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Todays topic

Image Segmentation

I Motivation
I Unsupervised Segmentation

I K-means
I Simple Linear Iterative Clustering
I Mean-Shift
I Spectral Clustering

I Interactive Segmentation
I Grab Cut

I Semantic Segmentation
I TextonBoost
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Motivation

What is Image Segmentation?

I An image contains an extremely large number of pixels

I Segmentation is the grouping of similar pixels in the image

I Thus, the representation becomes much more compact
(small number of regions instead of large number of pixels)

I This makes some tasks significantly easier
(e.g., probabilistic models for recognition)

I Sometimes the segmentation is of interest itself
(e.g., segmenting a tumor)

4 / 65



Motivation Unsupervised Segmentation Interactive Segmentation Semantic Segmentation

Some Examples

[Ren & Malik, 2003]
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Superpixels

[Achanta et al., 2011]

I Superpixels are a representation which can serve as substitute for
pixels in many applications (e.g., to lower the computational burden)
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Figure-Ground Separation

I One way of thinking about segmentation is the separation of figure
(i.e., foreground) from ground (i.e., background)

I In this case: 2 classes (boy vs. background)
I This separation can be ambiguous

(separation might be possible, but we can’t tell which is which)
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Semantic Segmentation

[Shotton et al., 2007]

I More than 2 classes, each class has a semantic meaning

I Important for higher-level processes (e.g., scene understanding)
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What belongs together?

Gestalt psychology in the early 20th century (Wertheimer et al.)
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Proximity
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[Gordon]

I These factors offer some insights of what we want to have
I Turning them into a robust algorithm is a hard problem, however
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Importance of Occlusion

What do you see?
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Gestalt and Occlusion Cues in Surrealism

[“Le Blanc Seing”, Rene Magritte, 1965]
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Grouping by Completion – Kanisza Triangle
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Grouping by Completion – More Examples
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The Ultimate Challenge
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Grouping Influences Lightness Perception
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Annotation Ambiguity
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Annotation Ambiguity
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Conclusions so far

I Segmentation is generally quite difficult

I Often it is even hard to characterize what it is

I We humans are very good at it

I Thus it must be important for our visual processing system

I On a computer we can only implement some of the simple cues

I What we talk about today will not solve all of these examples

I But we can solve simpler instances which is still useful!

17 / 65



Motivation Unsupervised Segmentation Interactive Segmentation Semantic Segmentation

Unsupervised Segmentation

I We focus on the unsupervised setting first
(i.e., no image annotations available)

I Goal: Decompose an arbitrary image into coherent regions

I One way of doing this is by considering
segmentation as a clustering problem:

I Clustering algorithms try to group data points
in some feature space together

I First, identify each pixel with a feature vector which may include
the pixel location, color as well as a texture descriptor

I Cluster the pixels into regions using clustering algorithms
(many machine learning toolboxes available!)
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K-Means Clustering

I Let x = {x1, . . . , xN} denote a dataset, xn ∈ RD

I Let µ = {µ1, . . . ,µK} be a set of K cluster centers, µk ∈ RD

I Let rn,k = 1 if xn is assigned to cluster k , and rn,k = 0 otherwise

I We want to minimize the following objective function:

E (µ, r) =
N∑

n=1

K∑
k=1

rn,k‖xn − µk‖
2

I Intuitively, we want to minimize the distance of each data point
(i.e., pixel) to the cluster it is assigned to by simultaneously
manipulating the cluster centers and the assignments!

