A Framework for Using Processor
Cache as RAM (CAR)

Eswaramoorthi Nallusamy
University of New Mexico

October 10, 2005



Acknowledgement

Prof. David A. Bader,
University of New Mexico

Dr. Ronald G. Minnich and his team,
Advanced Computing Labs,
Los Alamos National Laboratory



Overview

Processor’'s cache-as-RAM (CAR)
Architectural Components affecting CAR
Cache-as-RAM initialization

Conclusion



Processor’'s Cache as RAM (CAR)

Using processor’s cache as RAM until the RAM is initialized

CAR allows the memory init code to be written in ANSI C
and compiled using GCC

— Solves all the limitations of previous solutions comprehensively

— Porting LinuxBIOS to different motherboards is quick

Feasibility of Cache-as-RAM
— Cache memory is ubiquitous across processor architectures & families
— Cache subsystem can be initialized with few instructions
— Cache init code doesn’t depend on any mother board components
— Generally doesn’t require changes across a processor family
— Can be ported easily among processor families



Architectural Components affecting
CAR

Protected Mode
Cache Subsystem
Inter-Processor Interrupt Mechanism

HyperThreading Feature



Protected Mode

Native mode of operation

Provides rich set of architectural features including cache
subsystem

Requires, at least, a Global Descriptor Table (GDT) with
entries for Code Segment (CS), Data Segment (DS) & Stack
Segment (SS)

Each GDT entry describes properties of a memory segment

Can be entered by setting Control Register 0 (CRO) flags



Cache Subsystem

Different levels of caches (L1, L2)

Cache coherency maintained using Modified-Exclusive-
Shared-Invalid (MESI) protocol

Cache control mechanisms
— Cache Disable (CD) flag in CRO - system wide
— Memory Type Range Registers (MTRRs) — memory region
— Page Attribute Table (PAT) Register — individual pages



Cache Operating Modes

CD

Caching Mode & Read/Write Policy

Normal Cache Mode. Highest Performance cache operation.

- Read hits access the cache; read misses may cause
replacement.

- Write hits update the cache; write misses cause cache line
fills.

I 'mlé?lngguonﬁo&y emo coherency is maintained.
fhe S0pp

xternal snoo fiCc Is
E hits acc s he cac é’ eag misses do not cause

replacement.
- Write hits update the cache; write misses access memory.
- Invalidation is allowed.

- External snoop traffic is supported.




Caching Methods

* Uncacheable/Strong Uncacheable
— Memory locations not cached

* Write Combining
— Memory locations not cached
— Writes are combined to reduce memory traffic

* Write Through
— Memory locations are cached
— Reads come from cache line; may cause cache fills
— Writes update the system memory



Caching Methods

* Write Back
— Memory locations are cached
— Reads come from cache line; may cause cache fills
— Writes update cache line

— Modified cache lines written back only when cache lines need to de-
allocated or when cache coherency need to be maintained

* Write Protected
— Memory locations are cached
— Reads come from cache line; may cause fills

— Writes update system memory and the cache line is invalidated on all
processors



Inter-Processor Interrupt (IPI)

Used for interrupt based communication among processors in a SMP
system

Each processor is assigned a unique ID

IPl is raised by writing appropriate values into Interrupt Command
Register (ICR)



Interrupt Command Register (ICR)

53 56 55
Destination Fieid Reserved
31 2012181716 1514 1312 1110 8 7 o]
Reserved Vector
Destination Shorthand —— t—————— Delivery Mode
00: No Shorthand 000: Fixed
01: Self 001: Lowest Priority
10: All Including Self 010: sSMI
11: All Excluding Seilf 011: Reserved
100: NMI
101: INIT
110: Start Up
]:] Reserved 111: Reserved
Destination Mode
0: Physical
1: Logicail

Delivery Status
0: Idle
1: Send Pending

Lewvel
Address: FEEO 0300H (0 - 31) 0 = De-assert
FEEO O310H (32 - 63) 1 = Assert
“Walue after Reset: OH Trigger Mode
0: Edge

1 Level



HyperThreading Feature

Logical Logical
Processor 0 | Processor 1
Architectural | Architectural

State State

Execution Engine

Local APIC Local APIC

Bus Interface

:

=i i

System Bus




CAR Principle of Operation

* For the cache to act as RAM

— The cache subsystem must retain the data in the CAR region

irrespective of internal cache accesses falling within and outside the CAR
region.

(Assuming there is no external memory access activity)

— Any memory accesses within the CAR region must not appear on the
Host Bus

as memory transactions.



CAR Principle of Operation Contd...

Normal Cache Mode (CR0O.CD=0)
— Read/Write misses cause cache line fills
— Cache lines replaced when there are no free cache line fills

No-fill Mode (CR0O.CD=1)
— Read/Write misses access memory
— Cache lines are never replaced

An MTRR describing CAR region’s caching method is required

Only Write-Back caching method is capable of confining Read/Write
access within cache subsystem



CAR Principle of Operation Contd...

* Thus with no system memory/internal cache activi’_c?/ in other
rocessors the cache subsystem operating in No-Fill Mode having at
east one Write-Back CAR region behaves as RAM.

* As only the Normal Cache Mode is capable of filling the cache lines,

we must fill the CAR region’s cache lines in Normal Cache Mode
before entering No-Fill Mode.

* Only the Boot Strap Processor’s (BSP) internal cache is initialized to
behave as CAR.



