Graphical Models in Computer Vision

Andreas Geiger

Max Planck Institute for Intelligent Systems Perceiving Systems

July 4, 2016

Syllabus

Todays topic

What have we learned so far?

- \triangleright Graphical Models
	- \triangleright Belief Networks
	- \blacktriangleright Markov Networks
	- ► Factor Graphs
- \blacktriangleright Inference (Marginals, MAP)
	- \triangleright Belief Propagation
	- \triangleright Sampling
- \blacktriangleright Parameter Learning
	- \blacktriangleright Maximum-Likelihood
	- \blacktriangleright Max-Margin Methods
- \blacktriangleright Running Example
	- \blacktriangleright Human Pose Estimation

What's up for today?

Stereo

Slide credits: Robert Collins, Rob Fergus, Stefan Roth, Antonio Torralba

What is Vision?

"Vision is the act of knowing what is where by looking" – Aristotle

Special emphasis:

- \triangleright Relationship between 3D world and a 2D image
- \blacktriangleright Location and identity of objects.

Why is Computer Vision Hard?

- \triangleright Knowing the geometry, material and lighting conditions it is well-understood how to generate the value at each pixel (computer graphics)
- \blacktriangleright However, this confluence of factors contributing to each pixel can not be easily decomposed. The process can not be inverted!

Experiment

- \blacktriangleright I am going to show you several images from the same scene/viewpoint
- \blacktriangleright I am going to change the light conditions
- \blacktriangleright Tell me what you see!

- \triangleright Congratulations! You just did something mathematically impossible!
- \blacktriangleright How? You used assumptions based on prior knowledge / experience about the way the world works.

Let's make it a bit harder ...

What about this one?

Which square is brighter? A or B?

Do you know this guy?

Here is another one ...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100.

July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Which cues do we as humans have available in order to recover depth from images of the 3D world?

- \triangleright Occlusion
- \blacktriangleright Parallax
- \blacktriangleright Perspective
- \blacktriangleright Accomodation
- \triangleright Stereopsis

- \triangleright Occlusion
- \blacktriangleright Parallax
- \blacktriangleright Perspective
- \triangleright Accomodation
- \triangleright Stereopsis

- \triangleright Occlusion
- \blacktriangleright Parallax
- \blacktriangleright Perspective
- \blacktriangleright Accomodation
- \triangleright Stereopsis

- \triangleright Occlusion
- \blacktriangleright Parallax
- \blacktriangleright Perspective
- \blacktriangleright Accomodation
- \triangleright Stereopsis

In general, this is an ill-posed problem, but there are several cues:

- \triangleright Occlusion
- \blacktriangleright Parallax
- \blacktriangleright Perspective
- \blacktriangleright Accomodation
- \triangleright Stereopsis

Our topic for today!

Why Binocular Stereopsis?

Why Binocular Stereopsis?

Computational Stereo

Computational Stereo

Multi-View Reconstruction

[Building Rome in a Day – Agarwal et al. 2011]

Projective Geometry

 \triangleright Recovery of structure from one image is ambiguous

- \triangleright Assumption: Undistorted images (no lens distortion)
- \triangleright 2D projection: Intersection of viewing ray with the image plane

- $X, Y, Z: 3D$ coordinates
- \triangleright x, y: 2D image coordinates
- \blacktriangleright f: focal length
- \blacktriangleright 3D to 2D projection π :

$$
\pi: \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f X/Z \\ f Y/Z \end{pmatrix}
$$

- If Its this projection a linear mapping?
- \triangleright No (division by Z)! Can we somehow "make it" linear?
- \triangleright Yes: **Homogeneous coordinates** (add one more coordinate)
- \triangleright Conversion to homogeneous coordinates:

$$
\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \Rightarrow \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}
$$

 \triangleright Conversion from homogeneous coordinates:

$$
\begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} \Rightarrow \begin{pmatrix} X/W \\ Y/W \\ Z/W \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ w \end{pmatrix} \Rightarrow \begin{pmatrix} x/w \\ y/w \end{pmatrix}
$$

 \triangleright Which homogeneous coordinates are equivalent?