I As rn,k is discrete and µk is continuous, joint optimization is difficult,
but we can formulate an alternation scheme where we update each of
these two types of variables at a time while keeping the other fixed
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K-Means Clustering

I Let x = {x1, . . . , xN} denote a dataset, xn ∈ RD

I Let µ = {µ1, . . . ,µK} be a set of K cluster centers, µk ∈ RD

I Let rn,k = 1 if xn is assigned to cluster k , and rn,k = 0 otherwise
I We want to minimize the following objective function:

E (µ, r) =
N∑

n=1

K∑
k=1

rn,k‖xn − µk‖
2

I 1. step: Pick K and initialize µ = {µ1, . . . ,µK} randomly
I 2. step: Minimize E (µ, r) wrt. rn = {rn,1, . . . , rn,K} (∀n):

r∗n = argmin
rn

E (µ, r) = argmin
rn

K∑
k=1

rn,k‖xn − µk‖
2 = ?

⇒ rn,k =

[
k = argmin

j
‖xn − µj‖

2

]
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K-Means Clustering

I Let x = {x1, . . . , xN} denote a dataset, xn ∈ RD

I Let µ = {µ1, . . . ,µK} be a set of K cluster centers, µk ∈ RD

I Let rn,k = 1 if xn is assigned to cluster k , and rn,k = 0 otherwise
I We want to minimize the following objective function:

E (µ, r) =
N∑

n=1

K∑
k=1

rn,k‖xn − µk‖
2

I 3. step: Minimize E (µ, r) wrt. µk (∀k):

µ∗k = argmin
µk

E (µ, r) = argmin
µk

N∑
n=1

rn,k‖xn − µk‖
2 = ?

⇒
N∑

n=1

rn,k (xn − µk) = 0⇒ µk =

∑N
n=1 rn,kxn∑N
n=1 rn,k

I Repeat until convergence! (guaranteed to converge)
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K-Means Clustering

Illustration using the Old Faithful dataset (2 clusters):

1. Select number of clusters K

2. Randomly initialize centers

3. Assign each point
to closest center

4. Update center to centroid
of assigned points

5. Go to step 3. and repeat
until convergence

Questions:

I What is the right number of clusters K?
I How can this be applied to the task of image segmentation?
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Simple Linear Iterative Clustering (SLIC)

SLIC: Technique for generating “superpixels” [Achanta et al., 2011]

I Let x = {x1, . . . , xN} be the features of all N pixels in the image

I Define xn = (xcoln , xposn ), where
I xcoln = (ln, an, bn) represents the pixel color in LAB color space
I xposn = (xn, yn) denotes the pixel location in the image

I Initialize µ = {µ1, . . . ,µK} by sampling the cluster centers using a
regular grid in the image (intuition: should lead to regular superpixels)

I Minimize the following objective function:

E (µ, r) =
N∑

n=1

K∑
k=1

rn,k

(
‖xcoln − µcol

k ‖
2

+ λ‖xposn − µpos
k ‖

2
)

I Large weights (λ) will lead to very regular superpixels, while small
weights will emphasize color consistency
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Simple Linear Iterative Clustering (SLIC)
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Mean Shift Clustering

I Mean shift is a method for finding modes in a cloud of data points
(i.e., finding the location where the data points are most dense)

I The black lines indicate various search paths obtained by starting at
different points and following the gradient of the point density

I For segmentation we use pixel feature vectors, start one path per pixel
and assign points to the same class if they converge to the same mode
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Mean Shift Clustering

I The density can be estimated using kernel density estimation (KDE):

f̂ (x) =
1

nhD

N∑
n=1

k

(∥∥∥∥x− xn
h

∥∥∥∥)
I Here, k(·) is a kernel with width h, e.g.: k(x) = 1√

2π
exp

(
− 1

2x
2
)

I This is a so-called non-parametric density estimate
I The mean shift procedure is obtained by following the gradient of

f̂ (x), starting at each data point xn (∀n ∈ {1, . . . ,N}):
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Mean Shift Clustering

Algorithm (for every image pixel do):

I Compute the mean shift vector:

m(x) =

∑N
n=1 xn

∂
∂xk

(∥∥x−xn
h

∥∥)∑N
n=1

∂
∂xk

(∥∥x−xn
h

∥∥) − x

I This vector points into the direction of maximum increase in density

I Now, lets move the point by the mean shift vector:

x← x + m(x)

I ... and repeat until convergence

I More details can be found in [Comaniciu & Meer, 2002]
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Mean Shift Clustering
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Mean Shift Clustering

Comments about mean shift:

I We have noticed that we didn’t need to specify the number of
segments K as for the K-means clustering algorithm

I Thus, do we no longer have to choose this number by hand?

