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Lecture 11:

CNNs in Practice
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Administrative

● Midterms are graded!
○ Pick up now
○ Or in Andrej, Justin, Albert, or Serena’s OH

● Project milestone due today, 2/17 by midnight
○ Turn in to Assignments tab on Coursework!

● Assignment 2 grades soon
● Assignment 3 released, due 2/24
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Midterm stats

Mean: 75.0   Median: 76.3    Standard Deviation: 13.2
N: 311           Max: 103.0
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Midterm stats

4

[We threw out TF3 and TF8]
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Midterm stats
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Midterm Stats
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Bonus mean: 0.8
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Last Time

7

Recurrent neural networks 
for modeling sequences

Vanilla RNNs

LSTMs



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 2016

Last Time

8

Sampling from RNN language models to generate text
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Last Time

9

CNN + RNN for
image captioning Interpretable RNN cells
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Today
Working with CNNs in practice:

● Making the most of your data
○ Data augmentation
○ Transfer learning

● All about convolutions:
○ How to arrange them
○ How to compute them fast

● “Implementation details”
○ GPU / CPU, bottlenecks, distributed training

10
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Data Augmentation
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Data Augmentation

12

Load image 
and label

“cat”

CNN

Compute
loss
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Data Augmentation

13

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation

- Change the pixels without 
changing the label

- Train on transformed data

- VERY widely used

What the computer sees
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Data Augmentation
1. Horizontal flips
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Training: sample random crops / scales

16

Data Augmentation
2. Random crops/scales
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Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

17

Data Augmentation
2. Random crops/scales
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Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

18

Data Augmentation
2. Random crops/scales
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Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

19

Data Augmentation
2. Random crops/scales
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Data Augmentation
3. Color jitter

Simple: 
Randomly jitter contrast
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Data Augmentation
3. Color jitter

Simple: 
Randomly jitter contrast

Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
4. Get creative!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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A general theme: 
1. Training: Add random noise
2. Testing: Marginalize over the noise

DropConnectDropout
Data Augmentation

Batch normalization, Model ensembles
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Data Augmentation: Takeaway

● Simple to implement, use it
● Especially useful for small datasets
● Fits into framework of noise / marginalization

24



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 201625

Transfer Learning

“You need a lot of a data if you want to 
train/use CNNs”
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Transfer Learning

“You need a lot of a data if you want to 
train/use CNNs”

BU
STE
D
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Transfer Learning with CNNs

1. Train on 
Imagenet
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Transfer Learning with CNNs

1. Train on 
Imagenet

2. Small dataset:
feature extractor

Freeze these

Train this
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Transfer Learning with CNNs

1. Train on 
Imagenet

3. Medium dataset:
finetuning

more data = retrain more of 
the network (or all of it)

2. Small dataset:
feature extractor

Freeze these

Train this

Freeze these

Train this
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Transfer Learning with CNNs

1. Train on 
Imagenet

3. Medium dataset:
finetuning

more data = retrain more of 
the network (or all of it)

2. Small dataset:
feature extractor

Freeze these

Train this

Freeze these

Train this

tip: use only ~1/10th of 
the original learning rate 
in finetuning top layer, 
and ~1/100th on 
intermediate layers
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CNN Features off-the-shelf: an Astounding Baseline for Recognition
[Razavian et al, 2014]

DeCAF: A Deep 
Convolutional Activation 
Feature for Generic Visual 
Recognition
[Donahue*, Jia*, et al., 
2013]
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more generic

more specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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more generic

more specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on top 
layer

?

quite a lot of 
data

Finetune a few 
layers

?
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more generic

more specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on top 
layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a few 
layers

Finetune a 
larger number of 
layers
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object Detection 
(Faster R-CNN)

Image Captioning: CNN + RNN
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object Detection 
(Faster R-CNN)

Image Captioning: CNN + RNN

CNN pretrained 
on ImageNet
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object Detection 
(Faster R-CNN)

Image Captioning: CNN + RNN

CNN pretrained 
on ImageNet

Word vectors pretrained 
from word2vec
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Takeaway for your projects/beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a 
big ConvNet there.

2. Transfer learn to your dataset

Caffe ConvNet library  has a “Model Zoo” of pretrained models:
https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
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All About Convolutions
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All About Convolutions
Part I: How to stack them
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The power of small filters

Suppose we stack two 3x3 conv layers (stride 1)
Each neuron sees 3x3 region of previous activation map

Input First Conv Second Conv



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 201642

The power of small filters

Question: How big of a region in the input does a neuron on the 
second conv layer see?

Input First Conv Second Conv
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The power of small filters

Question: How big of a region in the input does a neuron on the 
second conv layer see?
Answer: 5 x 5

Input First Conv Second Conv
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input 
region does a neuron in the third layer see?
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input 
region does a neuron in the third layer see?

