Graphical Models in Computer Vision

Gerard Pons-Moll

Max Planck Institute for Intelligent Systems Perceiving Systems

June 27, 2016

Syllabus

Todays topic

Object Detection

- \blacktriangleright Recap
- ▶ Part-based Models (DPM)
- Object Tracking
	- \blacktriangleright Introduction
	- \triangleright Bayes Filter
	- ▶ Assignment Problem
	- \blacktriangleright Graph-based Tracking

Part-based Models

Structureless vs. Rigid Models

[Fergus, 2005]

Why do want to model parts?

 \triangleright Useful to handle intra-class geometry variation

[Fergus, 2005]

Why do want to model parts?

- \triangleright Useful to handle intra-class geometry variation
- \triangleright Objects may be globally different but they have parts in common

[Fergus, 2005]

Why do want to model parts?

- \triangleright Useful to handle intra-class geometry variation
- \triangleright Objects may be globally different but they have parts in common
- \triangleright Model prior knowledge of relative location and size

Deformable parts can handle slight variations in pose:

Figure 1. Matching with a single template. The schematic template of a frontal face is shown in a). Slight rotations of the face in the image plane b) and in depth c) lead to considerable discrepancies between template and face.

Figure 2. Matching with a set of component templates. The schematic component templates for a frontal face are shown in a). Shifting the component templates can compensate for slight rotations of the face in the image plane b) and in depth c).

[Heisele et al, 2001]

Easier to handle occlusions:

[Felzenszwalb et al, 2010]

Connectivity Structures

F ig. 1. Graphical geometric models of priors. Note that Xi represents a model part. [Carneiro & Lowe, 2006]

Connectivity Structures

Constellation Model [Fergus et al, 2003]

Efficient Pictorial Structures [Felzenszwalb & Huttenlocher, 2000]

Connectivity Structures

Implicit Shape Model [Leibe et al, 2004]

Poselets [Bourdev et al, 2009]

- \blacktriangleright 2-scale model
	- ▶ Whole object (root)
	- \blacktriangleright Deformable parts

- \triangleright 2-scale model
	- \triangleright Whole object (root)
	- \triangleright Deformable parts
- \blacktriangleright HoG representation $+$ SVM training to obtain robust root and part detectors

- \triangleright 2-scale model
	- \triangleright Whole object (root)
	- \triangleright Deformable parts
- \blacktriangleright HoG representation $+$ SVM training to obtain robust root and part detectors
- \blacktriangleright Efficient algorithm for detection

- \triangleright 2-scale model
	- \triangleright Whole object (root)
	- \triangleright Deformable parts
- \blacktriangleright HoG representation $+$ SVM training to obtain robust root and part detectors
- \blacktriangleright Efficient algorithm for detection
- \blacktriangleright [Felzenszwalb et al., 2010]

Models are fully trained from bounding boxes alone (weak labels). The part locations are unknown *(i.e.*, latent variables).

DPM Pedestrian and Bicycle Model

Different viewpoints are modeled using different models (=components). Each component has a global template (root) + part templates.

DPM Bicycle Model with 2 Components

Each component has a root filter F_0 and n part filters (F_i, v_i, d_i) .

Multiscale Model captures Features at two Resolutions

The score is a sum of filter scores minus part deformation costs.

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

where:

 \blacktriangleright $\mathbf{p}_0, \ldots, \mathbf{p}_n$ denotes an object hypothesis, specified by root $(i = 0)$ and part $(i\geq 1)$ locations, with $\mathbf{p}_i=(x_i,y_i,l_i)^{\sf \scriptscriptstyle T}$

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

- \blacktriangleright $\mathbf{p}_0, \ldots, \mathbf{p}_n$ denotes an object hypothesis, specified by root $(i = 0)$ and part $(i\geq 1)$ locations, with $\mathbf{p}_i=(x_i,y_i,l_i)^{\sf \scriptscriptstyle T}$
	- \blacktriangleright x_i, y_i denote pixel location
	- \blacktriangleright l_i specifies the level in the pyramid

