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Part-based Models

Todays topic

Object Detection

I Recap

I Part-based Models (DPM)

Object Tracking

I Introduction

I Bayes Filter

I Assignment Problem

I Graph-based Tracking
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Part-based Models
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Part-based Models

Structureless vs. Rigid Models

Deformable Part Models[P. Felzenszwalbet al, PAMI 2010]

Structureless Rigid

Bag of words

Dalal andTriggs,
CVPR 2005
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Part-based Models

Why Parts?

[Fergus, 2005]

Why do want to model parts?

I Useful to handle intra-class geometry variation

I Objects may be globally different but they have parts in common

I Model prior knowledge of relative location and size
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Part-based Models

Why Parts?

Deformable parts can handle slight variations in pose:

[Heisele et al, 2001]
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Part-based Models

Why Parts?

Easier to handle occlusions:

[Felzenszwalb et al, 2010]
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Part-based Models

Connectivity Structures
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F ig. 1. Graphical geometric models of priors. Note that Xi represents a model part.

[Carneiro & Lowe, 2006]
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Part-based Models

Connectivity Structures

Constellation Model [Fergus et al, 2003]

Efficient Pictorial Structures [Felzenszwalb&Huttenlocher, 2000]
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Part-based Models

Connectivity Structures

Implicit Shape Model [Leibeet al, 2004]

Poselets[Bourdevet al, 2009]
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Part-based Models

Deformable Part-based Model (DPM)

I 2-scale model
I Whole object (root)
I Deformable parts

I HoG representation +
SVM training to obtain
robust root and
part detectors

I Efficient algorithm for
detection

I [Felzenszwalb et al., 2010]
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Part-based Models

Deformable Part-based Model (DPM)

Models are fully trained from bounding boxes alone (weak labels).
The part locations are unknown (i.e., latent variables).
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Part-based Models

DPM Pedestrian and Bicycle Model

Different viewpoints are modeled using different models (=components).
Each component has a global template (root) + part templates.
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Part-based Models

DPM Bicycle Model with 2 Components

root filter
coarse resolution

part filter
finer resolution

deformation
models

Each component has a root filter F0 and n part filters (Fi ,vi ,di ).
13 / 35



Part-based Models

Multiscale Model captures Features at two Resolutions

Image pyramid HOG feature pyramid

p0 : location of root

p1,..., pn : location of parts

z = (p0,..., pn)

The score is a sum of filter scores minus part deformation costs.

14 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi
I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi
I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi
I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi
I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi

I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi
I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

The score is a sum of filter scores minus part deformation costs:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

where:

I p0, . . . ,pn denotes an object hypothesis, specified by root (i = 0)
and part (i ≥ 1) locations, with pi = (xi , yi , li )

T

I xi , yi denote pixel location
I li specifies the level in the pyramid

I f0, . . . , fn are learned filter weights of the model

I φ(pi ) are the HoG features for the region specified by pi
I di ∈ R2 are deformation parameters

I dxi , dyi denote the rel. displacement of pi from its anchor vi :

(dxi , dyi ) = (xi , yi )− (2(x0, y0) + vi )

15 / 35



Part-based Models

Score of a Hypothesis

DPM score from previous slide:

score(p0, . . . ,pn) =
n∑

i=0

fTi · φ(pi )−
n∑

i=1

dTi · (dx2i , dy2i )

This can be also written as a linear combination

score(p0, . . . ,pn) = βT · ψ(p0, . . . ,pn)

where:

I β = (f0, . . . , fn,d1, . . . ,dn)

I ψ(p0, . . . ,pn) = (φ(p0), . . . , φ(pn),−(dx21 , dy
2
1 ), . . . ,−(dx2n , dy

2
n ))

This illustrates the connection to linear classifiers:
The DPM learns the model parameters using the latent SVM framework.
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Part-based Models

Object Detection with DPM

Inference: Given a root location p0, calculate the detection score as:

score(p0) = max
p1,...,pn

score(p0, . . . ,pn)

= max
p1,...,pn

βT · ψ(p0, . . . ,pn)

= max
z

βT · ψ(p0, z)

I This maximizes the score by varying
the parts z = (p1, . . . ,pn)T given the root location p0

I High scoring root locations define detections

I This maximization (which is exponential in the number of parts n)
can be efficiently computed using dynamic programming and
generalized distance transforms

I Which graphical model/inference problem do we have here?
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Part-based Models

Fast Evaluation of Filter Responses

Head filter

Input image

Filter response at level l :
Rl(x , y) = fT · φ(x , y , l)

Transformed response:
Dl(x , y) =
maxdx ,dy (Rl(x + dx , y + dy)− dT · (dx2, dy2))
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Part-based Models

Pipeline

+

x
xx

...

...

