
FreeVGA: Architecture Independent Video Graphics Initialization for
LinuxBIOS∗

Li-Ta Lo, Gregory R. Watson, Ronald G. Minnich
Advanced Computing Laboratory
Los Alamos National Laboratory

Los Alamos, NM 87545
{ollie, gwatson, rminnich}@lanl.gov

Abstract
LinuxBIOS is fast becoming a widely accepted alter-

native to the traditional PC BIOS for cluster computing
applications. However, in the process it is gaining at-
tention from developers of Internet appliance, desktop
and visualization applications, who also wish to take ad-
vantage of the features provided by LinuxBIOS, such
as minimizing user interaction, increasing system reli-
ability, and faster boot times. Unlike cluster comput-
ing, these applications tend to rely heavily on graphical
user interfaces, so it is important that the VGA hardware
is correctly initialized early in the boot process in addi-
tional to the hardware initialization currently performed
by LinuxBIOS. Unfortunately, the open-source nature of
LinuxBIOS means that many graphic card vendors are
reluctant to expose code relating to the initialization of
their hardware in the fear that this might allow competi-
tors access to proprietary chipset information. As a con-
sequence, in many cases the only way to initialize the
VGA hardware is to use the vendor provided, proprietary,
VGA BIOS. To achieve this it is necessary to provide a
compatibility layer that operates between the VGA BIOS
and LinuxBIOS in order to simulate the environment that
the VGA BIOS assumes is available. In this paper we
present our preliminary results on FreeVGA, an x86 em-
ulator based on x86emu that can be used as such a com-
patibility layer. We will show how we have successfully
used FreeVGA to initialize VGA cards from both ATI
and Nvidia on a Tyan S2885 platform.

1 Introduction

LinuxBIOS [9] is an open-source replacement for the tra-
ditional PC BIOS. The PC BIOS was developed in the

∗Los Alamos National Laboratory is operated by the University
of California for the National Nuclear Security Administration of the
United States Department of Energy under contract W-7405-ENG-36,
LA-UR N0. 04-7503

1980’s for the original IBM PC, and much of the func-
tionality needed to support this legacy hardware still re-
mains in the PC BIOS today. In addition, the vintage
operating systems that ran on these machines were de-
pendent on the BIOS for carrying out many of the config-
uration activities needed for the system to function prop-
erly. Modern operating systems are now able to initial-
ize and configure hardware directly, so there is no longer
any reason for the BIOS to be involved. The basic prin-
ciple behind a modern BIOS, like LinuxBIOS, is to do
the minimum necessary to enable system hardware, then
leave as much device configuration to the operating sys-
tem as it can. The result of eliminating this unnecessary
initialization is a very fast boot time compared to a tradi-
tional BIOS.

Another legacy feature provided by the PC BIOS is a
16-bit callback interface using the x86 software interrupt
mechanism. However, only a tiny subset of the interface
is used by modern operating systems, and in the case of
Linux, it is not used at all. LinuxBIOS does not pro-
vide this interface, and as a result, is able to substantially
reduce its memory footprint. Compared to 256KB re-
quired by the PC BIOS, the typical size of LinuxBIOS
is just 32KB to 64KB. This is important because of the
small size of FLASH memory in many systems.

Unlike the PC BIOS, only a very small portion of Lin-
uxBIOS is written in assembly code. For the x86 archi-
tecture, this is just enough code to initialize the CPU and
switch to 32-bit mode. The rest of LinuxBIOS is written
in the C language. This makes LinuxBIOS very portable
across different architectures, and it has already been
ported to support the Alpha and PowerPC processors.
Using a high-level language also allows LinuxBIOS to
employ a much more sophisticated object oriented de-
vice model, similar to the one used in the Linux kernel.
In such a model, each physical device has a correspond-
ing software object. The object encapsulates information
about the physical device and has methods to probe, ini-
tialize and configure the device. The main function of



LinuxBIOS is really just to organize, query and manage
these device objects. This kind of device object model is
unheard of in a BIOS implemented in assembly code.

