
IBM Haifa Labs

July 2006

Look, Ma, No BIOS!
A Hands-Off Introduction To LinuxBIOS

Oleg Goldshmidt
IBM Haifa Research Laboratory

Oleg Goldshmidt: “Look, Ma, No BIOS!”2

IBM Haifa Labs

July 2006

BIOS Milestones

Early 1970ies: Gary Kildall’s 50 mile commute
- Intel’s 8080, Interp/80, PL/M
- Intel’s Intellec-8 (microprocessor + memory + terminal port – storage)
- IBM’s (8 inch, $500) floppy disk
- John Torode – floppy controller, Gary Kildall – CP/M (Control Program/Monitor)

1976: Intel loses interest, Imsai (and a 100 other companies) need an OS
- Kildall splits CP/M into hardware-independent part and hardware-specific BIOS

Around 1980: IBM in Boca Raton make the PC (Acorn) – in 1 year
- Broke every IBM rule by making an open system, published all specs
- Published – and copyrighted! - BIOS code

1981: Rod Canion, Jim Harris, and Bill Murto at Houston’s House of Pies
- Business plans on placemat: Mexican restaurant, build HDs, car key finder
- Winner: reverse engineer BIOS to make a 100% IBM-compatible PC
- Investment: 15 senior programmers, several months, $1MM

Around 1982: Phoenix sells IBM-compatible BIOS chips for $25

Oleg Goldshmidt: “Look, Ma, No BIOS!”3

IBM Haifa Labs

July 2006

How BIOS Works

From the cold state a special hardware circuit sends a signal to the RESET
pin of the CPU
Some registers (cs, eip) are set to fixed values, and the code found at physical
address 0xfffffff0 is executed
- The address is mapped by hardware to BIOS ROM chip

Linux does not use BIOS routines, BIOS must be executed in real mode
- Only real mode addresses (seg*16+off) are available in the cold state
- No GDT, LDT, or paging are needed, must be initialized in real mode

Major BIOS tasks
- POST
- Hardware initialization (e.g. PCI configuration)
- Search for an OS to boot (configurable)
- Copies the first sector of the boot device to RAM (at 0x00007c00), jumps to it, and

executes
Invokes the bootloader

Oleg Goldshmidt: “Look, Ma, No BIOS!”4

IBM Haifa Labs

July 2006

How Bootloader Works

Floppy
- The instructions in the first sector are loaded into RAM and executed
- Bootloader copies itself from 0x00007c00 to 0x00090000
- Sets up real mode stack
- Invokes a BIOS procedure to load the setup() code to 0x00090200
- Invokes a BIOS procedure to load the rest of the image from 0x00100000
- Jumps to setup() code

Hard Disk
- The first sector (MBR) contains the partition table and a small program that loads the

first sector of the partition with the chosen OS
- Some OS (e.g. Win98) identify the boot partition with an “active” flag

Only the OS whose image is on the active partition may be loaded
- Sophisticated programs such as LILO or GRUB may allow runtime choice of image
- LILO’s first stage is loaded to 0x00007c00, moves itself to 0x0009a000, sets up real

mode stack, loads second stage to 0x0009b000
- User chooses kernel, the rest is similar to floppy
- Execution jumps to setup()

Oleg Goldshmidt: “Look, Ma, No BIOS!”5

IBM Haifa Labs

July 2006

How setup() Works

The setup() function is loaded at offset 0x200 of the kernel image file
Initializes hardware devices and sets up the kernel execution environment
- But Linux sometimes relies on BIOS for initialization

Major operations
- Invokes a BIOS procedure to determine the amount of RAM
- Initializes keyboard
- Initializes the graphics adapter
- Reinitializes the disk controller
- Checks for buses, bus mice, APM, etc
- If needed, moves the kernel image to make space for decompression
- Sets up the Interrupt Descriptor Table (IDT) and a Global Descriptor Table (GDT)
- Remaps the interrupts (BIOS maps hardware interrupts to the CPU exception range)
- Switches to protected mode
- Jumps to startup_32(), which starts the kernel proper

Oleg Goldshmidt: “Look, Ma, No BIOS!”6

IBM Haifa Labs

July 2006

BIOS Today: A Pain In Sensitive Parts Of Anatomy

Clusters (started at Cluster Research Lab, Advanced Computing Lab, LANL)
- Nodes depend on vendor-supplied BIOS for booting
- BIOS normally relies on inherently unreliable legacy devices (floppy, HD) to boot the

OS
- BIOS cannot deal with non-standard, experimental hardware

Need full control of the boot process, to the point that jobs in the queue might
indicate which kernel to run, where to find root FS, etc.

Maintenance is a nightmare
- BIOSes are buggy and cannot be fixed (by user)
- The development toolchain is highly specialized (read: obsolete), difficult to come by,

can be quite expensive
- Try wandering around a few hundred node cluster with a monitor and a keyboard to

change one BIOS setting

Get rid of the legacy BIOS altogether!