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

- \blacktriangleright $\mathbf{p}_0, \ldots, \mathbf{p}_n$ denotes an object hypothesis, specified by root $(i = 0)$ and part $(i\geq 1)$ locations, with $\mathbf{p}_i=(x_i,y_i,l_i)^{\sf \scriptscriptstyle T}$
	- \blacktriangleright x_i, y_i denote pixel location
	- \blacktriangleright l_i specifies the level in the pyramid
- \triangleright f_0, \ldots, f_n are learned filter weights of the model

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

- \blacktriangleright $\mathbf{p}_0, \ldots, \mathbf{p}_n$ denotes an object hypothesis, specified by root $(i = 0)$ and part $(i\geq 1)$ locations, with $\mathbf{p}_i=(x_i,y_i,l_i)^{\sf \scriptscriptstyle T}$
	- \blacktriangleright x_i, y_i denote pixel location
	- \blacktriangleright l_i specifies the level in the pyramid
- \triangleright f_0, \ldots, f_n are learned filter weights of the model
- \blacktriangleright $\phi(\mathbf{p}_i)$ are the HoG features for the region specified by \mathbf{p}_i

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

- \blacktriangleright $\mathbf{p}_0, \ldots, \mathbf{p}_n$ denotes an object hypothesis, specified by root $(i = 0)$ and part $(i\geq 1)$ locations, with $\mathbf{p}_i=(x_i,y_i,l_i)^{\sf \scriptscriptstyle T}$
	- \blacktriangleright x_i, y_i denote pixel location
	- \blacktriangleright l_i specifies the level in the pyramid
- \triangleright f_0, \ldots, f_n are learned filter weights of the model
- \blacktriangleright $\phi(\mathbf{p}_i)$ are the HoG features for the region specified by \mathbf{p}_i
- \blacktriangleright $\mathbf{d}_i \in \mathbb{R}^2$ are deformation parameters

The score is a sum of filter scores minus part deformation costs:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

- \blacktriangleright $\mathbf{p}_0, \ldots, \mathbf{p}_n$ denotes an object hypothesis, specified by root $(i = 0)$ and part $(i\geq 1)$ locations, with $\mathbf{p}_i=(x_i,y_i,l_i)^{\sf \scriptscriptstyle T}$
	- \blacktriangleright x_i, y_i denote pixel location
	- \blacktriangleright l_i specifies the level in the pyramid
- \triangleright f_0, \ldots, f_n are learned filter weights of the model
- \blacktriangleright $\phi(\mathbf{p}_i)$ are the HoG features for the region specified by \mathbf{p}_i
- \blacktriangleright $\mathbf{d}_i \in \mathbb{R}^2$ are deformation parameters
- \blacktriangleright dx_i, dy_i denote the rel. displacement of \mathbf{p}_i from its anchor \mathbf{v}_i :

$$
(dx_i, dy_i) = (x_i, y_i) - (2(x_0, y_0) + \mathbf{v}_i)
$$

DPM score from previous slide:

score(
$$
\mathbf{p}_0, \ldots, \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

DPM score from previous slide:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

This can be also written as a linear combination

score(
$$
\mathbf{p}_0, \ldots, \mathbf{p}_n
$$
) = $\boldsymbol{\beta}^T \cdot \psi(\mathbf{p}_0, \ldots, \mathbf{p}_n)$

DPM score from previous slide:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

This can be also written as a linear combination

score(
$$
\mathbf{p}_0, \ldots, \mathbf{p}_n
$$
) = $\boldsymbol{\beta}^T \cdot \psi(\mathbf{p}_0, \ldots, \mathbf{p}_n)$

$$
\blacktriangleright \; \boldsymbol{\beta} = \big(\mathbf{f}_0, \ldots, \mathbf{f}_n, \mathbf{d}_1, \ldots, \mathbf{d}_n\big)
$$