LinuxBIOS has been successfully deployed in a num-
ber of real world applications. At Los Alamos Na-
tional Laboratory, we have Pink and Lightning [11],
two very large production cluster systems that use Lin-
uxBIOS. There are also a number of companies ship-
ping commercial LinuxBIOS-based systems. The ad-
vantages of LinuxBIOS have also drawn attention from
Internet appliance, desktop, and visualization platform
developers. These applications have created a demand
for video graphics adapter (VGA) card [7] support under
LinuxBIOS. In order to use LinuxBIOS, systems running
these applications need to be able to initialize a wide va-
riety of VGA cards. However, LinuxBIOS does not have
this capability because it does not provide the 16-bit call-
back interface mentioned earlier.

Traditionally, a VGA card is initialized by software
known as the VGA BIOS, which is considered an exten-
sion of system BIOS. It is loaded by the system BIOS
from an expansion ROM located on the VGA card into
a specific address in system memory. Control is then
transfered to the VGA BIOS, and it uses the 16-bit call-
back interface to communicate with the system BIOS.
Since LinuxBIOS does not provide this interface, a non-
traditional way to initialize the VGA device in a Lin-
uxBIOS environment is required. In order to achieve
this, we have developed a system known as FreeVGA.
FreeVGA uses an x86 emulator to run the VGA BIOS.
By using an emulator, we free the VGA initialization
from any architecture dependencies, since the emulator
can operate on any type of processor. In addition, the em-
ulator greatly simplifies the implementation of the 16-bit
callback interface.

To demonstrate the effectiveness of this technique,
we have used FreeVGA to initialize two VGA cards,
an Nvidia FX 5600 and an ATI Radeon 9800 Pro, run-
ning on a Tyan S2885 mainboard. Both video cards and
the mainboard are state-of-the-art, so we can be con-
fident that FreeVGA will work for virtually all main-
board/video card combinations.

The rest of this paper is organized as follows. Section
2 describes previous work on supporting the initializa-
tion of VGA cards with VGA BIOS in non-traditional
ways. Section 3 presents how we used an x86 emulator
to execute the VGA BIOS and the necessary modification
to the emulator and LinuxBIOS itself. We also examine
some of the issues that need to be dealt with in order to
support this technique. Section 4 shows how we found
out the issues described in Section 3 and the strategy we
used to overcome these problems. Finally, Section 5 is a
roadmap of our future development.

2 Related Work

Initializing VGA cards in a non-traditional way (i.e. not
using the standard VGA BIOS in the normal manner)
is not a new problem, and various other open source
projects have addressed it in the past. There are a number
of reasons why VGA cards need to be initialized in this
manner.

Due to the limitation of the traditional initialization
process and legacy VGA hardware, only one VGA de-
vice can be initialized in a given system. For systems
with multiple VGA cards, only the first one is initialized
at boot time, other cards have to be soft-booted after the
operating system is loaded.

Some VGA hardware is fragile, so that a slight error
in programming the registers will put the hardware in a
non-functional state. A complete re-initialization is then
required to bring the hardware back to normal. Normally,
the only way to do such a re-initialization is to re-execute
the initialization code in the VGA BIOS. Of course it is
always possible to reset the whole system as a last resort,
but usually this is not an option. In these cases it must be
possible to reset just the VGA device while other parts of
the system are still running.

Other open source projects that have addressed the
need to initialize VGA cards are described in the follow-
ing sections.

2.1 SVGALib

SVGALib [2] is a library that provides a generic VGA
interface for older VGA cards. It includes a utility called
vga reset to re-initialize VGA cards. The utility uses
the vm86 mode of x86 processors to execute the VGA
BIOS. In vm86 mode, an executing program is just like
any other program executing in 32-bit mode, but it exe-
cutes 16-bit code like a traditional 8086 CPU. To support
this, Linux provides a system call to switch a process into
vm86 mode. vga reset first maps in the BIOS code
and data area from physical memory space to its virtual
memory space. Then it sets up register values for instruc-
tion and stack pointers. Finally, it enters vm86 mode by
calling the vm86 system call.