Oleg Goldshmidt: “Look, Ma, No BIOS!”7

IBM Haifa Labs

July 2006

Requirements and Decisions (As Specified by LANL)

Starting point: the current status of netboot on PCs
- netboot has been available on Suns for more than 15 years
- on PCs, BIOS and PROM must be in 16-bit mode - 8086 (6MHz, 25 years old CPU)

emulation, all sorts of weird stuff such as near and far pointers, etc
- standards: NIC boot model has to conform to NDIS2 (16-bit Windows model), thanks

to Microsoft and Intel
Requirements
- load something onto CPU that can load boot parameters over network, find out what

to do, and load an OS kernel
- open source – nothing proprietary
- portable: no (or minimal) assembly, support a variety of NICs, motherboards
- avoid reinventing the wheel – try to use code that supports lots of hardware etc
- support standard protocols – NFS, bootp, etc

Write netboot from scratch or use a minimal Linux kernel?
- custom netboot will duplicate OS (Sun netboot – no support for AFS, msdos, etc)
- no real space savings (netboot – 128K, minimal Linux – 300K)

Oleg Goldshmidt: “Look, Ma, No BIOS!”8

IBM Haifa Labs

July 2006

Operation, Benefits and Disadvantages of LinuxBIOS

Gunzips Linux out of flash (NVRAM)
- No moving parts but the fan
- Minimal amount of hardware initialization, Linux does the rest
- Kernel boot times (not system start) as fast as 3 seconds

Using a real OS rather than simple netboot or BIOS is more flexible
- Linux can boot over Ethernet, Myrinet, Quadrics, SCI
- Cluster nodes can be as simple as CPU + memory + network

Boot diagnostic and maintenance over serial port

Not all motherboards are supported
Hardware manipulation may be involved

Oleg Goldshmidt: “Look, Ma, No BIOS!”9

IBM Haifa Labs

July 2006

LinuxBIOS Do-It-Yourself HOWTO

Check whether the motherboard is supported
- The BIOS chip must be removable from its socket

Hardware needed:
- Disk-on-Chip (DoC) memory device to be plugged in instead of the BIOS chip (8

MByte instead of 2 Mbit)
- 32-pin ZIF (Zero Insertion Force) socket to make swapping chips easy and safe
- “development” and “target” machines (can be the same), BIOS chip in ZIF on target

Install Linux on target, including DoC support (as module)
Configure and build LinuxBIOS, a patched kernel (working, not latest), and
MTD utilities (“erase”, “flash_on”). NB: source code changes may be needed.
With power on, remove the BIOS chip from ZIF and insert the DoC
Burn LinuxBIOS into DoC using the “burn_mtd” utility
Reboot (through power cycle) while saying the appropriate prayers to root
(“Root, G-d, what is difference?” – Illiad Fraser)

Oleg Goldshmidt: “Look, Ma, No BIOS!”10

IBM Haifa Labs

July 2006

Swapping The BIOS Chip

The ZIF socket plugged into the
motherboard, with the original BIOS chip
inserted (both images are from the Linux
Magazine article on LinuxBIOS, see
“Further Information” below for reference)

Inserting the DoC into the ZIF socket.
WARNING: BE ADVISED THAT THIS
STEP CAN HURT OR KILL YOU!

If you haven't done this, or are not
trained, or have a history of getting hurt
by hardware, DON'T DO IT.

Oleg Goldshmidt: “Look, Ma, No BIOS!”11

IBM Haifa Labs

July 2006

What Can Go Wrong
any time you stick your hand into an open
machine while the power is on, you're
risking life and limb (ESD), and

YOU CAN MESS UP THE HARDWARE:

incorrect insertion of the flash (shown)
- reverses power and ground
- the DoC gets very hot (see the molten

sticker)
incorrect jumper settings
aggressive and/or inappropriate use of
metal objects such as screwdrivers
miscellaneous miswirings and
mishandlings

(the image is from the LinuxBIOS
website, http://www.linuxbios.org)

Oleg Goldshmidt: “Look, Ma, No BIOS!”12

IBM Haifa Labs

July 2006

After LinuxBIOS Boots: Troubleshooting etc.

If you see a penguin instead of the normal BIOS logo – your prayers have
been heard…
No HD, keyboard, ethernet, root FS? Not to worry – can be sorted out. The
main thing is to have the kernel running.
No penguin? You have not said the right prayers:
- Connect a null modem RS-232 cable to the first serial port on target
- Connect the cable to the development machine and start a 115200 baud, 8 bit, no

parity serial terminal emulator
- Reboot and debug

Create a root FS on the DoC
- Enable a few more MTD options (to format, write the fs) in kernel, rebuild, and reboot
- Create a partition (~7MB) in the DoC, and format the fs
- Change the device that LinuxBIOS expects to find the root fs on
- What to put into the root fs? See Tom’s Root Boot or another tiny distribution.

