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Todays topic
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I Optical Flow
I Motivation
I Optical Flow Constraint Equation
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Pinhole Camera Model

I Principal point p = (cx , cy )T : Point where the principal axis
intersects the image plane (origin of normalized coordinate system)X

Y
Z

 7→ (
x
y

)
=

(
f X/Z + cx
f Y /Z + cy

)
⇒

f X
f Y
Z


︸ ︷︷ ︸

x∈R3

=

f 0 cx 0
0 f cy 0
0 0 1 0


︸ ︷︷ ︸

P∈R3×4

·


X
Y
Z
1


︸ ︷︷ ︸
X∈R4
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Epipolar Geometry

I CC′: Baseline (translation between cameras)

I e, e′: Epipole (intersection of image plane with baseline)

I l, l′: Epipolar line (intersection of image plane with epipolar plane)
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Epipolar Geometry

What if both cameras face the same direction?

I Epipoles are at infinity, epipolar lines are parallel
I Correspondences along “scanlines” (simplifies computation)
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Epipolar Geometry

How to recover a 3D point from two corresponding image points?

I Equal triangles (only when image planes are parallel)

I Using the definition d = x − x ′:

Z − f

B − (x − x ′)
=

Z

B

ZB − fB = ZB − Z (x − x ′)

Z =
fB

x − x ′
=

fB

d

d =
fB

Z
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Block Matching
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Block Matching
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Spatial Regularization (1D)

10 / 66



Recap Introduction to Optical Flow Local Optical Flow Global Optical Flow

Spatial Regularization (2D)

I What can we do to preserve inter-scanline consistency?
I Specify a loopy MRF on a grid instead of a chain MRF on individual

scanlines and solve for the whole disparity map at once!

p(D) ∝ exp

−∑
i

ψdata(di )− λ
∑
i∼j

ψsmooth(di , dj)


I Disparity image: D
I i ∼ j indicates neighboring pixels on a 4-connected grid
I Unary terms: Matching cost ψdata(d)
I Pairwise terms: Smoothness between adjacent pixels, e.g.:

I Potts: ψsmooth(d , d ′) = [d 6= d ′]
I Truncated l1: ψsmooth(d , d ′) = min(|d − d ′|, τ)
I Truncated l2: ψsmooth(d , d ′) = min((d − d ′)2, τ)

I Solve MRF approximately using max-product BP, graph cuts, etc.
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Stereo vs. Optical Flow

Stereo

I 2 images at same time

I Only camera motion

I 1D estimation problem

I Monkeys

Optical Flow

I 2 images at 2 time steps

I Camera and object motion

I 2D estimation problem

I Squirrels
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Optical Flow

[J. J. Gibson, 1950: The Ecological Approach to Visual Perception]
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Optical Flow

Motion field:

I 2D motion field representing the projection of the 3D motion of
points in the scene onto the image plane

I Can be the result of camera motion or object motion (or both)!

14 / 66



Recap Introduction to Optical Flow Local Optical Flow Global Optical Flow

Optical Flow

Optical flow:

I 2D velocity field describing the apparent motion in the image
(i.e., the displacement of pixels looking “similar”)

I Optical flow 6= motion field! Why?
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Thought Experiment

I Lambertian ball
rotating in 3D

I What does the 2D
motion field look like?

I What does the 2D
optical flow field look like?
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Thought Experiment

I Stationary specular ball
moving light source

I What does the 2D
motion field look like?

I What does the 2D
optical flow field look like?
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Optical Flow Field

Optical flow fields tell us something (maybe ambiguous) about:

I The 3D structure of the world

I The motion of objects in the viewing area

I The motion of the observer (if any)

In contrast to stereo:

I Calculated from images captured at 2 different time instances

I No epipolar geometry ⇒ 2D estimation problem!
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Applications: Video Interpolation / Frame Rate Adaption

I If we know the image motion we can compute images
at intermediate time steps
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Applications: Video Compression

I To compress an image sequence, we can predict new frames using
the optical flow field and only store how to “fix” the prediction

I Flow fields are smooth, thus easier to compress/store than images!