I Yes and no: We don’t choose it directly, but we need to specify the
kernel as well as the kernel bandwidth

I The number of segments depends on the kernel width

I Thus, we have just shifted the problem to a different place

I But: Mean shift does not depend on the initialization!
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Spectral Clustering

There is another way of looking at the problem:
I Consider a weighted graph G = (V ,E ) with vertices V and edges E
I Each node u ∈ V corresponds to a pixel
I Each edge (u, v) ∈ E connects two nodes (i.e., pixels) and is assigned

a weight w(u, v) ≥ 0 which determines the similarity of node u and v
(i.e., a large w(u, v) means that u and v are likely to cluster together)

I Goal: Find a partition V = V1 ∪ · · · ∪ VK such that the similarity
within each Vi is high, and across any Vi , Vj is low

I Intuition: We want to cut the graph at low-affinity edges!
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Spectral Clustering

Similarity criteria for edge weights w(u, v):

I Similarity by distance (x(u) = location of pixel u):

w(u, v) = exp

{
−‖x(u)− x(v)‖2

2σ2

}
I Similarity by intensity (I (u) = intensity at pixel u):

w(u, v) = exp

{
−‖I (u)− I (v)‖2

2σ2

}
I Similarity by texture/color (f(u) = feature vector at pixel u):

w(u, v) = exp

{
−‖f(u)− f(v)‖2

2σ2

}
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Spectral Clustering

Example of a similarity matrix Wu,v = w(u, v) for a 2D point set:
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Spectral Clustering

A simple approach:

I Assume the vertex set V can be partitioned into two sets, A and B,
by simply removing edges connecting the two parts
(of course, this implies A ∩ B = ∅ and A ∪ B = V )

I A simple measure of dissimilarity is the total weight of edges
connecting A and B (i.e., all edges which have been removed):

cut(A,B) =
∑

a∈A,b∈B
w(a, b)

I The optimal bipartitioning of the graph is the one that
minimizes this cut value such that |A| ≥ 1 and |B| ≥ 1

I Optimal polynomial time algorithm exist for solving this problem!
(max-flow min-cut theorem)
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Spectral Clustering

What is the problem? Assume the edge weights are inversely proportional
to the distance between nodes ...

I As the cut measure increases with the number of edges going across
the two partitioned parts, the min cut solution favors cutting small
sets of isolated nodes!
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Normalized Cuts [Shi & Malik, 2000]

I To avoid this unnatural bias for small partitions, Shi & Malik propose
to minimize the following criterion (wrt. the partitioning) instead

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

where V = A ∪ B and

cut(A,B) =
∑

a∈A,b∈B
w(a, b) and assoc(A,B) =

∑
a∈A,v∈V

w(a, v)

I Instead of looking at the value of total edge weight between A and B,
this measure computes the cut cost as a fraction with respect to the
total edge connections to all the nodes in the graph!

I Unfortunately, this is a NP-hard problem! [Papadimitriou, 1997]
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Normalized Cuts [Shi & Malik, 2000]

The equation from the previous slide reads as:

Ncut(A,B) =

∑
a∈A,b∈B w(a, b)∑
a∈A,v∈V w(a, v)

+

∑
a∈A,b∈B w(a, b)∑
b∈B,v∈V w(b, v)

I Let x ∈ {−1,+1}|V | be a |V |-dimensional indicator vector
(i.e., for a ∈ A: xa = +1, and for b ∈ B: xb = −1)

