✓, ~�)�Vk2

+ E✓(~✓)

+ E�(~�)

E✓(~✓) ⌘ (~✓ � ~µ✓)
T⌃✓(~✓ � ~µ✓)

E�(~�) ⌘ (~� � ~µ�)
T⌃�(~� � ~µ�)

Fitting SMPL to a scan/mesh

~✓, ~� = argmin
~✓,~�

kM(~✓, ~�)�Vk2

+ E✓(~✓)

+ E�(~�)

E✓(~✓) ⌘ (~✓ � ~µ✓)
T⌃✓(~✓ � ~µ✓)

E�(~�) ⌘ (~� � ~µ�)
T⌃�(~� � ~µ�)

Fitting SMPL to a scan/mesh

Fitting SMPL to a scan/mesh
~✓, ~� = argmin

~✓,~�
kM(~✓, ~�)�Vk2

+ E✓(~✓)

+ E�(~�)

E✓(~✓) ⌘ (~✓ � ~µ✓)
T⌃✓(~✓ � ~µ✓)

E�(~�) ⌘ (~� � ~µ�)
T⌃�(~� � ~µ�)

�1

�1

Mahalanobis distance 
induced by distribution N (~µ✓,⌃✓)

Fitting SMPL to a scan/mesh

• What makes it so jumpy?

• Correspondences change abruptly!

Point-to-point distance

v0 2 V v1 2 V

v2 2 V

x 2 M

Point-to-point distance

v0 2 V v1 2 V

v2 2 V

x 2 M

Point-to-point distance

v0 2 V v1 2 V

v2 2 V

x 2 M

Point-to-surface distance

v0 2 V v1 2 V

v2 2 V

x 2 M

v 2 V

Point-to-surface distance

v0 2 V v1 2 V

v2 2 V

x 2 M

v 2 V

Point-to-surface distance

v0 2 V v1 2 V

v2 2 V

x 2 M

v 2 V

Implementation requires taking care of special cases  
when v falls in edges or points

• Better pose priors

• Non-parametric

• Dynamic

• Better initialisation

• From previous frame, from discriminative approaches,
from graphical models

• Other information: color!

Advanced registration

A Non-parametric Bayesian Network Prior of Human Pose, Lehrman et al

• Better pose priors

• Non-parametric

• Dynamic

• Better initialisation

• From previous frame, from discriminative approaches,
from graphical models

• Other information: color!

Fitting SMPL to a scan/mesh

Efficient Nonlinear Markov Models for Human Motion, Lehrman et al

Fitting SMPL to a scan/mesh
• Better pose priors

• Non-parametric

• Dynamic

• Better initialisation

• From previous frame, from discriminative approaches,
from graphical models

• Other information: color!
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose, Zuffi and Black

Fitting SMPL to a scan/mesh
• Better pose priors

• Non-parametric

• Dynamic

• Better initialisation

• From previous frame, from discriminative approaches,
from graphical models

• Other information: appearance (color)!

0	
%

0	
%

0	
%

Why appearance
More realism More accurate correspondences

Representing appearance
Vertex coloring

V 2 RN⇥3

F 2 NM⇥3,Fij 2 [0, N)

W 2 RN⇥3,Wij 2 [0, 256)

f0 = [v0,v1,v2]

x ⌘ ↵0v0 + ↵1v1 + ↵2v2

c(x) = ↵0w0 + ↵1w1 + ↵2w2

v0

v1

v2

x

v0 2 R2,v0
i 2 [0, 1]

f 0 2 N3, f 0i 2 [0, N 0)

Decouple geometry and
appearance resolution

Catmull, PhD Thesis, 1974.

(0, 0)

(1, 1)

v 2 R3

f 2 N3, fi 2 [0, N)

v0

v1

v2

f0

v0
0

v0
1

v0
2

f 00

f 0i ⌘ fi

Representing appearance
Texture mapping

V 2 RN⇥3

F 2 NM⇥3,Fij 2 [0, N)

V0 2 RN 0⇥2,V0
ij 2 [0, 1]

F0 2 NM⇥2,F0
ij 2 [0, N 0)

U 2 NK⇥K⇥3,Uijk 2 [0, 256)

Texture mapping

Catmull, PhD Thesis, 1974.

3D UV

v0

v1

v2
v0
0

v0
1

v0
2

x

f0 = [v0,v1,v2]

x ⌘ ↵0v0 + ↵1v1 + ↵2v2

f

0
0 = [v0

0,v
0
1,v

0
2]

c(x) = U[↵0v
0
0 + ↵1v

0
1 + ↵2v

0
2]

How do we create texture maps?

From 2D images to textures
Problem: combining multiple views of a 3D surface

From 2D images to textures
Problem: combining multiple views of a 3D surface

From 2D images to textures

From 2D images to textures

v0

v1 v2

x

K

original image visibility of original pixels in U original pixels mapped to U

From 2D images to textures

From 2D images to textures

From 2D images to textures

Generating an image

U

K

l

shape pose

UV map lighting

camera

image

Generating an image

U

K

l

shape pose

UV map lighting

camera

image

Generating an image

U

K

l

shape pose

UV map lighting

camera

image

Generating an image

U

K

l

shape pose

UV map lighting

camera

image

That’s all, no?