19 / 66



Recap Introduction to Optical Flow Local Optical Flow Global Optical Flow

Applications: Autonomous Driving
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The Northern Gannet
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Assumptions

Optical flow is an ill-posed problem. We will make 3 important
assumptions and then exploit them in our algorithms:

I Brightness constancy: Brightness will remain the same
even though location might have changed:

I (x + u(x , y), y + v(x , y), t + 1) = I (x , y , t)

I I (x , y , t): intensity of image taken at time t at pixel (x , y)
I u(x , y): horizontal flow at (x , y)
I v(x , y): vertical flow at (x , y)

I Spatial coherence: Neighboring points in the scene typically belong
to the same surface and hence have similar 2D/3D motions

I Temporal coherence: The image motion of a surface patch
changes only gradually over time (not in this lecture)
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A simple Optical Flow Algorithm

I Minimize brightness difference (SSD) with respect to flow (u, v):

ESSD(u, v) =
∑

(x ,y)∈R

(I (x + u, y + v , t + 1)− I (x , y , t))2

I I (x , y , t): Image intensity at pixel x , y and time t
I R: Small window region in the image
I u, v : Optical flow of window region R
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A simple Optical Flow Algorithm

ESSD(u, v) =
∑

(x ,y)∈R

(I (x + u, y + v , t + 1)− I (x , y , t))2
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A simple Optical Flow Algorithm

ESSD(u, v) =
∑

(x ,y)∈R

(I (x + u, y + v , t + 1)− I (x , y , t))2

Simple optical flow algorithm:

I Discretize the space of possible motions

I For each pixel, try all possible motions (u, v) in a neighborhood region

I Select the one that minimizes SSD (WTA)

Problems:

I 2D search range (compared to 1D for stereo)

I Very inefficient

I In practice, motions are continuous (not discrete)

Can we instead optimize this non-convex objective function directly?
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A simple Optical Flow Algorithm

ESSD(u, v) =
∑

(x ,y)∈R

(I (x + u, y + v , t + 1)− I (x , y , t))2

I Let us look at the general case:

I (x + ∆x , y + ∆y , t + ∆t)

I We can approximate this expression using Taylor series expansion:

I (x + ∆x , y + ∆y , t + ∆t)

= I (x , y , t)

+ ∆x
∂

∂x
I (x , y , t) + ∆y

∂

∂y
I (x , y , t) + ∆t

∂

∂t
I (x , y , t)

+ ε(∆2
x ,∆

2
y ,∆

2
t )︸ ︷︷ ︸

approximation error
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A simple Optical Flow Algorithm

ESSD(u, v) =
∑

(x ,y)∈R

(I (x + u, y + v , t + 1)− I (x , y , t))2

I Thus we can (first-order) approximate ESSD(u, v) as follows:

ESSD(u, v) ≈
∑

(x,y)∈R

(
u
∂

∂x
I (x , y , t) + v

∂

∂y
I (x , y , t) +

∂

∂t
I (x , y , t)

)2

=
∑

(x,y)∈R

(u · Ix(x , y , t) + v · Iy (x , y , t) + It(x , y , t))
2

I This approximated SSD objective is convex in the flow! (Why?)

I Can be easily solved in close form (Why?)

I But: holds only for small motions (due to linear approximation)
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Optical Flow Constraint Equation

ESSD(u, v) ≈
∑

(x ,y)∈R

(u · Ix(x , y , t) + v · Iy (x , y , t) + It(x , y , t))2

I By minimizing this Taylor series approximation to the SSD, we are
trying to enforce the so-called optical flow constraint equation
(OFCE) at every pixel:

u · Ix + v · Iy + It = 0

I This is also called the linearized brightness constancy constraint

I Let us simplify the notation a bit:

∇ITu = −It with ∇I =

(
Ix
Iy

)
and u =

(
u
v

)
I How does this constraint look like?
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Optical Flow Constraint Equation
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Aperture Problem

In which direction does the line move?
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Aperture Problem

Now the full picture ...
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Aperture Problem

u · Ix + v · Iy = −It
u · Ix + 0 · Iy = −It

u · Ix = −It

u = − It
Ix

I 1 equation, 2 unknowns

I v could be anything!