By default, both VGA BIOS and system BIOS call-
backs are executed natively by the hardware, except
some privileged instructions and I/O operations. By giv-
ing different flags when entering the vm86 mode, it is
possible to choose to intercept I/O and BIOS calls. This
feature was used frequently in the early stage of the de-
velopment of our solution as a debugging and verification
tool. The I/O and BIOS call logs from vga reset and
x86emu were compared to examine if both vga reset
and x86emu had the same code execution path in the
same hardware environment. If they both had the same



execution path, it indicated that the emulator executes the
VGA BIOS exactly as the real hardware.

The disadvantage of vga reset is that the vm86
mode is not supported by the AMD x86 64 architecture.
The 64-bit Linux kernel does not provide the vm86 sys-
tem call. During our development, we had to install a 32-
bit Linux distribution on our 64-bit AMD K8 platform to
run vga reset.

2.2 ADLO

ADLO [5] was the original effort to add VGA BIOS sup-
port into LinuxBIOS. ADLO uses the BOCH BIOS to
replace the traditional system BIOS. It loads the BOCH
BIOS and VGA BIOS into the memory addresses where
the traditional system and VGA BIOS are loaded. ADLO
then switches the processor back to 16-bit mode and
jumps to the entry point of the BOCH BIOS. The BOCH
BIOS tries to do the same initialization process and to
provide the same BIOS callbacks as a traditional BIOS.
The net effect of this BOCH+VGA BIOS combination is
like a software reboot in a traditional BIOS system. One
of the advantages of ALDO is that it can support legacy
operating systems like Window 2000. The problem of
ADLO is that it depends on the BOCH BIOS, which
is very difficult to maintain and modify. Even adding
a message printing statement in the BOCH BIOS will
make it fail to build.

2.3 VIA/EPIA Port

Another effort to use VGA BIOS to initialize VGA hard-
ware is the VIA/EPIA port of LinuxBIOS. The port uses
a trampoline to switch back and forth between the 16-
bit and 32-bit modes of x86 processors. This allows the
VGA BIOS to be executed directly in 16-bit mode but
standard BIOS callbacks to be emulated in 32-bit mode
in the C language. Before executing the VGA BIOS, a
16-bit interrupt descriptor table (IDT) is set up to redi-
rect all interrupt calls to the trampoline. The BIOS then
switches to 16-bit mode and jumps to the entry point
of VGA BIOS. When the VGA BIOS calls the standard
BIOS callbacks, the trampoline switches to 32-bit mode,
and dispatches the call to the BIOS emulation code. Af-
ter the emulation code returns, the trampoline switches
back to 16-bit mode and returns to VGA BIOS. The main
limitation with this approach is that it is highly architec-
ture specific, so can’t be used for non-x86 based archi-
tectures. The other disadvantage of this method is that
because the trampoline is inside LinuxBIOS, it is more
difficult to debug than a user space program like x86emu.

2.4 XFree86
The XFree86 project [4] has to solve this problem in
order to support multiple-card, multiple-screen config-
urations. Since XFree86 supports multiple architectures,
the solution must be able to initialize VGA hardware
not only on x86 systems, but also on other architectures
like Alpha and PowerPC. To achieve this, XFree86 uses
x86emu emulator to execute the VGA BIOS directly.
X86emu is an x86 instruction emulator which does not
emulate any hardware other than the core x86 processor
in 16-bit mode. The emulator provides helper function
stubs to access I/O and memory spaces. XFree86 imple-
ments these helper functions in architecture dependent
ways. XFree86 first unmaps the primary VGA card from
physical I/O and memory spaces by programming well
known legacy I/O ports or registers in the PCI configura-
tion space. Then it maps in the I/O and memory spaces
of the secondary card, loads the VGA BIOS image of the
card into the virtual memory space of the emulator. The
emulator then executes the VGA BIOS starting from the
entry point. Because most VGA BIOSes also require tra-
ditional BIOS callbacks which are not available in non-
x86 systems and not usable in 32-bit x86 systems, the
emulator also has to intercept these BIOS calls and then
emulate them in a similar way as I/O and memory ac-
cesses.

In a summary, each of these previous efforts was found
to have deficiencies. Both SVGALib and VIA/EPIA are
non-portable, so are not suitable for integration in Lin-
uxBIOS. SVGALib, ADLO and VIA/EPIA were found
to be very difficult to debug, which is a major problem
for a complex system like LinuxBIOS. XFree86 initial-
izes the VGA hardware very late, which does not meet
our design goals. These problems motivated us to seek a
solution which was able to address all these issues, while
taking advantage of the experience gained by the previ-
ous research.

