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Todays topic

Recognition

I Motivation
I Image Categorization

I Bag-of-Words Model
I Spatial Pyramids

I Object Detection
I Implicit Shape Model (ISM)
I Sliding Window Detection
I Viola-Jones Detector
I Histogram of Oriented Gradients (HOG)
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What is object detection?
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Object detection vs. Categorization

Categorization:

I Determine what is in an image
(e.g., swiss alps)

I Ambiguous if multiple objects are present
(e.g., flying dogs, fence)

Object detection:

I Determine where an object is in an image
(e.g., we can draw bounding boxes around each dog)

I Possible for well-defined objects
(e.g., complex shapes can’t be well approximated with boxes)

I Not possible for “stuff” regions (e.g., grass, mountain, sky)
(but we can give labels to individual pixel ⇒ semantic segmentation)
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How many visual object categories are there?
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Dataset: Caltech 101

I ∼ 101 categories, 40− 800 images per category [Fei-Fei, 2004]
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Categorization: Image Description by Local Features

SIFT Feature Extraction: [Lowe, 2004]

I Detect keypoints (e.g., blobs in scale-space)
I Extract descriptor

I Extract patch
I Calculate gradients
I Create local histograms
I Normalize

I Robust wrt. slight transformations (translation, rotation, intensity)
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Categorization: Bag-of-Words

I Represent image by bag of patches/features [Fei-Fei, 2003]
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Categorization: Bag-of-Words

Bag-of-Words Approach:
I Learn “visual vocabulary” from large set of features
I Quantize all features in the image using this vocabulary
I Represent images by frequencies of “visual words”
I What is the problem with this representation?
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Categorization: Bag-of-Words

I Spatial information has been lost (i.e., where the patches came from)

I All images above are treated as being the same!
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Categorization: Spatial Pyramid Matching

level 0 level 1 level 2

I Locally orderless representation at multiple levels [Lazebnik, 2006]
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Caltech 101 - Average Images

Is Caltech 101 a challenging/realistic dataset?

I No or little clutter

I Objects are centered in the image

I Most objects presented in stereotypical pose
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Challenges in Object Detection
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Challenges in Object Detection

I Not centered, complex backgrounds, complex lighting, occlusions, ...
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PASCAL VOC

PASCAL VOC Dataset:
I ∼ 10, 000 images with ∼ 25, 000 objects
I Large photometric/viewpoint variation and intra-class variability
I Objects from 20 categories (person, car bicycle, cow, table, ...)
I Objects are annotated with labeled bounding boxes
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PASCAL VOC

[Everingham et al., 2005-2012]
http://pascallin.ecs.soton.ac.uk/challenges/VOC/

18 / 66

http://pascallin.ecs.soton.ac.uk/challenges/VOC/


Introduction ISM Sliding Window Detection Viola-Jones HoG+SVM

KITTI

[Geiger et al., 2012] http://www.cvlibs.net/datasets/kitti/
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Object Detection

From Image Categorization to Object Detection:

I Can we transfer ideas from categorization to detection? How?

I Yes, “categorize” each possible rectangle!

I However, objects convey more structural regularity than scenes,
thus such a model will not perform very well

I We need something more rigid, which can capture the local
and global shape of an object!
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Object Detection Overview

Object Detection Methods:
I Feature-based methods

I Implicit Shape Model

I Sliding-window-based methods
I Viola-Jones
I Dalal-Triggs
I DPM

I Proposal Regions + complex predictor (CNN)
I More about this in the last lecture!
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Implicit Shape Model
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Implicit Shape Model

[Leibe, 2004]

I Detect interest points, extract descriptors, match to codebook
I Cast vote according to associated spatial uncertainty
I Probabilistic Generalized Hough Transform (scale = 3rd dim.)
I Find modes using the mean shift algorithm
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Implicit Shape Model

y
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Binned
accum. array
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Refinement
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y

s

Scale votes

Efficient Continuous Generalized Hough Transform:

I Binned accumulator array similar to standard hough transform

I Quickly identify candidate maxima locations

I Refine locations by Mean-Shift (search only around identified maxima)

I Avoid quantization effects by keeping exact vote locations
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Implicit Shape Model: Example

Input Image
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Implicit Shape Model: Example

Interest Points
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Implicit Shape Model: Example