I We can only measure
the normal velocity
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Aperture Problem

I Barber Pole: What is the motion field? What is the optic flow field?
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Aperture Problem

I The optical flow field depends on the geometry of the aperture and
the orientation and frequency of the line pattern!

I In practice, we combine several constraints to get an estimate of the
full velocity vector (not only the normal component):
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Aperture Problem

I http://web.mit.edu/persci/demos/Motion&Form/mini.html
35 / 66



Recap Introduction to Optical Flow Local Optical Flow Global Optical Flow

A simple Optical Flow Algorithm

I How can we use this in our optical flow algorithm?
I Combine multiple constraints!

I How? Assume that flow is constant in some image region R

ESSD(u, v) ≈
∑

(x ,y)∈R

(u · Ix(x , y , t) + v · Iy (x , y , t) + It(x , y , t))2

:
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A simple Optical Flow Algorithm

ESSD(u, v) ≈
∑

(x ,y)∈R

(u · Ix(x , y , t) + v · Iy (x , y , t) + It(x , y , t))2

I How to minimize ESSD(u, v) wrt. flow (u, v)?
I Business as usual: Differentiate and set to zero:

∂

∂u
ESSD(u, v) ≈ 2

∑
(x ,y)∈R

(u · Ix + v · Iy + It) Ix = 0

∂

∂v
ESSD(u, v) ≈ 2

∑
(x ,y)∈R

(u · Ix + v · Iy + It) Iy = 0

I By rearranging the terms, we can write this as:( ∑
R I 2x

∑
R Ix Iy∑

R Ix Iy
∑

R I 2y

)
︸ ︷︷ ︸

“structure tensor”

(
u
v

)
=

(
−
∑

R It Ix
−
∑

R It Iy

)
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A simple Optical Flow Algorithm

( ∑
R I 2x

∑
R Ix Iy∑

R Ix Iy
∑

R I 2y

)
︸ ︷︷ ︸

“structure tensor”

(
u
v

)
=

(
−
∑

R It Ix
−
∑

R It Iy

)

I The structure tensor is a s.p.d. matrix (i.e., we can invert it!)
I Rewriting this using the abbreviations from before:(∑

R

∇I∇IT
)

u = −
∑
R

It∇I

I We simply need to invert the structure tensor to obtain the flow:

u = −

(∑
R

∇I∇IT
)−1

︸ ︷︷ ︸
∈R2×2

(∑
R

It∇I

)
︸ ︷︷ ︸
∈R2×1
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Lucas Kanade Optical Flow

Analytic solution to optical flow in image region R:

u = −

(∑
R

∇I∇IT
)−1(∑

R

It∇I

)

I This is a classic flow technique:
B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. IJCAI, pp. 674-679, 1981.

I How to obtain dense motion fields?

I Compute a flow vector for each pixel using LK
I However, LK only works for small motions

I Iterative estimation using warping
I Coarse-to-fine estimation
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Iterative Estimation

Calculate dense LK optical flow on input images
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Iterative Estimation

Frame 1
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Iterative Estimation

Frame 2
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Iterative Estimation

Frame 2 (warped)
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Iterative Estimation

Bilinear Interpolation for Image Warping:

f (R1) ≈ x2 − x

x2 − x1
f (Q11) +

x − x1
x2 − x1

f (Q21)

f (R2) ≈ x2 − x

x2 − x1
f (Q12) +

x − x1
x2 − x1

f (Q22)

f (P) ≈ y2 − y

y2 − y1
f (R1) +

y − y1
y2 − y1

f (R2)

Other interpolation strategies:

I Bicubic

I Lanczos
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Iterative Estimation

Estimate incremental flow on warped images, warp again, ...
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Coarse-to-Fine Estimation

Build Gaussian pyramid, initialize with flow from coarser level
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Results: Dense Iterative Lucas-Kanade Optical Flow (Coarse-to-Fine)

Lucas-Kanade Ground Truth
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Horn-Schunck Optical Flow

Problems of Lucas-Kanade:

I Similar to block matching (WTA) in stereo, LK is a local method
which considers each pixel independently

I Spatial coherence is formulated in a simple way where the flow within
an image window is assumed to be constant (or affine for affine LK)

I For small windows, ambiguities lead to wrong matches

I Large windows almost certainly violate the constant flow assumption

I As in stereo, there is no right choice for the window size!

