Graphical Models in Computer Vision

Andreas Geiger

Max Planck Institute for Intelligent Systems Perceiving Systems

July 18, 2016

Syllabus

Todays topic

Image Segmentation

- \blacktriangleright Motivation
- \blacktriangleright Unsupervised Segmentation
	- \blacktriangleright K-means
	- \triangleright Simple Linear Iterative Clustering
	- \blacktriangleright Mean-Shift
	- \triangleright Spectral Clustering
- \blacktriangleright Interactive Segmentation
	- \triangleright Grab Cut
- \blacktriangleright Semantic Segmentation
	- \blacktriangleright TextonBoost

Motivation

What is Image Segmentation?

- \triangleright An image contains an extremely large number of pixels
- \triangleright Segmentation is the grouping of similar pixels in the image
- \triangleright Thus, the representation becomes much more compact (small number of regions instead of large number of pixels)
- \triangleright This makes some tasks significantly easier (e.g., probabilistic models for recognition)
- \triangleright Sometimes the segmentation is of interest itself (e.g., segmenting a tumor)

Some Examples

[Ren & Malik, 2003]

Superpixels

[Achanta et al., 2011]

 \triangleright Superpixels are a representation which can serve as substitute for pixels in many applications (e.g., to lower the computational burden)

Figure-Ground Separation

- \triangleright One way of thinking about segmentation is the separation of figure $(i.e.,$ foreground) from ground $(i.e.,$ background)
- \blacktriangleright In this case: 2 classes (boy vs. background)
- \triangleright This separation can be ambiguous (separation might be possible, but we can't tell which is which)

Semantic Segmentation

[Shotton et al., 2007]

- \triangleright More than 2 classes, each class has a semantic meaning
- Important for higher-level processes (e.g., scene understanding)

What belongs together?

Gestalt psychology in the early 20th century (Wertheimer et al.)

[Gordon]

 \triangleright These factors offer some insights of what we want to have

 \triangleright Turning them into a robust algorithm is a hard problem, however

Importance of Occlusion

What do you see?

Gestalt and Occlusion Cues in Surrealism

["Le Blanc Seing", Rene Magritte, 1965]

Grouping by Completion – Kanisza Triangle

Grouping by Completion – More Examples

The Ultimate Challenge

The Ultimate Challenge

The Ultimate Challenge

Grouping Influences Lightness Perception

15 / 65

Annotation Ambiguity

Annotation Ambiguity

Conclusions so far

- \triangleright Segmentation is generally quite difficult
- \triangleright Often it is even hard to characterize what it is
- \triangleright We humans are very good at it
- \triangleright Thus it must be important for our visual processing system
- \triangleright On a computer we can only implement some of the simple cues
- \triangleright What we talk about today will not solve all of these examples
- \triangleright But we can solve simpler instances which is still useful!

Unsupervised Segmentation

- \triangleright We focus on the unsupervised setting first (i.e., no image annotations available)
- \triangleright Goal: Decompose an arbitrary image into coherent regions
- \triangleright One way of doing this is by considering segmentation as a clustering problem:
	- \triangleright Clustering algorithms try to group data points in some feature space together
	- \triangleright First, identify each pixel with a feature vector which may include the pixel location, color as well as a texture descriptor
	- \triangleright Cluster the pixels into regions using clustering algorithms (many machine learning toolboxes available!)

$$
\blacktriangleright \text{ Let } \mathbf{x} = \{ \mathbf{x}_1, \ldots, \mathbf{x}_N \} \text{ denote a dataset, } \mathbf{x}_n \in \mathbb{R}^D
$$

- \blacktriangleright Let $\mu = \{\mu_1, \ldots, \mu_K\}$ be a set of K cluster centers, $\mu_k \in \mathbb{R}^D$
- Exect $r_{n,k} = 1$ if x_n is assigned to cluster k, and $r_{n,k} = 0$ otherwise
- \triangleright We want to minimize the following objective function:

$$
E(\mu, \mathbf{r}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} ||\mathbf{x}_n - \mu_k||^2
$$