X

X

Answer: 7 x 7
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input 
region does a neuron in the third layer see?

X

X

Answer: 7 x 7

Three 3 x 3 conv 
gives similar
representational
power as a single 
7 x 7 convolution
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:

three CONV with 3 x 3 filters

Number of weights:
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Fewer parameters, more nonlinearity = GOOD
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:
= (H x W x C) x (7 x 7 x C)
= 49 HWC2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
= 3 x (H x W x C) x (3 x 3 x C)
= 27 HWC2
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:
= 49 HWC2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
= 27 HWC2

Less compute, more nonlinearity = GOOD
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

1. “bottleneck” 1 x 1 conv
to reduce dimension
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)
Conv 3x3, C/2 filters

1. “bottleneck” 1 x 1 conv
to reduce dimension

2. 3 x 3 conv at reduced 
dimension
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

1. “bottleneck” 1 x 1 conv
to reduce dimension

2. 3 x 3 conv at reduced 
dimension

3. Restore dimension 
with another 1 x 1 conv

[Seen in Lin et al, “Network in Network”, 
GoogLeNet, ResNet]
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C
Single

3 x 3 conv

Bottleneck
sandwich
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C

3.25 C2

parameters

9 C2

parameters

More nonlinearity,
fewer params, 
less compute!
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The power of small filters

Still using 3 x 3 filters … can we break it up?
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The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?
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The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?

6 C2

parameters
Conv 3x3, C filters

H x W x C
9 C2

parameters

H x W x C

More nonlinearity,
fewer params, 
less compute!
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The power of small filters

Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”
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How to stack convolutions: Recap

● Replace large convolutions (5 x 5, 7 x 7) with stacks of 
3 x 3 convolutions

● 1 x 1 “bottleneck” convolutions are very efficient
● Can factor N x N convolutions into 1 x N and N x 1
● All of the above give fewer parameters, less compute, 

more nonlinearity

64
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All About Convolutions
Part II: How to compute them
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Implementing Convolutions: im2col

66

There are highly optimized matrix multiplication routines 
for just about every platform

Can we turn convolution into matrix multiplication?
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Implementing Convolutions: im2col
Feature map: H x W x C Conv weights: D filters, each K x K x C
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Implementing Convolutions: im2col
Feature map: H x W x C Conv weights: D filters, each K x K x C

Reshape K x K x C 
receptive field to column 
with K2C elements
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Implementing Convolutions: im2col
Feature map: H x W x C Conv weights: D filters, each K x K x C

Repeat for all columns to get (K2C) x N matrix
(N receptive field locations)
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Implementing Convolutions: im2col
Feature map: H x W x C Conv weights: D filters, each K x K x C

Repeat for all columns to get (K2C) x N matrix
(N receptive field locations)

Elements appearing in multiple 
receptive fields are duplicated; this 
uses a lot of memory
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Implementing Convolutions: im2col
Feature map: H x W x C Conv weights: D filters, each K x K x C

(K2C) x N matrix
Reshape each filter to K2C row,
making D x (K2C) matrix
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Implementing Convolutions: im2col
Feature map: H x W x C Conv weights: D filters, each K x K x C

(K2C) x N matrix D x (K2C) matrix
D x N result;

reshape to output tensor

Matrix multiply
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Case study: 
CONV forward in Caffe 
library

im2col

matrix multiply: call to 
cuBLAS

bias offset



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 201674

Case study: 
fast_layers.py from HW

im2col

matrix multiply:
call np.dot
(which calls BLAS)
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Implementing convolutions: FFT

Convolution Theorem: The convolution of f and g is equal 
to the elementwise product of their Fourier Transforms:

Using the Fast Fourier Transform, we can compute the 
Discrete Fourier transform of an N-dimensional vector in O
(N log N) time (also extends to 2D images)

75
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Implementing convolutions: FFT

1. Compute FFT of weights: F(W)

2. Compute FFT of image: F(X)

3. Compute elementwise product: F(W) ○ F(X)

4. Compute inverse FFT: Y = F-1(F(W) ○ F(X))

76
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Implementing convolutions: FFT

77

FFT convolutions get a big speedup for larger filters
Not much speedup for 3x3 filters =(

Vasilache et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 2016

Implementing convolution: “Fast Algorithms”

78

Naive matrix multiplication: Computing product of two 
N x N matrices takes O(N3) operations

Strassen’s Algorithm: Use clever arithmetic to reduce 
complexity to O(Nlog2(7)) ~ O(N2.81)

From Wikipedia
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Implementing convolution: “Fast Algorithms”

79

Similar cleverness can be applied to convolutions

Lavin and Gray (2015) work out special cases for 3x3 
convolutions:

Lavin and Gray, “Fast Algorithms for Convolutional Neural Networks”, 2015



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 2016

Implementing convolution: “Fast Algorithms”