DPM score from previous slide:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

This can be also written as a linear combination

score(
$$
\mathbf{p}_0, \ldots, \mathbf{p}_n
$$
) = $\boldsymbol{\beta}^T \cdot \psi(\mathbf{p}_0, \ldots, \mathbf{p}_n)$

►
$$
\beta = (f_0, ..., f_n, d_1, ..., d_n)
$$

\n► $\psi(\mathbf{p}_0, ..., \mathbf{p}_n) = (\phi(\mathbf{p}_0), ..., \phi(\mathbf{p}_n), -(dx_1^2, dy_1^2), ..., -(dx_n^2, dy_n^2))$

DPM score from previous slide:

score(
$$
\mathbf{p}_0, ..., \mathbf{p}_n
$$
) = $\sum_{i=0}^n \mathbf{f}_i^T \cdot \phi(\mathbf{p}_i) - \sum_{i=1}^n \mathbf{d}_i^T \cdot (dx_i^2, dy_i^2)$

This can be also written as a linear combination

score(
$$
\mathbf{p}_0, \ldots, \mathbf{p}_n
$$
) = $\boldsymbol{\beta}^T \cdot \psi(\mathbf{p}_0, \ldots, \mathbf{p}_n)$

where:

►
$$
\beta = (f_0, ..., f_n, d_1, ..., d_n)
$$

\n► $\psi(p_0, ..., p_n) = (\phi(p_0), ..., \phi(p_n), -(dx_1^2, dy_1^2), ..., -(dx_n^2, dy_n^2))$

This illustrates the connection to linear classifiers:

The DPM learns the model parameters using the latent SVM framework.

Object Detection with DPM

Inference: Given a root location p_0 , calculate the detection score as:

$$
\begin{array}{rcl}\n\text{score}(\mathbf{p}_0) & = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \text{score}(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \beta^T \cdot \psi(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})\n\end{array}
$$

Object Detection with DPM

Inference: Given a root location p_0 , calculate the detection score as:

$$
\begin{array}{rcl}\n\text{score}(\mathbf{p}_0) & = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \text{score}(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \beta^T \cdot \psi(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})\n\end{array}
$$

 \blacktriangleright This maximizes the score by varying the parts $\mathsf{z}=(\mathsf{p}_1,\ldots,\mathsf{p}_n)^{\mathsf{T}}$ given the root location p_0

Object Detection with DPM

Inference: Given a root location p_0 , calculate the detection score as:

$$
\begin{array}{rcl}\n\text{score}(\mathbf{p}_0) & = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \text{score}(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \beta^T \cdot \psi(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})\n\end{array}
$$

- \triangleright This maximizes the score by varying the parts $\mathsf{z}=(\mathsf{p}_1,\ldots,\mathsf{p}_n)^{\mathsf{T}}$ given the root location p_0
- \blacktriangleright High scoring root locations define detections
Object Detection with DPM

Inference: Given a root location p_0 , calculate the detection score as:

$$
\begin{array}{rcl}\n\text{score}(\mathbf{p}_0) & = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \text{score}(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \beta^T \cdot \psi(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})\n\end{array}
$$

- \blacktriangleright This maximizes the score by varying the parts $\mathsf{z}=(\mathsf{p}_1,\ldots,\mathsf{p}_n)^{\mathsf{T}}$ given the root location p_0
- \blacktriangleright High scoring root locations define detections
- \blacktriangleright This maximization (which is exponential in the number of parts n) can be efficiently computed using dynamic programming and generalized distance transforms

Object Detection with DPM

Inference: Given a root location p_0 , calculate the detection score as:

$$
\begin{array}{rcl}\n\text{score}(\mathbf{p}_0) & = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \text{score}(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{p}_1, \dots, \mathbf{p}_n} \beta^T \cdot \psi(\mathbf{p}_0, \dots, \mathbf{p}_n) \\
& = & \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})\n\end{array}
$$

- \blacktriangleright This maximizes the score by varying the parts $\mathsf{z}=(\mathsf{p}_1,\ldots,\mathsf{p}_n)^{\mathsf{T}}$ given the root location p_0
- \blacktriangleright High scoring root locations define detections
- \blacktriangleright This maximization (which is exponential in the number of parts n) can be efficiently computed using dynamic programming and generalized distance transforms
- \triangleright Which graphical model/inference problem do we have here?