- \triangleright Intuitively, we want to minimize the distance of each data point $(i.e., pixel)$ to the cluster it is assigned to by simultaneously manipulating the cluster centers and the assignments!
- As $r_{n,k}$ is discrete and μ_k is continuous, joint optimization is difficult, but we can formulate an alternation scheme where we update each of these two types of variables at a time while keeping the other fixed

$$
\blacktriangleright \text{ Let } \mathbf{x} = \{ \mathbf{x}_1, \ldots, \mathbf{x}_N \} \text{ denote a dataset, } \mathbf{x}_n \in \mathbb{R}^D
$$

- \blacktriangleright Let $\mu = \{\mu_1, \ldots, \mu_K\}$ be a set of K cluster centers, $\mu_k \in \mathbb{R}^D$
- Exect $r_{n,k} = 1$ if x_n is assigned to cluster k, and $r_{n,k} = 0$ otherwise
- \triangleright We want to minimize the following objective function:

$$
E(\mu, \mathbf{r}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} ||\mathbf{x}_n - \mu_k||^2
$$

- \blacktriangleright 1. step: Pick K and initialize $\pmb{\mu} = \{\pmb{\mu}_1, \dots, \pmb{\mu}_K\}$ randomly
- ► 2. step: Minimize $E(\mu, r)$ wrt. $r_n = \{r_{n,1}, \ldots, r_{n,K}\}\;(\forall n)$: K

$$
\mathbf{r}_n^* = \operatorname*{argmin}_{\mathbf{r}_n} E(\boldsymbol{\mu}, \mathbf{r}) = \operatorname*{argmin}_{\mathbf{r}_n} \sum_{k=1} r_{n,k} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2 = ?
$$

$$
\Rightarrow r_{n,k} = \left[k = \operatorname*{argmin}_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2\right]
$$

$$
\blacktriangleright \text{ Let } \mathbf{x} = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\} \text{ denote a dataset, } \mathbf{x}_n \in \mathbb{R}^D
$$

- \blacktriangleright Let $\mu = \{\mu_1, \ldots, \mu_K\}$ be a set of K cluster centers, $\mu_k \in \mathbb{R}^D$
- In Let $r_{n,k} = 1$ if x_n is assigned to cluster k, and $r_{n,k} = 0$ otherwise
- \triangleright We want to minimize the following objective function:

$$
E(\mu, \mathbf{r}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} ||\mathbf{x}_n - \mu_k||^2
$$

► 3. step: Minimize $E(\mu, r)$ wrt. μ_k $(\forall k)$:

$$
\mu_k^* = \underset{\mu_k}{\text{argmin}} \ E(\mu, \mathbf{r}) = \underset{\mu_k}{\text{argmin}} \sum_{n=1}^N r_{n,k} ||\mathbf{x}_n - \mu_k||^2 = ?
$$

$$
\Rightarrow \sum_{n=1}^{N} r_{n,k} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \Rightarrow \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{n,k} \mathbf{x}_n}{\sum_{n=1}^{N} r_{n,k}}
$$

 \triangleright Repeat until convergence! (guaranteed to converge)

Illustration using the Old Faithful dataset (2 clusters):

- 1. Select number of clusters K
- 2. Randomly initialize centers
- 3. Assign each point to closest center
- 4. Update center to centroid of assigned points
- 5. Go to step 3. and repeat until convergence

Questions:

- \triangleright What is the right number of clusters K?
- \blacktriangleright How can this be applied to the task of image segmentation?

Simple Linear Iterative Clustering (SLIC)

SLIC: Technique for generating "superpixels" [Achanta et al., 2011]

- Exter $\mathbf{x} = \{x_1, \ldots, x_N\}$ be the features of all N pixels in the image
- \blacktriangleright Define $\mathbf{x}_n = (\mathbf{x}_n^{col}, \mathbf{x}_n^{pos})$, where
	- \blacktriangleright $\mathbf{x}_n^{col} = (l_n, a_n, b_n)$ represents the pixel color in LAB color space
	- \blacktriangleright $\mathbf{x}_n^{pos} = (x_n, y_n)$ denotes the pixel location in the image
- \blacktriangleright Initialize $\pmb{\mu} = \{\pmb{\mu}_1, \dots, \pmb{\mu}_K\}$ by sampling the cluster centers using a regular grid in the image (intuition: should lead to regular superpixels)
- \triangleright Minimize the following objective function:

$$
E(\mu, \mathbf{r}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \left(\|\mathbf{x}_{n}^{col} - \mu_{k}^{col}\|^{2} + \lambda \|\mathbf{x}_{n}^{pos} - \mu_{k}^{pos}\|^{2} \right)
$$