...

model

response of root f lter

transformed responses

response of part f lters

feature map feature map at twice the resolution

combined score of
root locations

color encoding of f lter
response values

i

i

i
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Part-based Models

Detection Results

Detection results after non-maxima-suppression (mode finding)
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Part-based Models

Training a DPM Detector (Parameter Estimation)

Positive Samples

Negative Samples
Learning

Object Model

Root Parts Deformation

Given annotated images and background images we need to find:
I Root and part filter weights
I Deformation weights

21 / 35



Part-based Models

Latent SVM Training

Learn a classifier that scores an example p0 as

scoreβ(p0) = max
z

βT · ψ(p0, z)

where
I β are the model parameters from before

(filter and deformation weights)
I z = (p1, . . . ,pn) are latent values

I Training data: {(p(1)0 , y (1)), . . . , (p
(n)
0 , y (n))} with y (i) ∈ {−1,+1}

I We want to find β such that: y (i) · scoreβ(p
(i)
0 ) > 0

I Positive examples: pos. score, negative examples: neg. score

We minimize the following regularized latent SVM objective:

LD(β) =
1

2
‖β‖2︸ ︷︷ ︸

regularizer

+C
n∑

i=1

max
(

0, 1− y (i) · scoreβ(p
(i)
0 )
)

︸ ︷︷ ︸
loss function
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Part-based Models

Loss Functions

LD(β) =
1

2
‖β‖2︸ ︷︷ ︸

regularizer

+C
n∑

i=1

max
(

0, 1− y (i) · scoreβ(p
(i)
0 )
)

︸ ︷︷ ︸
loss function

I Hinge and logistic loss
approximate the
missclassification error!
(they are upper bounds)
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Part-based Models

Semi Convexity

We guaranteed to the find minimizer β∗ = argminβ LD(β) using gradient
decent if and exactly if LD(β) is convex! Is LD(β) convex?

I The sum and maximum of convex functions is convex

I scoreβ(p0) = maxz βT · ψ(p0, z) is convex in β! Why?

I max
(

0, 1− y (i) · scoreβ(p
(i)
0 )
)

is convex? Yes, iff y (i) < 0

I Thus

LD(β) =
1

2
‖β‖2 + C

n∑
i=1

max
(

0, 1− y (i) · scoreβ(p
(i)
0 )
)

is convex if all latent values for the positive examples are fixed!

I This is called “Semi Convexity” in [Felzenszwalb et al., 2010]
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Part-based Models

Optimization

LD(β) =
1

2
‖β‖2 + C

n∑
i=1

max
(

0, 1− y (i) · scoreβ(p
(i)
0 )
)

LD(β) is convex if we fix z for all positive examples (y (i) > 0)

I Alternating Optimization
I Initialize β and iterate:

1. Pick best z for each positive example
2. Add new hard negative examples by running the detector on

background images and collecting false detection with high scores
3. Throw away negative examples with low score
4. Optimize β via gradient descent

I The data mining / harvesting step is required as there exists an
extremely large number of negatives which can’t all be included
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Part-based Models

Training Procedure

I For one object category, several models (=components) are trained to
deal with significant appearance variations which can’t be handled by
the deformable part filters (e.g., front vs. side view)

I Coarse-to-fine training:
1. Train root filters

2. Initialize parts from root (greedy selection of strong coefficients)
3. Train final model
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Part-based Models

Trained DPM Models

Car Model
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Part-based Models

Trained DPM Models

Bottle Model

27 / 35



Part-based Models

Results on PASCAL VOC
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Part-based Models

Results on PASCAL VOC
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Part-based Models

Code and Datasets

Try it yourself!

I MATLAB code available at:
http://www.cs.berkeley.edu/~rbg/latent/

I Training requires about 4 hours for PASCAL

I Detection on one image runs in a few seconds

I Pre-trained models are available

Useful datasets:

I PASCAL VOC:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/

I KITTI:
http://www.cvlibs.net/datasets/kitti/eval_object.php
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Part-based Models

Results on KITTI

31 / 35



Part-based Models

Detecting 100k classes via Hashing [Dean, 2013]

Training:

I Learn part filters using
latent SVM

I Store index of each filter in
hash table

Detection:

I Lookup hash table and
retreive matching filters

I Detect objects using
sparse filter scores
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Part-based Models

Richer Hierarchies: Stochastic Grammars [Zhu & Mumford, 2007]

hands

and-node

or-node

frames numbers

clock

3 hands 2 hands Arabic Roman

hour
hand

minute
hand

second
hand

a1 a12

no
number

...

1 12...

r1 r12...

I XII...

leaf-node

... ...

no
frame

no
hand ...... ...

outer
ring

inner
ring

central
ring

no ring

33 / 35



Part-based Models

3D Urban Scene Understanding [Geiger at al., 2011-2013]

I Goal: Jointly infer from short videos (moving observer)
I Topology and geometry of the scene
I Semantic information (e.g., traffic situation)
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Part-based Models

3D Urban Scene Understanding [Geiger at al., 2011-2013]

http://www.cvlibs.net/projects/intersection/

http://www.cvlibs.net/software/trackbydet/
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