The concept and advantages of using an emulator to
execute the VGA BIOS in order to initialize VGA hard-
ware are obvious. The solution is portable across dif-
ferent platforms, and it is flexible enough to monitor I/O
and memory accesses and BIOS callbacks. The ability to
monitor these accesses is very useful for debugging pur-
poses. As a consequence, the solution we have chosen
for FreeVGA is based on a modified version of x86emu.

3 VGA Emulation

Most modern VGA cards support two modes of oper-
ation: legacy mode and native mode. In legacy mode
the card replicates the graphics hardware interface that
was used on the original IBM PC/AT. The legacy mode



is primarily used to provide a compatibility mode so that
applications and drivers have a common programming
interface. In native mode, the card provides access to a
vendor specific register interface that is used to config-
ure and control the card. Most VGA cards require an
elaborate programming sequence to initialize the VGA
hardware and turn it to legacy mode. If LinuxBIOS was
to support direct initialization of the card, it would need
to use a device driver that provided this programming
sequence. Unfortunately, most vendors worry that even
exposing the interface to their proprietary hardware will
allow their competitors to plunder their intellectual prop-
erty; hence they do not reveal the sequence of register
diddles necessary to initialize their cards.

Linux uses a frame buffer device as an abstraction
of graphics hardware. Applications interact with frame
buffer device interface (/dev/fb) instead of directly
accessing the hardware. At a minimum, the frame buffer
device driver provides support to switch video modes
and some basic drawing functionality. Some vendors
like Matrox provide a sophisticated frame buffer device
driver which can initialize the hardware from the power-
up state to any video mode available by the hardware.
Our original intention was to persuade vendors to pro-
vide these sophisticated drivers so that they could be used
by LinuxBIOS. However many of the vendors who pro-
vide enough information to implement a minimal frame
buffer device driver hesitate to provide the additional in-
formation necessary for a such a driver.

As a result, the only way to reliably initialize the hard-
ware from power-up in a vendor-neutral manner is to run
the vendor supplied VGA BIOS. Once the VGA BIOS
has been run, the card will switch to legacy mode and it
can be controlled using the legacy interface from then on.
Depending on the implementation of the VGA BIOS, the
16-bit BIOS callback interface may be used to communi-
cate with the system BIOS. Since LinuxBIOS lacks this
callback interface, it can not support VGA BIOS directly
in the same way as the traditional system BIOS. We have
to either add the 16-bit callback interface to LinuxBIOS
or use another software to provide this interface. The use
of an emulator solves this problem by allowing the em-
ulator to run in 32-bit mode to execute the 16-bit mode
VGA BIOS and then implement the callback interfaces
as necessary.

3.1 x86emu

The emulator we used to enable VGA support in Lin-
uxBIOS was based on a modified version of x86emu.
The x86emu emulator was originally developed by
SciTech Software [1] as part of their SciTech SNAP
SDK. The XFree86 project adopted the emulator for
soft-booting VGA cards in their X-server. We used the

XFree86’s version rather than the SciTech’s version be-
cause it is more updated and debugged.

The virtual machine of the emulator is implemented
by a data structure representing all the integer and float-
ing point registers in an x86 CPU. The emulator decodes
and jumps to an entry of a function table based on the first
op code of each instruction. The functions in the func-
tion table update the virtual machine with the outcome
of the execution of the instruction. The emulator uses
helper functions provided by client applications to com-
municate to the real world, for instance, accessing I/O
and memory spaces. The emulator allows interrupt han-
dling using either an interrupt handler provided by the
client application or an interrupt handler in the BIOS.