 \triangleright Large weights (λ) will lead to very regular superpixels, while small weights will emphasize color consistency

Simple Linear Iterative Clustering (SLIC)

- \triangleright Mean shift is a method for finding modes in a cloud of data points $(i.e., finding the location where the data points are most dense)$
- \triangleright The black lines indicate various search paths obtained by starting at different points and following the gradient of the point density
- \triangleright For segmentation we use pixel feature vectors, start one path per pixel and assign points to the same class if they converge to the same mode

 \triangleright The density can be estimated using kernel density estimation (KDE):

$$
\hat{f}(\mathbf{x}) = \frac{1}{nh^D} \sum_{n=1}^{N} k\left(\left\|\frac{\mathbf{x} - \mathbf{x}_n}{h}\right\| \right)
$$

- ► Here, $k(\cdot)$ is a kernel with width h, e.g.: $k(x) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}$ exp $\left(-\frac{1}{2}x^2\right)$
- \triangleright This is a so-called non-parametric density estimate
- \triangleright The mean shift procedure is obtained by following the gradient of $\hat{f}(\mathbf{x})$, starting at each data point \mathbf{x}_n ($\forall n \in \{1, ..., N\}$):

Algorithm (for every image pixel do):

 \blacktriangleright Compute the mean shift vector:

$$
\mathbf{m}(\mathbf{x}) = \frac{\sum_{n=1}^{N} \mathbf{x}_n \frac{\partial}{\partial \mathbf{x}} k\left(\left\|\frac{\mathbf{x} - \mathbf{x}_n}{h}\right\|\right)}{\sum_{n=1}^{N} \frac{\partial}{\partial \mathbf{x}} k\left(\left\|\frac{\mathbf{x} - \mathbf{x}_n}{h}\right\|\right)} - \mathbf{x}
$$

- \triangleright This vector points into the direction of maximum increase in density
- \triangleright Now, lets move the point by the mean shift vector:

$$
\mathbf{x} \leftarrow \mathbf{x} + \mathbf{m}(\mathbf{x})
$$

- \blacktriangleright ... and repeat until convergence
- ► More details can be found in [Comaniciu & Meer, 2002]

Comments about mean shift:

- \triangleright We have noticed that we didn't need to specify the number of segments K as for the K-means clustering algorithm
- \triangleright Thus, do we no longer have to choose this number by hand?
- \triangleright Yes and no: We don't choose it directly, but we need to specify the kernel as well as the kernel bandwidth
- \triangleright The number of segments depends on the kernel width
- \triangleright Thus, we have just shifted the problem to a different place
- \triangleright But: Mean shift does not depend on the initialization!

There is another way of looking at the problem:

- ► Consider a weighted graph $G = (V, E)$ with vertices V and edges E
- Each node $u \in V$ corresponds to a pixel
- ► Each edge $(u, v) \in E$ connects two nodes (*i.e.*, pixels) and is assigned a weight $w(u, v) \ge 0$ which determines the similarity of node u and v (*i.e.*, a large $w(u, v)$ means that u and v are likely to cluster together)
- \triangleright Goal: Find a partition $V = V_1 \cup \cdots \cup V_K$ such that the similarity within each V_{i} is high, and across any $\mathit{V}_{i},\ \mathit{V}_{j}$ is low
- Intuition: We want to cut the graph at low-affinity edges!

Similarity criteria for edge weights $w(u, v)$:

 \triangleright Similarity by distance $(x(u)) =$ location of pixel u):

$$
w(u, v) = \exp\left\{-\frac{\|\mathbf{x}(u) - \mathbf{x}(v)\|^2}{2\sigma^2}\right\}
$$

Similarity by intensity $(I(u)) =$ intensity at pixel u):

$$
w(u, v) = \exp \left\{-\frac{\|I(u) - I(v)\|^2}{2\sigma^2}\right\}
$$

 \triangleright Similarity by texture/color $(f(u))$ = feature vector at pixel u):

$$
w(u,v) = \exp\left\{-\frac{\|\mathbf{f}(u) - \mathbf{f}(v)\|^2}{2\sigma^2}\right\}
$$