Fast Evaluation of Filter Responses

Head filter

Input image

Filter response at level /: $R_l(x, y) = \mathbf{f}^T \cdot \phi(x, y, l)$

Transformed response: $D_l(x, y) =$ max $_{dx,dy}(R_l(x + dx, y + dy) - d^T \cdot (dx^2, dy^2))$

Pipeline

Detection Results

Detection results after non-maxima-suppression (mode finding)

Training a DPM Detector (Parameter Estimation)

Given annotated images and background images we need to find:

- \triangleright Root and part filter weights
- \triangleright Deformation weights

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\beta}(\mathbf{p}_0) = \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\beta}(\mathbf{p}_0) = \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

where

 \triangleright β are the model parameters from before (filter and deformation weights)

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\beta}(\mathbf{p}_0) = \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

- \triangleright β are the model parameters from before (filter and deformation weights)
- \triangleright **z** = $(\mathbf{p}_1, \ldots, \mathbf{p}_n)$ are latent values

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\beta}(\mathbf{p}_0) = \max_{\mathbf{z}} \beta^T \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

- \triangleright β are the model parameters from before (filter and deformation weights)
- \triangleright **z** = $(\mathbf{p}_1, \ldots, \mathbf{p}_n)$ are latent values
- \blacktriangleright Training data: $\{(\mathbf{p}_0^{(1)}\)$ $\mathfrak{g}^{(1)}_0,$ $y^{(1)}), \ldots,$ $(\mathsf{p}_0^{(n)})$ ${n \choose 0}, y^{(n)}\}$ with $y^{(i)} \in \{-1, +1\}$

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\boldsymbol{\beta}}(\mathbf{p}_0) = \max_{\mathbf{z}} \, \boldsymbol{\beta}^{\mathcal{T}} \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

- \triangleright β are the model parameters from before (filter and deformation weights)
- \triangleright **z** = $(\mathbf{p}_1, \ldots, \mathbf{p}_n)$ are latent values
- \blacktriangleright Training data: $\{(\mathbf{p}_0^{(1)}\)$ $\mathfrak{g}^{(1)}_0,$ $y^{(1)}), \ldots,$ $(\mathsf{p}_0^{(n)})$ ${n \choose 0}, y^{(n)}\}$ with $y^{(i)} \in \{-1, +1\}$
- \blacktriangleright We want to find β such that: $\mathbf{y}^{(i)} \cdot \mathsf{score}_{\beta}(\mathbf{p}_0^{(i)})$ $\binom{17}{0} > 0$

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\boldsymbol{\beta}}(\mathbf{p}_0) = \max_{\mathbf{z}} \, \boldsymbol{\beta}^{\mathcal{T}} \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

- \triangleright β are the model parameters from before (filter and deformation weights)
- \triangleright **z** = $(\mathbf{p}_1, \ldots, \mathbf{p}_n)$ are latent values
- \blacktriangleright Training data: $\{(\mathbf{p}_0^{(1)}\)$ $\mathfrak{g}^{(1)}_0,$ $y^{(1)}), \ldots,$ $(\mathsf{p}_0^{(n)})$ ${n \choose 0}, y^{(n)}\}$ with $y^{(i)} \in \{-1, +1\}$
- \blacktriangleright We want to find β such that: $\mathbf{y}^{(i)} \cdot \mathsf{score}_{\beta}(\mathbf{p}_0^{(i)})$ $\binom{17}{0} > 0$
- Positive examples: pos. score, negative examples: neg. score