IO and Memory Access The client application pro-
vides a set of functions for accessing I/O ports and an-
other set of functions for accessing memory addresses.
The structures used to define the functions are shown be-
low:

typedef struct {
u8 (inb)(int addr);
u16 (inw)(int addr);
u32 (inl)(int addr);
void (outb)(int addr, u8 val);
void (outw)(int addr, u16 val);
void (outl)(int addr, u32 val);

} X86EMU_pioFuncs;

typedef struct {
u8 (rdb)(u32 addr);
u16 (rdw)(u32 addr);
u32 (rdl)(u32 addr);
void (wrb)(u32 addr, u8 val);
void (wrw)(u32 addr, u16 val);
void (wrl)(u32 addr, u32 val);

} X86EMU_memFuncs;

These two sets of functions are installed into the
emulator via X86EMU setupPioFuncs() and
X86EMU setupMemFuncs() respectively.

Since we are working on an x86 platform, the im-
plementation of the I/O access functions is just a thin
wrapper for the inline assembly functions provided in
sys/io.h. All I/O operations are directed to the phys-
ical I/O ports without any intervention or emulation.

In our setup, we statically allocated 1MB of mem-
ory to be used as the virtual memory of the emulator.
The memory access functions direct all memory accesses
made by VGA BIOS to this area, except accesses to the
legacy VGA buffer. These are directed to another vir-
tual memory area which is mmaped from /dev/mem.
We implemented the memory access functions by read-
ing and writing these two memory regions according to
an address passed as argument to these access functions.



Interrupt Handling In the x86 architecture, there are
256 software interrupts. The client application provides
an array of 256 functions to the emulator for interrupt
handling, in a similar way as I/O and memory access
functions. When the emulator encounters an INT in-
struction with an interrupt numberN, it calls the Nth entry
of the array. The interrupt handling function can choose
to handle the interrupt by itself or let the emulator exe-
cute the handler in its virtual memory.

In our implementation, all software interrupts are di-
rected to a single do int() function. When this func-
tion is called with a interrupt number, it first checks if
there is any handler installed by the VGA BIOS for that
interrupt number. If there is no handler installed, it will
call the default emulation code implemented in the C lan-
guage, otherwise it will execute the handler installed by
VGA BIOS with the emulator.

3.2 Legacy VGA Issues
Using x86emu provides LinuxBIOS with a means of ini-
tializing the VGA hardware and then switching the card
to legacy mode. However there are a number of other
issues that need to be addressed when the card is oper-
ating in this mode. Figure 1 shows the system and card
memory layout when operating in legacy mode.

Figure 1: Legacy VGA Memory Map

Buffer Memory The memory on the VGA card
is mapped to system physical address space by the
prefetchable memory resource in the PCI Configuration
Space of the card. The buffer memory used in legacy
mode is just a small portion of the whole memory in-
stalled on the card, as shown in the shaded area in Figure
1. This portion of memory is mapped to system mem-

ory addresses 0xA0000 to 0xBFFFF respectively. Part of
this area is used to store bitmap data which is interpreted
by the hardware as font information. The rest is used to
store the ASCII codes and color values to be displayed
on the screen. The VGA BIOS clears and updates the
buffer memory during initialization, so it is necessary to
map this region of physical memory to the virtual mem-
ory space of the emulator.

Figure 2: Legacy VGA I/O Map

I/O Addresses The control registers of the VGA de-
vice are located by the PCI I/O resource map to the I/O
space of the processor, or by the PCI non-prefetchable
memory (MMIO) resource map to a range of physical
memory addresses. VGA cards also provide access to
control registers via the legacy VGA I/O addresses in the
range 0x300 to 0x400. Generally, the VGA BIOS will
access control registers using both memory mapped I/O
and via the legacy VGA I/O ports. To support this, it
is necessary to ensure that both I/O access methods are
forwarded correctly to the VGA device.

Expansion ROM Before the VGA BIOS can be exe-
cuted, it has to be loaded from the expansion ROM on
the VGA card into the VGA BIOS memory area in sys-
tem memory. The PCI specification [10] defines the for-
mat for the VGA BIOS image and a procedure to load
the image as follows:

1. The image in the expansion ROM starts with a 0x55,
0xAA signature.

2. The system BIOS should search the for signature in
the expansion ROM and load the image into mem-
ory.

3. If the device is a VGA device, the system BIOS is
required to load the image to 0xC0000 which is the
VGA BIOS area.

4. After loading the image, the system BIOS should
jump to the entry point of the image which is at off-
set 0x3.



The expansion ROM loading was implemented in Lin-
uxBIOS as the initialization methods of PCI devices.
LinuxBIOS probes and allocates the expansion ROM re-
sources required by PCI devices in one of the stages of
device enumeration. In a later stage, it loads the expan-
sion ROM image from ROM to RAM and uses the emu-
lator to execute the image.