What can we do?

I In stereo we introduced prior knowledge which supplied global
regularity on the disparity map

I In optical flow we can do exactly the same!

I ⇒ Horn-Schunck optical flow algorithm
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Horn-Schunck Optical Flow

B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial
Intelligence, 17(1-3):185-203, 1981.

I Consider the image I as a function of continuous variables x , y , t

I Consider u(x , y) and v(x , y) as continuous flow fields

I Goal: Minimizing the following energy functional

E (u, v) =

∫∫
(I (x + u(x , y), y + v(x , y), t + 1)− I (x , y , t))2︸ ︷︷ ︸

quadratic penalty for brightness change

+ λ ·
(
‖∇u(x , y)‖2 + ‖∇v(x , y)‖2

)
︸ ︷︷ ︸
quadratic penalty for flow change

dx dy

with regularization parameter λ and ∇ =
(
∂
∂x ,

∂
∂y

)
.
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Horn-Schunck Optical Flow

E (u, v) =

∫∫
(I (x + u(x , y), y + v(x , y), t + 1)− I (x , y , t))2

+ λ ·
(
‖∇u(x , y)‖2 + ‖∇v(x , y)‖2

)
dx dy

I Minimizing this directly is a hard problem because the energy
is highly non-convex and has many local optima

I We’ve had this problem before and linearized
the brightness constancy assumption

I We will do the same here:

E (u, v) =

∫∫
(Ix(x , y , t)u(x , y) + Iy (x , y , t)v(x , y) + It(x , y , t))2

+ λ ·
(
‖∇u(x , y)‖2 + ‖∇v(x , y)‖2

)
dx dy
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Horn-Schunck Optical Flow

E (u, v) =

∫∫
(Ix(x , y , t)u(x , y) + Iy (x , y , t)v(x , y) + It(x , y , t))2

+ λ ·
(
‖∇u(x , y)‖2 + ‖∇v(x , y)‖2

)
dx dy

I This energy imposes a quadratic penalty on the optical flow
constraint and the gradient of the flow field

I It is convex and thus has a unique optimum
I The flow can be estimated by discretizing it spatially

and performing gradient descent on the discretized objective:

E (U,V) =
∑
x ,y

(Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))2

+ λ ·
(
(ux ,y − ux+1,y )2 + (ux ,y − ux ,y+1)2 +

(vx ,y − vx+1,y )2 + (vx ,y − vx ,y+1)2
)
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Horn-Schunck Optical Flow

Discretized Objective:

E (U,V) =
∑
x ,y

(Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))2

+ λ ·
(
(ux ,y − ux+1,y )2 + (ux ,y − ux ,y+1)2 +

(vx ,y − vx+1,y )2 + (vx ,y − vx ,y+1)2
)

I Differentiate wrt. U,V and set the gradient to 0

I Results in a huge (but sparse) linear system

I Can be solved using standard techniques (e.g., Gauss-Seidel, SOR)

I What would happen for λ = 0?
I However: Linearization works only for small motions!

I Coarse-to-fine estimation
I Warping
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Result of [Horn-Schunck, 1981]
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Horn-Schunck Optical Flow

I Our HS results are quite a bit better than the results using LK

I However, the flow is very smooth, i.e., to overcome ambituities we
need to set λ to a high value which oversmooths flow discontinuities

I Why?