Learn a classifier that scores an example p_0 as

$$
\mathsf{score}_{\boldsymbol{\beta}}(\mathbf{p}_0) = \max_{\mathbf{z}} \, \boldsymbol{\beta}^{\mathcal{T}} \cdot \psi(\mathbf{p}_0, \mathbf{z})
$$

where

- \triangleright β are the model parameters from before (filter and deformation weights)
- \blacktriangleright **z** = $(\mathbf{p}_1, \ldots, \mathbf{p}_n)$ are latent values
- \blacktriangleright Training data: $\{(\mathbf{p}_0^{(1)}\)$ $\mathfrak{g}^{(1)}_0,$ $y^{(1)}), \ldots,$ $(\mathsf{p}_0^{(n)})$ ${n \choose 0}, y^{(n)}\}$ with $y^{(i)} \in \{-1, +1\}$
- \blacktriangleright We want to find β such that: $\mathbf{y}^{(i)} \cdot \mathsf{score}_{\beta}(\mathbf{p}_0^{(i)})$ $\binom{17}{0} > 0$
- Positive examples: pos. score, negative examples: neg. score

We minimize the following regularized latent SVM objective:

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

 \blacktriangleright Hinge and logistic loss approximate the missclassification error! (they are upper bounds)

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

- \blacktriangleright Hinge and logistic loss approximate the missclassification error! (they are upper bounds)
- \blacktriangleright Important properties:
	- \blacktriangleright Robustness

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

- \blacktriangleright Hinge and logistic loss approximate the missclassification error! (they are upper bounds)
- \blacktriangleright Important properties:
	- \blacktriangleright Robustness
	- \triangleright Convexity

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

- \blacktriangleright Hinge and logistic loss approximate the missclassification error! (they are upper bounds)
- \blacktriangleright Important properties:
	- \blacktriangleright Robustness
	- \triangleright Convexity
	- \blacktriangleright Smoothness

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

- \blacktriangleright Hinge and logistic loss approximate the missclassification error! (they are upper bounds)
- \blacktriangleright Important properties:
	- \blacktriangleright Robustness
	- \triangleright Convexity
	- \blacktriangleright Smoothness
- \triangleright 0-1 loss NP hard

$$
L_D(\beta) = \underbrace{\frac{1}{2} ||\beta||^2}_{\text{regularizer}} + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)}_{\text{loss function}}
$$

- \blacktriangleright Hinge and logistic loss approximate the missclassification error! (they are upper bounds)
- \blacktriangleright Important properties:
	- \blacktriangleright Robustness
	- \triangleright Convexity
	- \blacktriangleright Smoothness
- \triangleright 0-1 loss NP hard
- \triangleright SVM uses Hinge loss

We guaranteed to the find minimizer $\boldsymbol{\beta}^* = \mathsf{argmin}_\boldsymbol{\beta} \, L_D(\boldsymbol{\beta})$ using gradient decent if and exactly if $L_D(\beta)$ is convex! Is $L_D(\beta)$ convex?

 \triangleright The sum and maximum of convex functions is convex

- \triangleright The sum and maximum of convex functions is convex
- \blacktriangleright score $_\beta(\mathsf{p}_0) = \mathsf{max}_{\mathsf{z}} \; \beta^{\mathsf{T}} \cdot \psi(\mathsf{p}_0, \mathsf{z})$ is convex in $\beta!$ Why?

- \triangleright The sum and maximum of convex functions is convex
- \blacktriangleright score $_\beta(\mathsf{p}_0) = \mathsf{max}_{\mathsf{z}} \; \beta^{\mathsf{T}} \cdot \psi(\mathsf{p}_0, \mathsf{z})$ is convex in $\beta!$ Why?
- \blacktriangleright $\max\left(0,1-y^{(i)}\cdot\textsf{score}_{\beta}(\textsf{p}_{0}^{(i)}\right)$ $\binom{\binom{r}{0}}{0}$ is convex?