 $\triangleright \pi_H$ can be written as a linear function of the projection matrix **P**:

$$
\underbrace{\begin{pmatrix} f X \\ f Y \\ Z \end{pmatrix}}_{\mathbf{x} \in \mathbb{R}^3} = \underbrace{\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{P} \in \mathbb{R}^{3 \times 4}} \cdot \underbrace{\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}}_{\mathbf{X} \in \mathbb{R}^4}
$$

 \blacktriangleright Principal point $\mathbf{p}=(c_{\mathsf{x}}, c_{\mathsf{y}})^{\mathsf{T}}$: Point where the principal axis intersects the image plane (origin of normalized coordinate system)

$$
\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \mapsto \begin{pmatrix} f X/Z + c_x \\ f Y/Z + c_y \end{pmatrix} \Rightarrow \underbrace{\begin{pmatrix} f X + c_x Z \\ f Y + c_y Z \\ Z \end{pmatrix}}_{\mathbf{x} \in \mathbb{R}^3} = \underbrace{\begin{pmatrix} f & 0 & c_x & 0 \\ 0 & f & c_y & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{P} \in \mathbb{R}^{3 \times 4}} \cdot \underbrace{\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}}_{\mathbf{X} \in \mathbb{R}^4}
$$

 \triangleright Considering also the pose of the camera wrt. world coordinates:

$$
\begin{pmatrix}\nX \\
Y \\
Z \\
1\n\end{pmatrix} = \begin{pmatrix}\nR & L \\
E^{3\times 3} & E^{3\times 1} \\
0 & 0 & 1\n\end{pmatrix} \cdot \begin{pmatrix}\nX_w \\
Y_w \\
Z_w \\
1\n\end{pmatrix}
$$
\n
$$
\Rightarrow \begin{pmatrix}\nf X + c_x Z \\
Y + c_y Z \\
Z\n\end{pmatrix} = \underbrace{\begin{pmatrix}\nf & 0 & c_x & 0 \\
0 & f & c_y & 0 \\
0 & 0 & 1 & 0\n\end{pmatrix}}_{\mathbf{p}'} \cdot \begin{pmatrix}\nR & L \\
E^{3\times 3} & E^{3\times 1} \\
0 & 0 & 0 & 1\n\end{pmatrix}}_{\mathbf{p}'} \cdot \begin{pmatrix}\nX_w \\
Y_w \\
Z_w \\
Z_w \\
1\n\end{pmatrix}
$$

Camera Calibration

How to obtain these parameters for a given camera?

- \triangleright Closed form approximation of intrinsics (f, c_x, c_y)
- \triangleright Non-linear optimization of intrinsics (f, c_x, c_y) and extrinsics (\mathbf{R}, \mathbf{t})
- \triangleright Several algorithms available (Zhang, Bouget, OpenCV)
- Online toolbox: <www.cvlibs.net/software/calibration>

Stereo Reconstruction

Task

 \triangleright Construct a 3D model from 2 images of a calibrated camera

Pipeline:

- 1. Find a set of corresponding points
- 2. Estimate the epipolar geometry
- 3. Rectify both images
- 4. Dense feature matching
- 5. 3D reconstruction

Epipolar Geometry

- \blacktriangleright $\mathsf{X} \in \mathbb{R}^4$: Homogeneous point in the 3D world
- ► $P, P' \in \mathbb{R}^{3 \times 4}$: Projection matrices $(x = PX, x' = P'X)$
- \blacktriangleright $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^3$: Homogeneous 2D pixel coordinates
- \triangleright C, C': Camera center / focal point

Epipolar Geometry

- \triangleright Lets assume the camera parameters and geometry is known!
- \triangleright Given a projection of a 3D point in the left image
- \triangleright Where is it located in 3D?
- \triangleright On the epipolar line defined by this point and the camera centers
- \triangleright Reduces the search problem to 1D!

 C^I

΄x

 e^{\prime}

 \blacktriangleright $\overline{\mathsf{CC'}}$: Baseline (translation between cameras)

- \blacktriangleright e, e': Epipole (intersection of image plane with baseline)
- \blacktriangleright I, I': Epipolar line (intersection of image plane with epipolar plane)

Epipolar Geometry

- \triangleright Each 3D point defines an epipolar plane (in combination with both camera centers). The set of planes is called "epipolar pencil".
- \triangleright All epipolar lines pass through the epipole
Epipolar Geometry

- \triangleright Each 3D point defines an epipolar plane (in combination with both camera centers). The set of planes is called "epipolar pencil".
- \triangleright All epipolar lines pass through the epipole

Epipolar Geometry

What if both cameras face the same direction?