GDT and CRO setup

An NVRAM based flat-model GDT to access the processor address
space is setup during LinuxBIOS build process

GDTR is initialized to point to the GDT in NVRAM

BSP enters protected mode by setting CRO.PE flag



MTRR setup

63 MAXPHYADDR 1211 87

Reserved PhysBase Type

FPhysBase — Base address of range—J
Type — Memory type for range

63 MAXPHYADDR 121110

Reserved PhysMask A\ Reserved

PhysMask — Sets range mask J
WV — Valid

53 1211109 8 7

Reserved Eleg Type

E — MTRR enable/disable
FE — Fixed-range MTRRs enable/disable
Type — Default memory type




MTRR setup Contd...

Fdefine CACHE_AS RAM_BASE o0xF2o0o000

Fdefine CACHE_AS RAMSIZE 02000

Fdefine MEMOEY_TYPEWRITEBACK Ox0d

Fdefine MTRREPAIEVALID 0xs00

#Fdefine MTRRE_EMNABLE 0xs00

#Fdefine MTRRE_PHYBASELOW (CACHE_AS RAM_BASE | MEMORY_TYFPEW RITEBACK)
Fdefine MTRRE_PHYBASE_HICH 0xO0

#define MTRRPHYMASKLOW ((~((CACHE_AS_RAMSIZE)-0x1)) | MTRR-PATR-VALID)
#Fdefine MTREPHYMASKHICH oxF

Fdefine IAzz MTRRE_PHYBASE_RECO 0x200

Fdefine Iazz MTRE PHYMASK RECO  owzol

Fdefine A3z MTRR DEF_TYFPE_REC 0x2FF

Fdefine A3z MISC_ENABLE REG  OxlAD

S/ Setup MTRR base

mowvl SMTRER_PHYBASE_LOW, %Weax

xorl Teedx, Fedx

movl FIAIZ MTRE-PHYBASE_REGO, Wecx
WTTIST

S/ Betup MTRR mask

movl FMTRRE PHYMASK TOW, %eax

movl FMTRR PHYMASK _HIGH, "edx
maovl FIAZZ MTRRPHYMASK _REGO, Yecx
WITNST

J/Enable the MTRER subsystem

mowvl FIAZZ MTRE DEF_TYPE_REG, Yecx
rdmsr
orl FMTRR_ENABLE, Yeax

WITIIET




Cache Subsystem Initialization

Establish valid tags for the cache lines in the CAR region
— Enter Normal Cache Mode (CR0.CD=0)

— Cache lines in CAR region are marked valid by reading memory locations
within CAR region

Enter No-Fill Mode (CR0O.CD=1) to avoid cache line fills/flushes
The cache lines are analogous to uninitialized memory.

Initialize the cache lines with some recognizable pattern for ease of
debugging



Cache Subsystem Contd...

// Enter Normal Cache Mode

maovl Tacr0, Yoeax

andl F0xOFFFFFFF. Yeax
mmvd

mowvl Theax, Ter(

// Establish tags for the CAR region in the cache.

cld

mawvl FCACHE_AS_RAM_BASE, %es1
mawvl FCACHE_AS_RAM_SIZE /4, Y%ecx
rep lodsl

// Enter No-Fill Cache Mode

maovl Tacr0, Yoeax
orl B0zA0000000, Feax
maowvl Theax, Toorl

J/ Initialize the CAR with recognizable patterns

mawvl FCACHE_AS_RAM_BASE, %edi
mawvl FCACHEAS_RAMSIZE /4, %ecx
maovl Bl ASEASASA, Feax

rep stosl

// Setup the stack
maovl $(CACHE_AS_RAM BASE+CACHE_AS RAM_SIZE), %esp
jmp CAR_Init_done




HyperThreaded Processor Initialization

For a HT enabled processor
— Cache subsystem is common to both the logical processors
— CRO is unique to each logical processors

— The ultimate cache operating mode is decided by the “OR” result of
CRO.CD flag of each logical processors

Only one logical processor is designated as BSP using MP init
protocol

A logical processor can’t directly access other logical processor’s
resources

— An IPl is used by the BSP to clear the CR0O.CD flag of the logical
processor

An IPl handler is provided to clear the logical processor’s CR0.CD



HT Processor Initialization Contd...

// IP1 Handler

align (1000

.codeld

.global Logical AP_SIFI

Logical AP _SIPT:
movl Tocr(, Weax
andl $00FFFFFFF, Yeax
movl Yoeax, Yocr
mov] $0c250, Wecx
movl $0::01, Yeax
xorl Toedx, Tedx
WTIIST

// Halt this AP
cli

Halt_Logical AP:
hlt




HT Processor Initialization Contd...

// Check whether the processor has HT capability

movl
cpuid
btl

jnc
bswrapl
cmph
jbe

F01, Feax

F28, Toedx
NotHtProcessor
Yeebx

$01, %bh
MNotHtProcessor

// Use some commeon register as semaphore

movl
worl
xorl
WTTNST

Retry_SIPI:

mowvl
movh
bswapl
movl
movl
mowvl
mowvl

movl
SIPI _Delay:
pause
decl
jnz
movl
mowvl
andl
jnz

$ec250, Fecx
Toeam, Toeax
Toedx, Fedx

FFEEQO0310, %edi
Fec01, 7

Foeax

Yoeax, Toes:(Yoedi)
$FEEDD300, %edi
Fec000006F9, Feax
Toeax, Yoes:(Yoedi)

FOoctEE, Poecx

Foecx

SIPI _Delay
FOxFEE00300, %edi
Toes:(Yedi), Toeax
F0= 00001000, Yoeax
Retrv SIFI

Logical AP _SIPIMNotdone:

movl
rdmsr
orl

]E

Fc 250, Fecx

Toeazx, Toeax
Logical AP _SIPINotdone




Conclusion

Limitations of LinuxBIOS imposed by ROMCC is addressed

Memory Init code can be written in ANSI C and compiled
using standard C compilers

Memory Init object code size is reduced by factor of Four