Oleg Goldshmidt: “Look, Ma, No BIOS!”13

IBM Haifa Labs

July 2006

How It Works

32-bit mode from the start: load GDT and enable memory protection
- execute LGDT instruction and provide a pointer to a table descriptor
- no problem with having the table in NVRAM - takes about 10 instructions

Basic chipset initialization
- assembly code needed to turn DRAM on
- the rest can be done in C

Linux assumes hardware is initialized by BIOS. LinuxBIOS cannot assume this
- e.g., if IDE controller is not initialized then Linux assumes that BIOS disabled it
- one-line change to make the driver enable IDE by default

5 major components:
- protected mode setup
- DRAM setup
- transition to C
- mainboard fixup
- Kernel unzip and jump to kernel

Oleg Goldshmidt: “Look, Ma, No BIOS!”14

IBM Haifa Labs

July 2006

Protected Mode Setup: How To Run a Pentium

Puts segmentation, paging, TLB h/w in a sane state, turn on segmentation, not
paging - 17 instructions:
- 1st instruction, executed in 16-bit mode: jump to BIOS startup – a standard part of

x86 reset
- 5 instructions: disable interrupts, clear TLB, set code and data segments to known

values
- 1 instruction: load a pointer to GDT (to manage addressing in segmented mode)
- 4 instructions: turn on memory protection
- 6 instructions: do remaining segment register setup for protected mode

At this point we
- are running in protected mode
- can address 4GB of memory
- are running a Pentium, not a 8086

Oleg Goldshmidt: “Look, Ma, No BIOS!”15

IBM Haifa Labs

July 2006

DRAM, Transition to C, Mainboard Fixup, Starting Kernel

DRAM setup
- non-portable, tricky, tough to figure out

Transition to C
- set up the stack and call a function to do the rest

Mainboard fixup
- turn on cacheing (MTRR) so that the kernel unzips in reasonable time

Otherwise it can take a minute or more
- make all the FLASH available (rather than 64K or 128K)

requires some register manipulation, different for each chipset
- minimal power management capabilities
- do stuff Linux cannot (or will not) do:

turn clock interrupts on
a bit of PCI initialization – set Base Address Registers

Inflate and run the kernel (snarfed from the kernel itself)
- handle parameters, command line
- make gunzip work in ROM environment (declare initialized arrays const)
- jump to startup_32(), not to setup() as LILO does

Oleg Goldshmidt: “Look, Ma, No BIOS!”16

IBM Haifa Labs

July 2006

OK, How Do We Boot a Real Kernel from LinuxBIOS? LOBOS

LOBOS (Linux OS Boots OS) – a system call that allows Linux to boot another
OS without leaving the 32-bit protected mode or using the BIOS
Overlaying the kernel (in kernel mode)
- read a file into memory not occupied by the running kernel
- move critical structures (page tables, boot arguments, root partition location, log

buffer, etc) into a safe place
- turn off interrupts (point of no return – check all errors)
- switch memory to the new page tables
- copy the final bootstrap code (that copies the kernel to 0x100000 and jumps to it) to

a safe place where it will not be overwritten by the new kernel
- jump to the final bootstrap code that will do its thing

Oleg Goldshmidt: “Look, Ma, No BIOS!”17

IBM Haifa Labs

July 2006

LOBOS Implementation

5 major pieces in about 300 lines
- entry for the new system call in arch/i386/kernel/entry.S
- some additions to arch/i386/kernel/head.S to make space for the critical kernel data

that will be copied
a few additional pages at the beginning of the kernel virtual address space, not used in
normal kernel operation, hence safe

- the code to read in the new file in kernel/sys.c
sys_lobos(char* file) looks up the file and calls read_exec()

- the code to switch off interrupts, move the critical data, and switch over to the new
page tables, in arch/i386/kernel/process.c

os_restart(), some assembly required…

- the code to copy the new kernel to the right place and jump to it, in kernel/sys.c
can be called from userspace, command line
faster than BIOS (a lot of waiting in BIOS is for DOS 1.0 support tasks)

Oleg Goldshmidt: “Look, Ma, No BIOS!”18

IBM Haifa Labs

July 2006

Related Work: bootimg, Two Kernel Monte (TKM)

bootimg
- allows a userspace program to read a file in and boot a new image via a system call
- turns VM (paging) off (but not i386-style segmentation)
- the user buffer (in VM) has to be copied into kernel memory accessible without VM
- relies on kernel components being in physically contiguous memory
- 1100 LOC (600 architecture-dependent), some structures (GDT) need to be

maintained in sync with kernel
- can be used with LinuxBIOS
- thorough permissions checking, ramdisk support