CPU Cache The system memory region allocated to
VGA buffer memory (0xA0000-0xBFFFF) is actually
aliased in legacy mode. This means that memory ac-
cesses in this range can be forwarded to system memory
or VGA card memory depending on the setting of the
system chipset or the cache controller in the processor.

The cache in x86 processors after Pentium Pro is
configured by Model Specific Register (MSR) called
Memory Type Range Register (MTRR) in the processor.
MTRR controls the cache mechanism of a range of phys-
ical address. Addresses under 1MB are controlled by
fixed MTRRs and addresses above 1MB are controlled
by variable MTRRs. The fixed MTRRs on the K8 have
2 extension bits (RdMEM and WrMEM) [6] which con-
trol the forwarding of read and write access to memory
address under 1MB. When set and enabled, the RdMEM
bit in the MTRR will forward read access in the range to
system memory. The WrMEM bit will forward write ac-
cess to system memory. However, since we want mem-
ory access to the VGA buffer memory be forwarded to
the VGA card, we have to clear these two bits in the
MTRRs controlling this memory range.

HyperTransport Routing The AMD K8 processor
and its chipsets are interconnected by HyperTransport
Technology [8]. Each processor has a northbridge in-
tegrated in the same package. The northbridge connects
the core processor to system memory and other parts of
the system (via a southbridge). On the K8, each north-
bridge provides three HyperTransport links that can be
used for communication. The way the processors and
chipsets are connected via these links is determined by
mainboard designers and varies from board to board.
There is also a HyperTransport routing table in the north-
bridge which controls how memory and I/O requests are
routed. The BIOS has to configure the routing table
based on both the physical layout of the HyperTransport
hierarchy, and the PCI devices attached to the hierarchy.
I/O and memory transactions can then be forwarded to
the correct HyperTransport link on the northbridge. For
VGA devices, accesses to both the I/O and memory re-
sources defined in the PCI configuration space, and to the
legacy VGA, also have to be forwarded correctly.

Figure 3 shows the HyperTransport hierarchy of the
Tyan S2885. The mainboard designers have connected
the two CPUs together by Link 1 on each CPU. The

Figure 3: S2885 HyperTransport Hierarchy

AMD 8151 AGP bridge is connected to Link 0 and the
AMD 8131 PCI-X bridge is connected to Link 2 on CPU
0. Link 0 and Link 2 of CPU 1 are left unconnected. Lin-
uxBIOS must configure the routing table based on which
kind of VGA card is installed. For example, for a VGA
card connected to the AGP, it is necessary to set up the
routing table in CPU 0 to forward legacy VGA I/O and
memory transactions to Link 0. However if the VGA card
is connected to the PCI bus, the routing table will need
to forward transactions to Link 2.

PCI and AGP Bridges PCI and AGP bridges forward
I/O and memory transaction from its primary bus to its
secondary bus. The range of access to be forwarded is
configurable and should cover the PCI I/O and memory
resources used by all devices on the secondary bus. Usu-
ally this range does not include the I/O amd memory ad-
dresses used by legacy VGA. We have to enable forward-
ing of legacy VGA access in additional to normal PCI
access by programming a bit in the Configuration Space
of the bridge.

3.3 Integration
In order to achieve our objective of early VGA initializa-
tion during the BIOS boot phase, it is necessary to make
the emulator part of LinuxBIOS.

User Space Versus Kernel Space One problem we ex-
pected to encounter when moving the emulator into Lin-
uxBIOS was operating system and library dependency



issues. The emulator was a user space program that used
operating system and library calls for memory manage-
ment, message printing and accessing PCI configuration
space. Those functions are not available during the boot
phase, and need to be replaced by corresponding support-
ing routines in LinuxBIOS.