Example of a similarity matrix $W_{u,v} = w(u, v)$ for a 2D point set:

A simple approach:

- \triangleright Assume the vertex set V can be partitioned into two sets, A and B, by simply removing edges connecting the two parts (of course, this implies $A \cap B = \emptyset$ and $A \cup B = V$)
- \triangleright A simple measure of dissimilarity is the total weight of edges connecting A and B (*i.e.*, all edges which have been removed):

$$
cut(A, B) = \sum_{a \in A, b \in B} w(a, b)
$$

- \triangleright The optimal bipartitioning of the graph is the one that minimizes this cut value such that $|A| \geq 1$ and $|B| \geq 1$
- \triangleright Optimal polynomial time algorithm exist for solving this problem! (max-flow min-cut theorem)
Spectral Clustering

What is the problem? Assume the edge weights are inversely proportional to the distance between nodes ...

 \triangleright As the cut measure increases with the number of edges going across the two partitioned parts, the min cut solution favors cutting small sets of isolated nodes!

 \triangleright To avoid this unnatural bias for small partitions, Shi & Malik propose to minimize the following criterion (wrt. the partitioning) instead

$$
Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}
$$

where $V = A \cup B$ and

$$
cut(A, B) = \sum_{a \in A, b \in B} w(a, b) \text{ and } assoc(A, B) = \sum_{a \in A, v \in V} w(a, v)
$$

- Instead of looking at the value of total edge weight between A and B , this measure computes the cut cost as a fraction with respect to the total edge connections to all the nodes in the graph!
- \triangleright Unfortunately, this is a NP-hard problem! [Papadimitriou, 1997]

The equation from the previous slide reads as:

$$
Ncut(A, B) = \frac{\sum_{a \in A, b \in B} w(a, b)}{\sum_{a \in A, v \in V} w(a, v)} + \frac{\sum_{a \in A, b \in B} w(a, b)}{\sum_{b \in B, v \in V} w(b, v)}
$$

- ► Let $\textsf{x} \in \{-1, +1\}^{|V|}$ be a $|V|$ -dimensional indicator vector (*i.e.*, for $a \in A$: $x_a = +1$, and for $b \in B$: $x_b = -1$)
- ► Let **D** be a diagonal matrix with $d_u = \sum_{v \in V} w(u, v)$ on its diagonal
- Exect W be the similarity weight matrix with $W_{u,v} = w(u, v)$
- \triangleright Then, the equation above can then be rewritten as

$$
Ncut(A, B) = \frac{\sum_{x_a>0, x_b<0} -W_{a,b}x_a x_b}{\sum_{x_a>0} d_a} + \frac{\sum_{x_a>0, x_b<0} -W_{a,b}x_a x_b}{\sum_{x_b<0} d_b}
$$

▶ Or in matrix notation (using $k = \sum_{x_a>0} d_a / \sum_u d_u$):

$$
4 \cdot \text{Ncut}(\mathbf{x}) = \frac{(\mathbf{1} + \mathbf{x})^{\mathsf{T}}(\mathbf{D} - \mathbf{W})(\mathbf{1} + \mathbf{x})}{k\mathbf{1}^{\mathsf{T}}\mathbf{D}\mathbf{1}} + \frac{(\mathbf{1} - \mathbf{x})^{\mathsf{T}}(\mathbf{D} - \mathbf{W})(\mathbf{1} - \mathbf{x})}{(\mathbf{1} - k)\mathbf{1}^{\mathsf{T}}\mathbf{D}\mathbf{1}}
$$

In their paper, Shi & Malik show how the $Ncut(A, B)$ problem can be transformed to minimizing (with respect to y):

$$
\frac{y^T(D-W)y}{y^TDy}
$$

where $\mathbf{y} = (\mathbf{1} + \mathbf{x}) - \frac{k}{1-k}(\mathbf{1} - \mathbf{x})$