Two Kernel Monte (TKM)
- turns off both VM and i386 segmentation
- builds and internal virtual-to-physical page map (so it can still get to kernel)
- relies on BIOS to reset hardware (e.g. video card) after reboot
- cannot be used with LinuxBIOS (because of reliance on the BIOS)

Both require an external program to boot a new image (LOBOS doesn’t)

Oleg Goldshmidt: “Look, Ma, No BIOS!”19

IBM Haifa Labs

July 2006

Status

Mainboards, chipsets
- Too many to list, quite a few vendors, but not guaranteed that yours will work
- Many are marked as “unstable”
- Better chance with Intel than with others

Architectures
- Alpha, K8, K7, PowerPC, P4, PIII, PII, Cyrix (VIA), Geode (now AMD) and SC520

(AMD).
- PPC (some: Motorola Sandpoint is reported as working, IBM 970 port in progress)

OS
- Linux (but of course)
- OpenBSD
- Win2K (LILO and GRUB support with the help of BOCHS)

Deployment
- the biggest, baddest, fastest clusters built by LinuxNetworx for LANL
- Pentium and K8

Oleg Goldshmidt: “Look, Ma, No BIOS!”20

IBM Haifa Labs

July 2006

LinuxBIOS in Real Life (Have You Even Been to Los Alamos?)

Already there:
- The Superdense Server project (IBM Austin)

http://www.research.ibm.com/journal/rd/475/felter.pdf

Potentially:
- iSCSI/iBOOT
- Experimental hardware projects

Difficulties:
- Convince everybody there is a commercial advantage
- Convince Marketing that they can convince potential customers…
- Convince Legal that open source (GPL) will not put you in jail or out of business
- Deal with existing and emerging de-facto standards (e.g., EFI)

Create a market:
- LANL RFPed 2 clusters requiring LinuxBIOS at $19MM – vendors lined up

Oleg Goldshmidt: “Look, Ma, No BIOS!”21

IBM Haifa Labs

July 2006

Summary

A promising direction in general – let’s get rid of the BIOS!
For prototype development:
- tinkering with hardware may cause pain in various parts of anatomy, or sudden death
- not clear if target hardware or prototype hardware is supported

quite a bit of hacking may be required – not necessarily a bad thing

- open source - a major advantage for hacking
- limited OS support, though LILO/GRUB are reported to work, so there is hope

For product development:
- need a limited range of hardware to work
- tinkering with hardware is not a problem
- quite a few advantages in deployment

fast boot
flexible
concurrent remote access, logging, etc

- biggest question – hardware and OS support

Oleg Goldshmidt: “Look, Ma, No BIOS!”22

IBM Haifa Labs

July 2006

Further Information

Main website:
- http://www.linuxbios.org

“Putting Linux on Your Motherboard” by Antony Stone, Linux Magazine, March
2003, p. 76.
- http://www.linuxbios.org/papers/linux-magazine/LinuxBIOS.pdf

“LinuxBIOS at Four” by Ron Minnich, Linux Journal, February 2004.
- http://www.linuxjournal.com/print.php?sid=7170

“LOBOS (Linux OS Boots Linux OS): Booting a Kernel in 32-bit Mode” by Ron
Minnich, the 4th Annual Linux Showcase and Conference, October 2000
- http://www.linuxbios.org/papers/als00/lobos.pdf

Other papers:
- http://www.linuxbios.org/papers

Mailing list
- http://www.clustermatic.org/mailman/listinfo/linuxbios

BIOS history: “Accidental Empires” by Robert X. Cringely, HarperBusiness

http://www.linuxbios.org/papers/linux-magazine/LinuxBIOS.pdf
http://www.linuxjournal.com/print.php?sid=7170
http://www.linuxbios.org/papers/linux-magazine/LinuxBIOS.pdf
http://www.clustermatic.org/mailman/listinfo/linuxbios

	Look, Ma, No BIOS!
	BIOS Milestones
	How BIOS Works
	How Bootloader Works
	How setup() Works
	BIOS Today: A Pain In Sensitive Parts Of Anatomy
	Requirements and Decisions (As Specified by LANL)
	Operation, Benefits and Disadvantages of LinuxBIOS
	LinuxBIOS Do-It-Yourself HOWTO
	Swapping The BIOS Chip
	What Can Go Wrong
	After LinuxBIOS Boots: Troubleshooting etc.
	How It Works
	Protected Mode Setup: How To Run a Pentium
	DRAM, Transition to C, Mainboard Fixup, Starting Kernel
	OK, How Do We Boot a Real Kernel from LinuxBIOS? LOBOS
	LOBOS Implementation
	Related Work: bootimg, Two Kernel Monte (TKM)
	Status
	LinuxBIOS in Real Life (Have You Even Been to Los Alamos?)
	Summary
	Further Information