I Let D be a diagonal matrix with du =
∑

v∈V w(u, v) on its diagonal
I Let W be the similarity weight matrix with Wu,v = w(u, v)
I Then, the equation above can then be rewritten as

Ncut(A,B) =

∑
xa>0,xb<0−Wa,bxaxb∑

xa>0 da
+

∑
xa>0,xb<0−Wa,bxaxb∑

xb<0 db

I Or in matrix notation (using k =
∑

xa>0 da/
∑

u du):

4 · Ncut(x) =
(1 + x)T (D−W)(1 + x)

k1TD1
+

(1− x)T (D−W)(1− x)

(1− k)1TD1
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Normalized Cuts [Shi & Malik, 2000]

I In their paper, Shi & Malik show how the Ncut(A,B) problem can be
transformed to minimizing (with respect to y):

yT (D−W)y

yTDy

where y = (1 + x)− k
1−k (1− x)

I To solve this minimization, the discrete vector y is relaxed to take on
real values y ∈ R|V |, leading to the generalized eigenvalue problem:

(D−W)y = λDy

I The smallest eigenvalue is zero yielding the trivial solution with
eigenvector y = 1 (due to a constraint) → we are interested in the
eigenvector y corresponding to the second smallest eigenvalue!

I As the eigensystem is large, the procedure is typically relatively slow
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Normalized Cuts [Shi & Malik, 2000]

I For more than two partitions (K > 2):
I Apply this procedure recursively (repartitioning) – or –
I Apply k-means clustering in space of eigenvectors

I For large images: approximations required (sparse matrix W)
I Some results (using distance, intensity & texture features):
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Normalized Cuts [Shi & Malik, 2000]

I Left: Points generated by 2 Poisson processes (intensity: 2.5 and 1.0)

I Right: Partition of the point set using normalized cuts

I Similarity by distance was used here:

w(u, v) = exp

{
−‖x(u)− x(v)‖2

2σ2

}
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Normalized Cuts [Shi & Malik, 2000]
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Normalized Cuts [Shi & Malik, 2000]
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Is there a correct segmentation?
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Is there a correct segmentation?

Is there a correct segmentation?

I To answer this question we need to think about the purpose

I For a superpixel segmentation we might want to expect each
superpixel to correspond to a smooth surface in 3D, thus the precise
form of the segmentation is irrelevant

I But, we might also be interested in separating one (or several)
foreground object(s) from the background (or from each other)

I If the object identity is clear, this makes the task well-defined

I Segmentation should be coupled to the task we want to solve with it

Now:

I Figure-ground segmentation: Segmenting one foreground object from
the background

I Interactive: We will help the algorithm to identify the foreground!
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Applications
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Photomontage

I To assemble several photos into a montage we need to separate the
object of interest from the background:

I How does the algorithm know what I am interested in?

44 / 65



Motivation Unsupervised Segmentation Interactive Segmentation Semantic Segmentation

Photomontage

I Basic idea: let the user annotate some examples
of foreground & background:
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Interactive Segmentation

I A per-pixel classifier trained on the annotation will lead to noisy
results if it only considers a local neighborhood in the image and is
applied to each pixel separately (exception: deep neural networks)

I But objects in the world tend to be compact and smooth

I We can thus formulate the (interactive) segmentation problem as a
discrete MRF to incorporate these smoothness assumptions ...

I ... and apply the inference techniques we have learned about!
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Interactive Segmentation

Let us specify interactive segmentation as a discrete MRF:

I Let I ∈ {0, . . . , 255}M×N×3 denote the RGB image of size M × N

I Let S ∈ {0, 1}M×N denote the desired binary segmentation

I Specify a MRF in terms of its Gibbs energy p(S) ∝ exp{−E (S)}

E (S) =
∑
i

ψdata(si ) + λ
∑
i∼j

ψsmooth(si , sj)

with smoothness weight λ and i ∼ j indicating neighboring pixels.
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Interactive Segmentation