Matched Patches
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Implicit Shape Model: Example

Prob. Votes
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Implicit Shape Model: Example

1st Hypothesis
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Implicit Shape Model: Example

2nd Hypothesis
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Implicit Shape Model: Example

3rd Hypothesis
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Implicit Shape Model: Predicting other Modalities

Vote for Semantic Labels
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Implicit Shape Model: Predicting other Modalities

Vote for Semantic Labels
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Implicit Shape Model: Predicting other Modalities

Vote for Depth
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Sliding Window Detection
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Sliding Window Object Detection
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Viola-Jones Face Detector
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Face Detection
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Viola-Jones Detector

Viola Jones Face Detection: [Viola and Jones, 2001]

I Sliding window detector

I Idea 1: Use features/classifiers that are very fast to compute

I Idea 2: Quickly reject unlikely windows by cascade of decision

Examples

Stage 1
H1(x) > t1?

Reject

No

Yes
Stage 2

H2(x) > t2?
Stage N

HN(x) >tN?

Yes

… Pass

Reject

No

Reject

No

31 / 66



Introduction ISM Sliding Window Detection Viola-Jones HoG+SVM

Haar Features

Two-rectangle features Three-rectangle features Etc.

-1 +1

Haar Features:

I Differences of sums of intensities

I Large pool of possible features (24× 24 window ⇒ 160k features)

I Very fast to calculate! Why?
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Integral Images

I The integral image
computes a value S(x , y)
at each pixel which is the
sum of the pixel values
above and to the left

I This can be quickly
computed in one pass
through the image
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Integral Images

I Given the integral image,
how can we quickly
calculate the sum of
pixels within an arbitrary
rectangle?

I Consider the integral
values at the four corners
of the rectangle

I We have:
D−(B−A)−(C−A)−A =
D − B − C + A

I Only 3 operations
required for any rectangle!

I ⇒ Fast at all scales!
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Integral Images

I So how about this simple
Haar feature?

+

-
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Adaboost – Algorithm

Given: Dataset {(x1, y1), . . . , (xn, yn)} with labels yi ∈ {0, 1}
1. Initialize weights w uniformly
2. For t = 1 . . .T do:

2.1 Normalize weights w← w/w̄
2.2 Train a weak classifier (fj(x) = feature j evaluated on image x)

hj(x) = [pj fj(x) > pj θj ]

per feature dimension j wrt. the weighted 0/1 error (loss):

Ej ←
∑
i

wi |hj(xi )− yi |

2.3 Choose the classifier h∗t with the lowest error E∗
t

2.4 Update weights wi ← wi · β1−ei
t where ei = 0 if xi is

classified correctly, ei = 1 otherwise, and βt =
E∗
t

1−E∗
t

3. Final strong classifier:

H(x) =

[
T∑
t=1

log
1

βt
· h∗t (x) ≥ 1

2

T∑
t=1

log
1

βt

]
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Adaboost – Illustration

Weak
Classifier 1
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Adaboost – Illustration

Weights
Increased
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Classifier 2
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Adaboost – Illustration

Weak
Classifier 3
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Adaboost – Illustration

Final classifier is
a combination of weak
classifiers
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Feature Selection

The two most important features selected by the Adaboost algorithm:
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Boosting vs. SVM

Advantages of Boosting

I Feature selection during training

I Flexible in the choice of weak learners / boosting scheme

I Testing is very fast
(50 ms / 384× 288 Px image on Pentium III @ 700Mhz)

I Easy to implement

Disadvantages of Boosting

I Many training samples required

I Training is slow

I Performance often a bit worse than SVM
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Viola-Jones Detection Results
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Histogram of oriented Gradients
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Overview

Dalal-Triggs Method [Dalal and Triggs, 2005]:

I Goal: Detect and localize people in images

I Assumption: People are upright and fully visible

I Annotated dataset exists (supervised training)

I Difficulties: Pose+appearance variability, background, illumination

I Simple idea: Combine robust orientation histograms (popular in the
context of sparse feature descriptors) with linear SVM classifier
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Overview

5

Focus on building robust
feature sets (static & motion)

Fuse multiple
detections in 3-D

position & scale space

Extract features over
windows

Scan image(s) at all
scales and locations

Object detections with
bounding boxes

Detection Phase

`
Scale-space pyramid

Detection windowRun linear SVM
classifier on all

locations
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Feature Extraction
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HoG Descriptor

Feature vector
x = [... , ... , ... , ... ]

HoG Features:

I Sliding window of 8× 8 Px cells (stride: 8 Px)

I For each cell record distribution of gradients

I Cells combined into n × n blocks and renormalized

I Why not simply using a pixel intensity-based descriptor?