 \triangleright To solve this minimization, the discrete vector **y** is relaxed to take on real values $\mathbf{y} \in \mathbb{R}^{|V|}$, leading to the generalized eigenvalue problem:

$$
(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D} \mathbf{y}
$$

- \triangleright The smallest eigenvalue is zero yielding the trivial solution with eigenvector $y = 1$ (due to a constraint) \rightarrow we are interested in the eigenvector **y** corresponding to the second smallest eigenvalue!
- \triangleright As the eigensystem is large, the procedure is typically relatively slow

- \blacktriangleright For more than two partitions $(K > 2)$:
	- Apply this procedure recursively (repartitioning) or –
	- \triangleright Apply k-means clustering in space of eigenvectors
- \triangleright For large images: approximations required (sparse matrix **W**)
- \triangleright Some results (using distance, intensity & texture features):

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\end{array}
$$
\n
$$
\
$$

- \blacktriangleright Left: Points generated by 2 Poisson processes (intensity: 2.5 and 1.0)
- \triangleright Right: Partition of the point set using normalized cuts
- \triangleright Similarity by distance was used here:

$$
w(u, v) = \exp\left\{-\frac{\|\mathbf{x}(u) - \mathbf{x}(v)\|^2}{2\sigma^2}\right\}
$$

Fig. 3. Subplot (a) plots the smallest eigenvectors of the generalized eigenvalue system (11). Subplots (b)-(i) show the eigenvectors corresponding the second smallest to the ninth smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the image.

Is there a correct segmentation?

Is there a correct segmentation?

Is there a correct segmentation?

- \triangleright To answer this question we need to think about the purpose
- \triangleright For a superpixel segmentation we might want to expect each superpixel to correspond to a smooth surface in 3D, thus the precise form of the segmentation is irrelevant
- \triangleright But, we might also be interested in separating one (or several) foreground object(s) from the background (or from each other)
- \triangleright If the object identity is clear, this makes the task well-defined
- \triangleright Segmentation should be coupled to the task we want to solve with it

Now:

- \blacktriangleright Figure-ground segmentation: Segmenting one foreground object from the background
- Interactive: We will help the algorithm to identify the foreground!

Applications

Applications

Photomontage

 \triangleright To assemble several photos into a montage we need to separate the object of interest from the background:

 \blacktriangleright How does the algorithm know what I am interested in?

Photomontage

 \triangleright Basic idea: let the user annotate some examples of foreground & background:

input image

user annotation

- \triangleright A per-pixel classifier trained on the annotation will lead to noisy results if it only considers a local neighborhood in the image and is applied to each pixel separately (exception: deep neural networks)
- \triangleright But objects in the world tend to be compact and smooth
- \triangleright We can thus formulate the (interactive) segmentation problem as a discrete MRF to incorporate these smoothness assumptions ...
- \blacktriangleright ... and apply the inference techniques we have learned about!

Let us specify interactive segmentation as a discrete MRF:

- ► Let I $\in \{0,\ldots,255\}^{M\times N\times 3}$ denote the RGB image of size $M\times N$
- ► Let $\textsf{S}\in\{0,1\}^{M\times N}$ denote the desired binary segmentation
- For Specify a MRF in terms of its Gibbs energy $p(S) \propto \exp\{-E(S)\}\$

$$
E(\mathbf{S}) = \sum_{i} \psi_{data}(s_i) + \lambda \sum_{i \sim j} \psi_{smooth}(s_i, s_j)
$$

with smoothness weight λ and $i \sim j$ indicating neighboring pixels.

$$
E(\mathsf{S}) = \sum_i \psi_{\mathsf{data}}(s_i) + \lambda \sum_{i \sim j} \psi_{\mathsf{smooth}}(s_i, s_j)
$$

Data term:

- \triangleright Prefer pixels that look similar to labeled foreground pixels (scribbles) to be labeled as foreground, and vice versa for the background
- \blacktriangleright Assume i.i.d. likelihood
- \blacktriangleright Simplest approach: Color log-likelihood (\mathbf{c}_i : color at pixel *i*)

$$
\psi_{\text{data}}(s_i) = \begin{cases} \infty & \text{if } i \in \mathcal{A} \wedge s_i \neq a_i \\ -\log p_{s_i}(\mathbf{c}_i) & \text{otherwise} \end{cases}
$$

where $p_0(\cdot)$ and $p_1(\cdot)$ are the background and foreground color distribution estimated from the user scribbles for image I , A denotes the set of annotated pixels and a_i the annotation (hard constraint)