E (S) =
∑
i

ψdata(si ) + λ
∑
i∼j

ψsmooth(si , sj)

Data term:

I Prefer pixels that look similar to labeled foreground pixels (scribbles)
to be labeled as foreground, and vice versa for the background

I Assume i.i.d. likelihood

I Simplest approach: Color log-likelihood (ci : color at pixel i)

ψdata(si ) =

{
∞ if i ∈ A ∧ si 6= ai

− log psi (ci ) otherwise

where p0(·) and p1(·) are the background and foreground color
distribution estimated from the user scribbles for image I, A denotes
the set of annotated pixels and ai the annotation (hard constraint)
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Interactive Segmentation

There are several ways to represent/estimate p0(·) and p1(·):
I We can discretize the (RGB or LAB) color space, calculate a

histogram and normalize it to obtain a step-wise approximation
I We can directly work in the continuous space and use non-parametric

kernel density estimation (KDE)
I We can fit a Gaussian to the data (parametric approach)

p(c) = N (c|µ,Σ)

I We can fit a Gaussian mixture model to the data

p(c) =
K∑

k=1

πkN (c|µk ,Σk)

I Gaussian mixtures can represent any probability distribution with
arbitrary precision by increasing the number of mixture components
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Interactive Segmentation

Estimating the parameters of a Gaussian mixture using the EM algorithm:

50 / 65



Motivation Unsupervised Segmentation Interactive Segmentation Semantic Segmentation

Interactive Segmentation

Estimating the parameters of a Gaussian mixture using the EM algorithm:
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Interactive Segmentation

E (S) =
∑
i

ψdata(si ) + λ
∑
i∼j

ψsmooth(si , sj)

Smoothness term:
I Penalize label changes
I Simplest approach: Potts model

ψsmooth(si , sj) = [si 6= sj ]

where [·] denotes the Iverson bracket
I Problem: The smoothness term is agnostic to the image! (segment

boundaries are not encourage to coincide with image edges)
I Better: contrast-sensitive Potts model (Ii : intensity at pixel i):

ψsmooth(si , sj ; I) = exp
{
−β(Ii − Ij)

2
}

[si 6= sj ]

I Intuition: downweight smoothness penalty at image edges/gradients
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Interactive Segmentation

Did you notice something?

I We made ψsmooth(si , sj ; I) dependent on the image!

I Before, only the data term was image dependent, but we omitted this
in our (sloppy) notation. Correctly, we should have written:

E (S; I) =
∑
i

ψdata(si ; I) + λ
∑
i∼j

ψsmooth(si , sj) (1)

I Now, also the prior term depends on the image:

E (S; I) =
∑
i

ψdata(si ; I) + λ
∑
i∼j

ψsmooth(si , sj ; I) (2)

I This is a particular instance of a conditional random field (CRF)

I While (1) can be interpreted via Bayes rule p(S|I) = p(I|S)p(S)
p(I) , in (2)

we directly model the posterior p(S|I) (no generative interpretation)
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Interactive Segmentation

E (S; I) =
∑
i

ψdata(si ; I) + λ
∑
i∼j

ψsmooth(si , sj ; I)

I We can pick our favorite inference technique for graphical models to
solve this equation

I Popular choices include belief propagation and variational methods
I For binary problems which are submodular, the global optimum

can be obtained in polynomial time using graph cuts!

Submodularity

ψ(si , sj) is submodular if:

ψ(0, 1) + ψ(1, 0) ≥ ψ(0, 0) + ψ(1, 1)

I Readings: [Boykov & Jolly, 2001], [Kolmogorov & Zabih, 2004]
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Interactive Segmentation

I Interactive Graph
cut requires a lot of
user interaction

I In particular in
textured and
ambiguous areas

I Better: Simply
specify a bounding
box around the
object of interest!
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Interactive Segmentation

First attempt:

I Create color model inside and outside the bounding box
to define the foreground and background likelihood:

I Problem: The foreground region contains a lot of background!