U

K

l

shape pose

UV map lighting

camera

image

This slide is wrong: 
have all the vertices the same albedo?

U

K

l

shape pose

UV map lighting

camera

image

This one has a single albedo

U

K

l

shape pose

UV map lighting

camera

image

Generating an image

U

K

l

shape pose

UV map lighting

camera

image

Albedo and shading
Albedo is constant: depends on physical properties of the surface
Shading is transient: given by the interplay between surface
reflectance and lighting

real image albedo shading

Reflectance models
Lambertian reflectance

surface
color

surface
normal

direction
from x to

light source

albedo light
intensity

Lighting models
Point light sources

Lighting models

Spherical Harmonics (SH)

Sloan et al., SIGGRAPH 2002.
Basri et al., IEEE TPAMI, 2003.

Lighting as a function over
the sphere, projected onto a
low-order SH basis

Simple and efficient
for diffuse environments

Lighting models

Spherical Harmonics (SH)

Sloan et al., SIGGRAPH 2002.
Basri et al., IEEE TPAMI, 2003.

Lighting as a function over
the sphere, projected onto a
low-order SH basis

Simple and efficient
for diffuse environments

Modeling all together

U

K

l

shape pose

UV map lighting

camera

images

Forward rendering process

U

K

l

shape pose

UV map lighting

camera

f(,			,	U,	l,	K)

Rendering takes model
parameters and
produces images.

images

Gradient-based optimization?
• We want to exploit images to obtain better registrations 

• We saw that we can optimise a function given its
derivatives

• Most of the functions involved in the rendering are
linear operators

• Anybody wants to write the jacobians by hand?

OpenDR

http://open-dr.org

An open source differentiable rendering
framework for:

• approximating a rendering process
• differentiating this approximation
• finding parameter estimates

Loper and Black, ECCV 2014.

OpenDR

V

I

AC

import chumpy as ch
from opendr.everything import *

Load mesh
m = load_mesh('/Users/matt/geist/OpenDR/test_dr/nasa_earth.obj')
m.v += ch.array([0,0,4])
w, h = (320, 240)
trans = ch.array([[0,0,0]])

Construct renderer
rn = TexturedRenderer()

Appearance-based
registration

Building an appearance model

geometry-based
registration

appearance model
(texture map)

initial
registrations

Blending

Appearance-based error term

real albedo
images

light
modeling

per-pixel squared
difference

rendered
images

texture map U

registration Vj

New registration objective
~✓, ~� = argmin

~✓,~�
kM(~✓, ~�)�Vk2

+ E✓(~✓)

+ E�(~�)

+ EU (I,K,U,M(~✓, ~�))

EU ⌘
X

i

kIi � r(M(~✓, ~�),U,Ki)k2

With OpenDR…
import chumpy as ch
import cv2
from opendr.camera import ProjectPoints
from opendr.renderers import TexturedRenderer

Load meshes, create other objectives…
…

Construct renderer
rn = TexturedRenderer()
rn.camera = ProjectPoints(v=m.v, vc=m.vc, rt=ch.zeros(3), t=ch.zeros(3),
 f=ch.array([w,w])/2., c = ch.array([w,h])/2., k=ch.zeros(5))
rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h}
rn.set(f=m.f, texture_image=m.texture_img, ft=m.ft, vt=m.vt, bgcolor=ch.zeros(3))

Define the error term

obj = rn – cv2.imread(real_img_path)

Minimize
ch.minimize(obj, x0=[m.v], method=‘dogleg’)

lighting encoded in vc
appearance encoded in

• The appearance objective function has MANY local minima

• Pyramids of blurred images help

• The dimensionality of this objective is much bigger than the
geometric one

• Optimisation will be slower

• Open problems: Lighting optimisation? Occlusions?

Texture-based registration

scan model

gradient

scan model

gradient = 0

• The appearance objective function has MANY local minima

• Pyramids of blurred images help

• The dimensionality of this objective is much bigger than the
geometric one

• Optimisation will be slower

• Open problems: Lighting optimisation? Occlusions?

Texture-based registration

scan model

gradient

scan model

gradient

• The appearance objective function has MANY local minima

• Pyramids of blurred images help

• The dimensionality of this objective is much bigger than the
geometric one

• Optimisation will be slower

• Open problems: Lighting optimisation? Occlusions?

Texture-based registration

• The appearance objective function has MANY local minima

• Pyramids of blurred images help

• The dimensionality of this objective is much bigger than the
geometric one

• Optimisation will be slower

• Open problems: Lighting optimisation? Occlusions?

Texture-based registration

Take-home message

• Optimising SMPL pose and shape with chumpy is easy

• But the devil is in the details: point2surface, regularisers

• We can add color to our model either with per-vertex
colors, or texture maps

• Apart from making the model match the scan
geometrically, we can make it match in terms of COLOR

• OpenDR differentiates the rendering process for us