There are several ways to represent/estimate $p_0(\cdot)$ and $p_1(\cdot)$:

- \triangleright We can discretize the (RGB or LAB) color space, calculate a histogram and normalize it to obtain a step-wise approximation
- \triangleright We can directly work in the continuous space and use non-parametric kernel density estimation (KDE)
- \triangleright We can fit a Gaussian to the data (parametric approach)

$$
\rho(\mathbf{c}) = \mathcal{N}(\mathbf{c}|\boldsymbol{\mu},\boldsymbol{\Sigma})
$$

 \triangleright We can fit a Gaussian mixture model to the data

$$
p(\mathbf{c}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{c} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)
$$

 \triangleright Gaussian mixtures can represent any probability distribution with arbitrary precision by increasing the number of mixture components

Estimating the parameters of a Gaussian mixture using the EM algorithm:

Estimating the parameters of a Gaussian mixture using the EM algorithm:

$$
E(\mathbf{S}) = \sum_{i} \psi_{data}(s_i) + \lambda \sum_{i \sim j} \psi_{smooth}(s_i, s_j)
$$

Smoothness term:

- \blacktriangleright Penalize label changes
- \triangleright Simplest approach: Potts model

$$
\psi_{\mathsf{smooth}}(s_i,s_j)=[s_i\neq s_j]
$$

where [·] denotes the Iverson bracket

- \triangleright Problem: The smoothness term is agnostic to the image! (segment boundaries are not encourage to coincide with image edges)
- Better: contrast-sensitive Potts model $(I_i:$ intensity at pixel i):

$$
\psi_{\mathsf{smooth}}(s_i,s_j;\mathbf{l}) = \exp\left\{-\beta(I_i-I_j)^2\right\} [s_i \neq s_j]
$$

Intuition: downweight smoothness penalty at image edges/gradients

Did you notice something?

- \blacktriangleright We made $\psi_{\mathsf{smooth}}(\mathsf{s}_i, \mathsf{s}_j; \mathsf{l})$ dependent on the image!
- \triangleright Before, only the data term was image dependent, but we omitted this in our (sloppy) notation. Correctly, we should have written:

$$
E(\mathbf{S}; \mathbf{I}) = \sum_{i} \psi_{data}(s_i; \mathbf{I}) + \lambda \sum_{i \sim j} \psi_{smooth}(s_i, s_j)
$$
(1)

Now, also the prior term depends on the image:

$$
E(\mathbf{S}; \mathbf{I}) = \sum_{i} \psi_{data}(s_i; \mathbf{I}) + \lambda \sum_{i \sim j} \psi_{smooth}(s_i, s_j; \mathbf{I})
$$
(2)

- \triangleright This is a particular instance of a conditional random field (CRF)
- ► While [\(1\)](#page-57-0) can be interpreted via Bayes rule $p(\mathbf{S}|\mathbf{l}) = \frac{p(\mathbf{l}|\mathbf{S})p(\mathbf{S})}{p(\mathbf{l})}$, in [\(2\)](#page-57-1) we directly model the posterior $p(S|I)$ (no generative interpretation)

$$
E(\mathbf{S}; \mathbf{I}) = \sum_{i} \psi_{data}(s_i; \mathbf{I}) + \lambda \sum_{i \sim j} \psi_{smooth}(s_i, s_j; \mathbf{I})
$$

- \triangleright We can pick our favorite inference technique for graphical models to solve this equation
- \triangleright Popular choices include belief propagation and variational methods
- \triangleright For binary problems which are submodular, the global optimum can be obtained in polynomial time using graph cuts!

Submodularity

 $\psi(\textbf{\textit{s}}_{i},\textbf{\textit{s}}_{j})$ is submodular if:

```
\psi(0,1) + \psi(1,0) > \psi(0,0) + \psi(1,1)
```
► Readings: [Boykov & Jolly, 2001], [Kolmogorov & Zabih, 2004]

- \blacktriangleright Interactive Graph cut requires a lot of user interaction
- \blacktriangleright In particular in textured and ambiguous areas
- \triangleright Better: Simply specify a bounding box around the object of interest!