- \blacktriangleright Epipoles are at infinity, epipolar lines are parallel
- \triangleright Correspondences along "scanlines" (simplifies computation)

Image Disparity

► The displacement between pixels is called "disparity": $d = x - x'$

Image Disparity

► The displacement between pixels is called "disparity": $d = x - x'$

X

Triangulation

How to recover a 3D point from two corresponding image points?

- \triangleright Equal triangles (only when image planes are parallel)
- ► Using the definition $d = x x'$:

$$
\frac{Z - f}{B - (x - x')} = \frac{Z}{B}
$$

\n
$$
ZB - fB = ZB - Z(x - x')
$$

\n
$$
Z = \frac{fB}{x - x'} = \frac{fB}{d}
$$

\n
$$
d = \frac{fB}{Z}
$$

\n
$$
Q'
$$

\n<math display="block</math>

 z

Rectification

What if the images are not in the required setup?

- \triangleright Rewarp them such that they are! ("Rectification")
- \triangleright Map both image planes to a common plane parallel to the baseline using a "homography" (using homogeneous coordinates!)

Correspondences Unrectified vs. Rectified

Correspondence Ambiguity

- \triangleright Even when constrained to 1D many matching hypotheses exist
- \triangleright Which one is correct?

Correspondence Ambiguity

How to determine if two image points correspond?

- \blacktriangleright Assume that they look "similar"
- \triangleright A single pixel does not reveal the local structure (ambiguities)
- \triangleright Compare a small image region/patch!
- But even then the task is difficult:

Normalized Correlation

Normalized Correlation

- \triangleright w_L and w_R are corresponding $m \times m$ windows of pixels
- \blacktriangleright We can write them as vectors: $\bm{{\mathsf{w}}}_L, \bm{{\mathsf{w}}}_R \in \mathbb{R}^{m^2}$
- \triangleright Normalized correlation (cosine of the enclosed angle):

$$
NC(x, y, d) = \frac{(\mathbf{w}_L(x, y) - \bar{\mathbf{w}}_L(x, y))^T (\mathbf{w}_R(x - d, y) - \bar{\mathbf{w}}_R(x - d, y))}{\|\mathbf{w}_L(x, y) - \bar{\mathbf{w}}_L(x, y)\|_2 \|\mathbf{w}_R(x - d, y) - \bar{\mathbf{w}}_R(x - d, y)\|_2}
$$

Sum of squared differences (SSD):

$$
SSD(x, y, d) = \|\mathbf{w}_L(x, y) - \mathbf{w}_R(x - d, y)\|_2^2
$$

Block Matching: Window Size

Block Matching:

- \triangleright Choose some disparity range [0, d_{max}]
- For all pixels $\mathbf{x} = (x, y)$ try all disparities and choose the one that maximizes the normalized correlation or minimizes the SSD
- \triangleright This strategy is called: Winner-takes-all (WTA)
- \triangleright Do this for both images, apply left-right consistency check

Challenges:

- \triangleright Which window size to choose? Tradeoff: Ambiguity \leftrightarrow Bleeding!
- Block matching $=$ fronto-parallel assumption (often invalid!)

Right Image

Another Example: Middlebury Cones Dataset

Left Image

Match Score Values

Middlebury Cones Dataset: Block Matching Result

Computed disparities

Ground truth

Middlebury Cones Dataset: Half-Occlusions

Middlebury Cones Dataset: Half-Occlusions

Middlebury Cones Dataset: Half-Occlusions

Middlebury Cones Dataset: Window Size

The Underlying Assumption: Similarity Constraint

- \triangleright Corresponding regions in both images should look similar ...
- ... and non-corresponding regions should look different.
- \triangleright When will the similarity constraint fail?

Similarity Constraint: Failure Cases

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

To overcome these difficulties we need to incorporate our prior knowledge about the world!

 $C(i,j)$ = Match score for patch centered at left pixel i with patch centered at right pixel *j*.

Left scanline

Winner-Takes-All Solution (Block Matching)

 \triangleright Assigns each pixel in left scanline the "best" match in right scanline

 \blacktriangleright Is this the optimal solution?