I Histograms of Gradients are invarieant to slight transformations
44 / 66



Introduction ISM Sliding Window Detection Viola-Jones HoG+SVM

HoG Descriptor

Parameters
Gradient scale
Orientation bins
Percentage of block
overlap ε+← 2

2
/ vvv

Schemes
RGB or Lab, colour/gray-space
Block normalisation
L2-norm,

or

L1-norm,
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HoG Descriptor
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Linear SVM

Linear Support Vector Machine Classifier:
I Learn a linear SVM classifier from an annotated dataset
I This yields the model parameters (feature weights) w
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Hard Example Mining (Search for False Positives)

9

Learn binary classifier

Encode images into feature
spaces

Create fixed-resolution
normalised training image

data set

Learning phase

Object/Non-object decision

Learn binary classifier

Encode images into feature
spaces

Resample negative training
images to create hard

examples

Input: Annotations on training
images

Retraining reduces false
positives by an order of

magnitude!
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Multi-Scale Object Localization

Apply robust mode detection,
like mean shift

x
y s

(i
n
lo
g)

Clip Detection Score

Multi-scale dense scan of
detection window

Final detections

Threshold

Bias
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Classification Score Map
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HoG Descriptor Weights

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

I Most important cues are head, shoulder, leg silhouettes

I Vertical gradients inside a person count negative

I Overlapping blocks around the contour are most important
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Datasets

INRIA person databaseMIT pedestrian database

Overall 709 annotations+
reflections

200 positive windows

Negative data unavailable

507 positive windows

Negative data unavailable

566 positive windows

453 negative images

1208 positive windows

1218 negative images

Overall 1774 annotations+
reflections
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Importance of Cell Size

4x4
6x6

8x8
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12x12

Cell size (pixels)

1x1
2x2

3x3
4x4 Block size (Cells)
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Figure 5. The miss rate at 10−4 FPPW as the cell and block sizes
change. The stride (block overlap) is xed at half of the block size.
3×3blocks of 6×6pixel cells perform best, with 10.4% miss rate.
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Influence of Parameters

Gradient smoothing, σ Orientation bins, β

Reducing gradient scale
from 3 to 0 decreases false
positives by 10 times

Increasing orientation bins
from 4 to 9 decreases false
positives by 10 times
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Influence of Parameters

Normalisation method Block overlap

Strong local normalisation
is essential

Overlapping blocks improve
performance, but descriptor
size increases
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Results
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Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.
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Results

More Results ...
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Failure Cases

149 missing detections on INRIA people dataset:

I 44 due to difficult contrast & backgrounds

I 43 due to occlusion & carried bags

I 37 due to unusual articulations

I 18 due to over-/underexposed images

I 7 due to images at wrong scale
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Failure Cases

149 false positives on INRIA people dataset:

I 54 due to vertical structure / street signs

I 31 due to cluttered background

I 28 due to too small scale (only body parts)

I 24 due to too large scale detections

I 12 due to people that are not annotated :-)
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HOGgles

When do HoG features fail? [Vondrick et al., 2013]

http://web.mit.edu/vondrick/ihog/
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HOGgles

HOGgles:

I Tool to visualize (high-dimensional) feature spaces

I Idea: Invert feature descriptors back to a natural image

I Provides intuitions about object detection features
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HOGgles

I Jointly learn a coupled basis of HoG features and natural images
I At test time:

I Project HoG vector onto a HoG basis
I Transfer coefficients to image basis
I Reconstruct natural image

x = Uα f = Vα

α∗ = argmin
α
‖Vα− f‖22

x: image patch, f: HoG feature vector

U,V: linear bases, α: coefficients
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HOGgles
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HOGgles
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HOGgles

How many cars do you see in this image?
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HOGgles

Which of these high scoring detections are false alarms?
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HOGgles

What do we loose by using the HoG representation?

RGB+Human

HOG+Human

HOG+DPM

Chair

P
re
ci
si
o
n

Recall
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