First attempt:

 \triangleright Create color model inside and outside the bounding box to define the foreground and background likelihood:

Annotation

Result

- \triangleright Problem: The foreground region contains a lot of background!
- \triangleright This leads to inaccurate results

Grab Cut

Solution proposed in [Rother et al., 2004]:

- \blacktriangleright Iterate between
	- \triangleright Determining the histograms from current foreground and background
	- \triangleright Segmenting the image with the current likelihood
- \triangleright An additional border matting post-processing step is introduced
- \blacktriangleright This technique is called "Grab Cut"
- \triangleright It is implemented in MS Office 2010 as "Background removal tool"

Gaussian mixture model of FG/BG

Graph cut segmentation

Grab Cut

Solution proposed in [Rother et al., 2004]:

- \blacktriangleright Iterate between
	- \triangleright Determining the histograms from current foreground and background
	- \triangleright Segmenting the image with the current likelihood
- \triangleright An additional border matting post-processing step is introduced
- \blacktriangleright This technique is called "Grab Cut"
- \triangleright It is implemented in MS Office 2010 as "Background removal tool"

Progressing iterations...

Grab Cut Results

No User Interaction

Semantic Segmentation

- \triangleright So far, we have looked at generic unsupervised segmentation as well as foreground-background segmentation
- \triangleright We can also couple segmentation with recognition!
- \triangleright Goal: Segment the image and determine category at every pixel
- Note: No information about object instances is recovered (just class)

TextonBoost

TextonBoost [Shotton et al., 2006]

- \triangleright Idea: Learn a per-pixel semantic classifier on a set of training images and incorporate it as a unary into a CRF
- ► Let $I \in [0, \ldots, 255]^{M \times N \times 3}$ denote the image
- ► Let $\mathsf{S} \in [1, \dots, \mathsf{K}]^{M \times N}$ denote the desired output $(\mathsf{K}% ^{M}{}_{\mathsf{S}})$ classes)
- \triangleright The Gibbs energy is defined as

where $i \sim j$ denotes adjacent pixels

Color term:

- \triangleright Capture the color distribution of the instances of a class for a particular image
- \triangleright Gaussian Mixture model in RGB color space

$$
\pi(s_i; \mathbf{I}) = -\log \sum_{k} P(k|s_i) \mathcal{N}(c_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)
$$

- \triangleright Shared mixture components between different classes
- \triangleright Estimated based on initial labeling of test image

Location term:

- \triangleright Capture the weak dependence of the class label on the absolute location of the pixel in the image
- \triangleright Gaussian Mixture model in RGB color space

$$
\lambda(s_i;i) = -\log P(i|s_i)
$$

 \triangleright Basically counts the frequency of a class label at a pixel

Appearance term:

 \triangleright Use features selected by boosting to represent the shape, texture and appearance context of the object classes. Use classifier directly:

$$
\psi_i(s_i; \mathbf{I}) = -\log P_i(s_i|\mathbf{I})
$$

- \blacktriangleright Textons: Clustered filter bank responses
- \triangleright Features: Sum of textons in (one of many) random rectangles

Appearance term:

 \triangleright Use features selected by boosting to represent the shape, texture and appearance context of the object classes. Use classifier directly:

$$
\psi_i(s_i; \mathbf{I}) = -\log P_i(s_i|\mathbf{I})
$$

- \blacktriangleright Textons: Clustered filter bank responses
- \triangleright Features: Sum of textons in (one of many) random rectangles

(a) Input image

(b) Texton map

 (c) Feature pair = (r,t)

(d) Superimposed rectangles

Smoothness term:

 \triangleright Contrast-sensitive Potts model:

$$
\phi(\mathsf{s}_i,\mathsf{s}_j;\mathbf{l})=-(\alpha+\exp\{-\beta\|I_i-I_j\|^2\})\cdot[\mathsf{s}_i\neq\mathsf{s}_j]
$$

TextonBoost: Accuracy wrt. Boosting Rounds

TextonBoost: MSRC Dataset

TextonBoost: Results

TextonBoost: Results

Exercise: Segment Cow from Background

You are going to segment (brown) cows this week!

- \blacktriangleright ... using a simple color model estimated from training cows
- \blacktriangleright ... using the max-product belief propagation code from exercise 4

► Merry Christmas and a Happy New Year!