I This leads to inaccurate results
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Grab Cut

Solution proposed in [Rother et al., 2004]:
I Iterate between

I Determining the histograms from current foreground and background
I Segmenting the image with the current likelihood

I An additional border matting post-processing step is introduced

I This technique is called “Grab Cut”

I It is implemented in MS Office 2010 as “Background removal tool”
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Grab Cut Results

58 / 65



Motivation Unsupervised Segmentation Interactive Segmentation Semantic Segmentation

Semantic Segmentation

I So far, we have looked at generic unsupervised segmentation as well
as foreground-background segmentation

I We can also couple segmentation with recognition!
I Goal: Segment the image and determine category at every pixel
I Note: No information about object instances is recovered (just class)
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TextonBoost

TextonBoost [Shotton et al., 2006]

I Idea: Learn a per-pixel semantic classifier on a set of training images
and incorporate it as a unary into a CRF

I Let I ∈ [0, . . . , 255]M×N×3 denote the image

I Let S ∈ [1, . . . ,K ]M×N denote the desired output (K classes)

I The Gibbs energy is defined as

E (S) =
∑
i

π(si ; I)︸ ︷︷ ︸
color

+λ(si , i)︸ ︷︷ ︸
location

+ ψi (si ; I)︸ ︷︷ ︸
appearance

+
∑
i∼j

φ(si , sj ; I)︸ ︷︷ ︸
smoothness

where i ∼ j denotes adjacent pixels
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TextonBoost Model

E (S) =
∑
i

π(si ; I)︸ ︷︷ ︸
color

+λ(si , i)︸ ︷︷ ︸
location

+ ψi (si ; I)︸ ︷︷ ︸
appearance

+
∑
i∼j

φ(si , sj ; I)︸ ︷︷ ︸
smoothness

Color term:
I Capture the color distribution of the instances

of a class for a particular image
I Gaussian Mixture model in RGB color space

π(si ; I) = − log
∑
k

P(k |si )N (ci |µk ,Σk)

I Shared mixture components between different classes
I Estimated based on initial labeling of test image
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location

+ ψi (si ; I)︸ ︷︷ ︸
appearance

+
∑
i∼j

φ(si , sj ; I)︸ ︷︷ ︸
smoothness

Location term:
I Capture the weak dependence of the class label on the absolute

location of the pixel in the image
I Gaussian Mixture model in RGB color space

λ(si ; i) = − logP(i |si )
I Basically counts the frequency of a class label at a pixel
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TextonBoost Model

E (S) =
∑
i

π(si ; I)︸ ︷︷ ︸
color
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location

+ ψi (si ; I)︸ ︷︷ ︸
appearance

+
∑
i∼j

φ(si , sj ; I)︸ ︷︷ ︸
smoothness

Appearance term:
I Use features selected by boosting to represent the shape, texture and

appearance context of the object classes. Use classifier directly:

ψi (si ; I) = − logPi (si |I)
I Textons: Clustered filter bank responses
I Features: Sum of textons in (one of many) random rectangles
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TextonBoost Model

E (S) =
∑
i

π(si ; I)︸ ︷︷ ︸
color

+λ(si , i)︸ ︷︷ ︸
location

+ ψi (si ; I)︸ ︷︷ ︸
appearance

+
∑
i∼j

φ(si , sj ; I)︸ ︷︷ ︸
smoothness

Smoothness term:
I Contrast-sensitive Potts model:

φ(si , sj ; I) = −(α + exp{−β‖Ii − Ij‖2}) · [si 6= sj ]
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TextonBoost: Accuracy wrt. Boosting Rounds
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TextonBoost: MSRC Dataset
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TextonBoost: Results
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Exercise: Segment Cow from Background

You are going to segment (brown) cows this week!

I ... using a simple color model estimated from training cows

I ... using the max-product belief propagation code from exercise 4

I Merry Christmas and a Happy New Year!
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