- \triangleright The sum and maximum of convex functions is convex
- \blacktriangleright score $_\beta(\mathsf{p}_0) = \mathsf{max}_{\mathsf{z}} \; \beta^{\mathsf{T}} \cdot \psi(\mathsf{p}_0, \mathsf{z})$ is convex in $\beta!$ Why?
- \blacktriangleright $\max\left(0,1-y^{(i)}\cdot\textsf{score}_{\beta}(\textsf{p}_{0}^{(i)}\right)$ $\binom{(i)}{0}$) is convex? Yes, iff $y^{(i)} < 0$

We guaranteed to the find minimizer $\boldsymbol{\beta}^* = \mathsf{argmin}_\boldsymbol{\beta} \, L_D(\boldsymbol{\beta})$ using gradient decent if and exactly if $L_D(\beta)$ is convex! Is $L_D(\beta)$ convex?

- \triangleright The sum and maximum of convex functions is convex
- \blacktriangleright score $_\beta(\mathsf{p}_0) = \mathsf{max}_{\mathsf{z}} \; \beta^{\mathsf{T}} \cdot \psi(\mathsf{p}_0, \mathsf{z})$ is convex in $\beta!$ Why?
- \blacktriangleright $\max\left(0,1-y^{(i)}\cdot\textsf{score}_{\beta}(\textsf{p}_{0}^{(i)}\right)$ $\binom{(i)}{0}$) is convex? Yes, iff $y^{(i)} < 0$
- \blacktriangleright Thus

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

is convex if all latent values for the positive examples are fixed!

We guaranteed to the find minimizer $\boldsymbol{\beta}^* = \mathsf{argmin}_\boldsymbol{\beta} \, L_D(\boldsymbol{\beta})$ using gradient decent if and exactly if $L_D(\beta)$ is convex! Is $L_D(\beta)$ convex?

- \triangleright The sum and maximum of convex functions is convex
- \blacktriangleright score $_\beta(\mathsf{p}_0) = \mathsf{max}_{\mathsf{z}} \; \beta^{\mathsf{T}} \cdot \psi(\mathsf{p}_0, \mathsf{z})$ is convex in $\beta!$ Why?
- \blacktriangleright $\max\left(0,1-y^{(i)}\cdot\textsf{score}_{\beta}(\textsf{p}_{0}^{(i)}\right)$ $\binom{(i)}{0}$) is convex? Yes, iff $y^{(i)} < 0$

 \blacktriangleright Thus

$$
L_D(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)
$$

is convex if all latent values for the positive examples are fixed! \triangleright This is called "Semi Convexity" in [Felzenszwalb et al., 2010]

$$
L_D(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\beta}(\mathbf{p}_0^{(i)})\right)
$$

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

 $L_D(\beta)$ is convex if we fix **z** for all positive examples $(y^{(i)}>0)$

 \blacktriangleright Alternating Optimization

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

- \blacktriangleright Alternating Optimization
	- Initialize β and iterate:
		- 1. Pick best z for each positive example

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

- \blacktriangleright Alternating Optimization
	- Initialize β and iterate:
		- 1. Pick best z for each positive example
		- 2. Add new hard negative examples by running the detector on background images and collecting false detection with high scores

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

- \blacktriangleright Alternating Optimization
	- Initialize β and iterate:
		- 1. Pick best z for each positive example
		- 2. Add new hard negative examples by running the detector on background images and collecting false detection with high scores
		- 3. Throw away negative examples with low score

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

- \blacktriangleright Alternating Optimization
	- Initialize β and iterate:
		- 1. Pick best z for each positive example
		- 2. Add new hard negative examples by running the detector on background images and collecting false detection with high scores
		- 3. Throw away negative examples with low score
		- 4. Optimize β via gradient descent

$$
L_D(\boldsymbol{\beta}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \max\left(0, 1 - y^{(i)} \cdot \text{score}_{\boldsymbol{\beta}}(\mathbf{p}_0^{(i)})\right)
$$