I We use a quadratic penalty for penalizing changes in the flow

I This does not allow for discontinuities in the flow field

I It penalizes large changes too much!
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Probabilistic Interpretation

Remember from introduction to graphical models:

p(x) =
1

Z
exp {−E (x)}

Gibbs Energy:

E (U,V) =
∑
x ,y

(Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))2

+ λ ·
(
(ux ,y − ux+1,y )2 + (ux ,y − ux ,y+1)2 +

(vx ,y − vx+1,y )2 + (vx ,y − vx ,y+1)2
)

Gibbs Distribution (Prior+Likelihood):

p(U,V) ∝
∏
x ,y

exp
{
−(Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))2

}
× exp

{
−λ(ux ,y − ux+1,y )2

}
× exp

{
−λ(ux ,y − ux ,y+1)2

}
× exp

{
−λ(vx ,y − vx+1,y )2

}
× exp

{
−λ(vx ,y − vx ,y+1)2

}
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Robust Regularization

I The classic Horn-Schunck formulation uses quadratic penalties ...
I ... for enforcing the brightness constancy assumption
I ... for enforcing smooth flow fields

p(U,V) ∝
∏
x ,y

exp
{
−(Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))2

}
× exp

{
−λ(ux ,y − ux+1,y )2

}
× exp

{
−λ(ux ,y − ux ,y+1)2

}
× exp

{
−λ(vx ,y − vx+1,y )2

}
× exp

{
−λ(vx ,y − vx ,y+1)2

}
I Both assumptions are invalid in practice (occlusions/discontinuities)!
I Formulation with robust data term and smoothness penalties:

p(U,V) ∝
∏
x ,y

exp {−ρD (Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))}

× exp {−λ ρS(ux ,y − ux+1,y )} × exp {−λ ρS(ux ,y − ux ,y+1)}
× exp {−λ ρS(vx ,y − vx+1,y )} × exp {−λ ρS(vx ,y − vx ,y+1)}
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Robust Regularization

p(U,V) ∝
∏
x ,y

exp {−ρD (Ix(x , y) ux ,y + Iy (x , y) vx ,y + It(x , y))}

× exp {−λ ρS(ux ,y − ux+1,y )} × exp {−λ ρS(ux ,y − ux ,y+1)}
× exp {−λ ρS(vx ,y − vx+1,y )} × exp {−λ ρS(vx ,y − vx ,y+1)}

I But how to choose ρD(·) and ρS(·)?

I We want a prior that allows for discontinuities in the optical flow field
(and occlusions in the data term)

I Thus we need something more heavy-tailed than a Gaussian
distribution, such as a Student-t distribution (Lorentzian penalty):

p(x) ∝
(

1 +
x2

2σ2

)−α
⇒ ρ(x) = ?− log (p(x)) = α log

(
1 +

x2

2σ2

)
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Robust Regularization

I Student-t distribution / Lorentzian penalty:

p(x) ∝
(

1 +
x2

2σ2

)−α
⇒ ρ(x) = − log (p(x)) = α log

(
1 +

x2

2σ2

)

I Has been proposed in [Black-Anandan, 1996]

I How to estimate the parameters? Learn from data!
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Robust Regularization

I How to obtain optical flow ground truth data?

I There is no sensor which can measure optical flow directly
I Synthesize optical flow fields using

I A set of natural geometries (e.g., Brown range database)
I A set of natural camera motions
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Robust Regularization

I How to optimize the energy function with robust penalties?

I Non-convex data and smoothness terms due to ρ(·)!
I This is hard. Several tricks applied in practice:

I Linearization, warping, coarse-to-fine estimation
I Graduated non-convexity: Start with a quadratic optimization problem,

then gradually increase the difficulty / non-convexity of the problem:
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Result of [Horn-Schunck, 1981]
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Non-local Regularization

I Pairwise regularization is often too limited
I Idea: use larger neighborhoods for regularization
I Problem: Not all pixels in the neighborhood are equally meaningful
⇒ introduce adaptive weights based on image color or intensity:
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Exercise for this Week

You will use your digital camera and the robust optical flow algorithm
discussed in this lecture to create your own bullet time sequence!
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