Alternative Solutions

- \triangleright Which solution should we choose?
- \triangleright Do we have prior knowledge about this problem?

Thought Example

- \blacktriangleright Let's consider the block matching term as a likelihood
- \triangleright What do we assume about neighboring disparities?

Thought Example

- \blacktriangleright How does the real world look like?
- \triangleright The Brown range image database [Mumford et al.]

Question

Can MRFs help us to incorporate these statistics?

Chain MRF for Scanline Stereo

Chain MRF for Scanline Stereo

For each image row independently do:

Setup a pairwise MRF energy $(d_i=$ disparity at column *i*):

$$
p(\mathbf{d}) \propto \exp \left\{-\sum_{i=1}^N \psi_{data}(d_i) - \lambda \sum_{i=1}^{N-1} \psi_{smooth}(d_i, d_{i+1})\right\}
$$

- \triangleright Disparities in scanline: $\mathbf{d} = \{d_1, \ldots, d_N\}$
- Inary terms: Matching cost $\psi_{data}(d)$
- \triangleright Pairwise terms: Smoothness between adjacent pixels, e.g.:
	- \blacktriangleright Potts: $\psi_{\mathit{smooth}}(d, d') = [d \neq d']$
	- ► Truncated $l_1: \psi_{\mathit{smooth}}(d, d') = \min(|d d'|, \tau)$
	- ► Truncated l_2 : $\psi_{\mathsf{smooth}}(d, d') = \mathsf{min}((d d')^2, \tau)$
- \triangleright Solve MRF using max-product BP, graph cuts, etc.
- \triangleright This can be done in an optimal way since it is a chain!

More constraints you can use: Ordering

More constraints you can use: Occlusion

Chain MRF – MAP Solution

Chain MRF – MAP Solution

- \triangleright Optimal solution sounds great, right?
- Question: What is the catch?
- \triangleright Independent processing of scanlines leads to streaking artifacts:

Result of DP alg with occlusion filling.

Result without DP (independent pixels)

Stereo MRF

- \triangleright What can we do to preserve inter-scanline consistency?
- \triangleright Specify a loopy MRF on a grid instead of a chain MRF on individual scanlines and solve for the whole disparity map at once!

$$
p(\mathbf{D}) \propto \exp \left\{-\sum_{i} \psi_{data}(d_i) - \lambda \sum_{i \sim j} \psi_{smooth}(d_i, d_j) \right\}
$$

- \triangleright Disparity image: D
- \triangleright *i* \sim *i* indicates neighboring pixels on a 4-connected grid
- Inary terms: Matching cost $\psi_{data}(d)$
- \triangleright Pairwise terms: Smoothness between adjacent pixels, e.g.:
	- \blacktriangleright Potts: $\psi_{\mathit{smooth}}(d, d') = [d \neq d']$
	- ► Truncated $l_1: \psi_{\mathit{smooth}}(d, d') = \min(|d d'|, \tau)$
	- ► Truncated l_2 : $\psi_{\mathsf{smooth}}(d, d') = \min((d d')^2, \tau)$
- \triangleright Solve MRF approximately using max-product BP, graph cuts, etc.

Stereo MRF – Results

Inference Results Ground Truth

Semiglobal Matching (SGM)

$$
p(\mathbf{D}) \propto \exp \left\{-\sum_{i} \psi_{data}(d_i) - \lambda \sum_{i \sim j} \psi_{smooth}(d_i, d_j)\right\}
$$

- **I** Unary terms: Matching cost $\psi_{data}(d)$
- **Pairwise terms** $(0 < \lambda_1 < \lambda_2)$ **:**

$$
\psi_{\mathsf{smooth}}(d, d') = \begin{cases} 0 & \text{if } d = d' \\ \lambda_1 & \text{if } |d - d'| = 1 \\ \lambda_2 & \text{otherwise} \end{cases}
$$

- Aggregates cost in each image direction $(4/8)$ individually
- ▶ Afterwards: Winner-takes-all
- \triangleright SGM can be interpreted as one iteration of message passing (TRW)
- \triangleright It is extremely fast and produces good results!

Programming Exercise

Using Python, NumPy, OpenCV and MeshLab ...

... you will create your own 3D model from rectified images!