80

Huge speedups on VGG for small batches:
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Computing Convolutions: Recap

● im2col: Easy to implement, but big memory overhead

● FFT: Big speedups for small kernels

● “Fast Algorithms” seem promising, not widely used yet

81
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Implementation Details
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Spot the CPU!
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Spot the CPU!
“central processing unit”
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Spot the GPU!
“graphics processing unit”
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Spot the GPU!
“graphics processing unit”
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VS
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VS

NVIDIA is much more 
common for deep learning
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CEO of NVIDIA:
Jen-Hsun Huang

(Stanford EE Masters 
1992)

GTC 2015:
Introduced new Titan X 
GPU by bragging about 
AlexNet benchmarks
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CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU
Many, slower cores (thousands)
Originally for graphics
Good at parallel computation
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GPUs can be programmed
● CUDA (NVIDIA only)

○ Write C code that runs directly on the GPU
○ Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower :(

● Udacity: Intro to Parallel Programming https://www.udacity.
com/course/cs344
○ For deep learning just use existing libraries

92

https://www.udacity.com/course/cs344
https://www.udacity.com/course/cs344
https://www.udacity.com/course/cs344
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GPUs are really good 
at matrix multiplication:

GPU: NVIDA Tesla K40
with cuBLAS

CPU: Intel E5-2697 v2
12 core @ 2.7 Ghz
with MKL
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GPUs are really good at convolution (cuDNN):

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.
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Even with GPUs, training can be slow
VGG: ~2-3 weeks training with 4 GPUs
ResNet 101: 2-3 weeks with 4 GPUs

NVIDIA Titan Blacks
~$1K each

ResNet reimplemented in Torch: http://torch.ch/blog/2016/02/04/resnets.html 

http://torch.ch/blog/2016/02/04/resnets.html
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Alex Krizhevsky, “One weird trick for parallelizing convolutional neural networks”

Multi-GPU training: More complex
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Google: Distributed CPU training

97

Data parallelism

[Large Scale Distributed Deep Networks, Jeff Dean et al., 2013]



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 201698

Model parallelismData parallelism

[Large Scale Distributed Deep Networks, Jeff Dean et al., 2013]

Google: Distributed CPU training
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Google: Synchronous vs Async 

99

Abadi et al, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems”
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Bottlenecks
to be aware of
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GPU - CPU communication is a bottleneck.
=>

CPU data prefetch+augment thread running

while

GPU performs forward/backward pass



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 201610
2

CPU - disk bottleneck

Hard disk is slow to read from

=> Pre-processed images 
stored contiguously in files, read as
raw byte stream from SSD disk

Moving parts lol
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GPU memory bottleneck

Titan X: 12 GB <- currently the max
GTX 980 Ti: 6 GB

e.g.
AlexNet: ~3GB needed with batch size 256
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Floating Point Precision
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Floating point precision

10
5

● 64 bit “double” precision is default 
in a lot of programming

● 32 bit “single” precision is typically 
used for CNNs for performance
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Floating point precision

10
6

● 64 bit “double” precision is default 
in a lot of programming

● 32 bit “single” precision is typically 
used for CNNs for performance
○ Including cs231n homework!
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Floating point precision
Prediction: 16 bit “half” precision 
will be the new standard
● Already supported in cuDNN
● Nervana fp16 kernels are the 

fastest right now
● Hardware support in next-gen 

NVIDIA cards (Pascal)
● Not yet supported in torch =(

10
7

Benchmarks on Titan X, from https://github.
com/soumith/convnet-benchmarks
 

https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
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Floating point precision
How low can we go?

Gupta et al, 2015: 
Train with 16-bit fixed point with stochastic rounding

CNNs on MNIST
Gupta et al, “Deep Learning with Limited Numerical Precision”, ICML 2015
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Floating point precision
How low can we go?

Courbariaux et al, 2015: 
Train with 10-bit activations, 12-bit parameter updates

Courbariaux et al, “Training Deep Neural Networks with Low Precision Multiplications”, ICLR 2015



Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 201611
0

Floating point precision
How low can we go?

Courbariaux and Bengio, February 9 2016:
● Train with 1-bit activations and weights!
● All activations and weights are +1 or -1
● Fast multiplication with bitwise XNOR
● (Gradients use higher precision)

Courbariaux et al, “BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1”, arXiv 2016
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Implementation details: Recap

● GPUs much faster than CPUs
● Distributed training is sometimes used

○ Not needed for small problems
● Be aware of bottlenecks: CPU / GPU, CPU / disk
● Low precison makes things faster and still works

○ 32 bit is standard now, 16 bit soon
○ In the future: binary nets?

11
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Recap

● Data augmentation: artificially expand your data

● Transfer learning: CNNs without huge data

● All about convolutions

● Implementation details

11
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