- \blacktriangleright Alternating Optimization
	- Initialize β and iterate:
		- 1. Pick best z for each positive example
		- 2. Add new hard negative examples by running the detector on background images and collecting false detection with high scores
		- 3. Throw away negative examples with low score
		- 4. Optimize β via gradient descent
- \triangleright The data mining / harvesting step is required as there exists an extremely large number of negatives which can't all be included

Training Procedure

 \triangleright For one object category, several models (=components) are trained to deal with significant appearance variations which can't be handled by the deformable part filters ($e.g.,$ front vs. side view)

Training Procedure

- \triangleright For one object category, several models (=components) are trained to deal with significant appearance variations which can't be handled by the deformable part filters ($e.g.,$ front vs. side view)
- \triangleright Coarse-to-fine training:
	- 1. Train root filters

Training Procedure

- \triangleright For one object category, several models ($=$ components) are trained to deal with significant appearance variations which can't be handled by the deformable part filters (e.g., front vs. side view)
- \triangleright Coarse-to-fine training:
	- 1. Train root filters
	- 2. Initialize parts from root (greedy selection of strong coefficients)

Training Procedure

- \triangleright For one object category, several models ($=$ components) are trained to deal with significant appearance variations which can't be handled by the deformable part filters (e.g., front vs. side view)
- \triangleright Coarse-to-fine training:
	- 1. Train root filters
	- 2. Initialize parts from root (greedy selection of strong coefficients)
	- 3. Train final model

Car Model

Person Model

Cat Model

Bottle Model

root filters coarse resolution

part filters finer resolution deformation models

high scoring true positives

high scoring false positives

high scoring true positives

high scoring false positives (not enough overlap)

high scoring true positives

high scoring false positives

high scoring true positives

high scoring false positives (not enough overlap)

Precision/Recall results on Person 2008

Precision/Recall results on Bird 2008

Code and Datasets

Try it yourself!

- \triangleright MATLAB code available at: <http://www.cs.berkeley.edu/~rbg/latent/>
- \triangleright Training requires about 4 hours for PASCAL
- \triangleright Detection on one image runs in a few seconds
- \blacktriangleright Pre-trained models are available

Code and Datasets

Try it yourself!

- \triangleright MATLAB code available at: <http://www.cs.berkeley.edu/~rbg/latent/>
- \triangleright Training requires about 4 hours for PASCAL
- \triangleright Detection on one image runs in a few seconds
- \blacktriangleright Pre-trained models are available

Useful datasets:

 \triangleright PASCAL VOC:

<http://pascallin.ecs.soton.ac.uk/challenges/VOC/>

 \triangleright KITTI \cdot

http://www.cvlibs.net/datasets/kitti/eval_object.php

Results on KITTI

Detecting 100k classes via Hashing [Dean, 2013]

Training:

- \blacktriangleright Learn part filters using latent SVM
- \triangleright Store index of each filter in hash table

Detecting 100k classes via Hashing [Dean, 2013]

Training:

- \blacktriangleright Learn part filters using latent SVM
- \triangleright Store index of each filter in hash table

Detection:

- \blacktriangleright Lookup hash table and retreive matching filters
- \triangleright Detect objects using sparse filter scores

Richer Hierarchies: Stochastic Grammars [Zhu & Mumford, 2007]

3D Urban Scene Understanding [Geiger at al., 2011-2013]

 \triangleright Goal: Jointly infer from short videos (moving observer)

- \triangleright Topology and geometry of the scene
- \triangleright Semantic information (e.g., traffic situation)

3D Urban Scene Understanding [Geiger at al., 2011-2013]

<http://www.cvlibs.net/projects/intersection/> <http://www.cvlibs.net/software/trackbydet/>