Fortunately, it turned out that the integration process
was relatively easy, since there were only a few operating
system and standard library dependencies in the emula-
tor itself. Most of the effort was spent on implementing
expansion ROM loading in LinuxBIOS, and fixing bugs
in I/O and memory transaction forwarding.

Device Object Model The integration fully used the
device object model available in LinuxBIOS. This was
done in such a way that not only VGA BIOS could be
executed, but the same technology could also be used to
initialize other devices requiring a proprietary BIOS, for
instance, some SCSI controllers.

The emulator was treated as one of the initialization
methods of PCI devices. This fitted the emulator nicely
into the LinuxBIOS device driver model because the
initialization method is automatically called at certain
stages of the device enumeration. Once the device enu-
meration code found a PCI device with expansion ROM,
it would call the emulator at the appropriate stage to ini-
tialize the hardware. The hardware would then be initial-
ized in the same fashion as any other devices are initial-
ized.

With this technique, the VGA hardware is fully con-
figured before any bootloader payloads are loaded. This
means that bootloaders can now use the legacy mode
of the VGA device as a console and the Linux console
driver works in exactly the same way as in a traditional
PC BIOS environment.

Size Overhead Integrating FreeVGA into LinuxBIOS
had virtually no impact on the size of the resulting ROM
image. The compressed ROM image only increased by
16KB, but because the final ROM image is padded to the
nearest power of 2, this increase was absorbed into the
existing unused space. The runtime size of the uncom-
pressed image was only increased by 40KB.

4 Testing

Testing of FreeVGA was carried out on a Tyan S2885
mainboard. This mainboard was chosen because it was
a state-of-the-art board that uses 64 bit AMD CPUs. It
was also the only AMD K8 mainboard with an AMD
8151 AGP bridge and an AGP slot. The AGP slot on the
mainboard allowed us to test a range of newer generation
AGP VGA cards. The mainboard was configured with

dual 1.6 GHz AMD K8 processors. There was 3GB of
DRAM installed, 2 GB of the memory was installed on
DRAM DIMM connected to CPU 0 and the other 1GB
was connected to CPU 1.

One of the challenges of the Tyan was that it was a
very complex platform to work with. The first time we
tried running the emulator we received nothing at all on
the screen. Checking the execution log from the emula-
tor, we found that I/O accesses to the PCI I/O resource
region of the VGA device returned meaningful values,
but that I/O accesses to the legacy VGA I/O ports on
the card always returned invalid values. From this we
were able to deduce that the northbridge and AGP bridge
were forwarding normal PCI I/O accesses to the card cor-
rectly, but accesses to the legacy VGA were not. To test
this, we temporarily configured legacy VGA forwarding
in the AGP bridge and HyperTransport routing in the
northbridge. Re-running FreeVGA at this point resulted
in scrambled text on the screen. This was promising, and
it verified that HyperTransport routing was going to be
crucial for this platform.

Next we tried to alter the scrambled pattern by writ-
ing to the buffer memory via both the legacy VGA buffer
area and the PCI memory resource region. We found
that changes made via the PCI memory resource region
were not reflected in the legacy VGA buffer area and
vice versa. This was strange because in theory no matter
which way the buffer memory was modified, it should
updated the same memory on the VGA card. We finally
realized that the cache controller in the AMD K8 pro-
cessor was forwarding the access to the memory on the
mainboard rather than on the VGA card. This problem
was solved by changing the MTRRs with the help of the
kernel MSR driver.

At this point, the screen remained scrambled even
though we were sure that the CPU was forwarding ac-
cesses correctly. By comparing the contents of the VGA
buffer memory when the system was booted with both a
tradition BIOS and with LinuxBIOS, we found that the
contents of the font data memory were different. This
was because the emulator was executing the VGA BIOS
in its own virtual memory address, whereas the VGA
BIOS tried to update the font data at a physical address.
This was solved by modifying the emulator to map the
physical memory device /dev/mem to its virtual mem-
ory address for the legacy VGA buffer.

4.1 Nvidia FX 5600

The first VGA card we tried was an Nvidia FX 5600.
This is a high performance 3D graphics card with
256MB of onboard memory.

In additional to the fact that Nvidia is the market
leader in VGA chipset design, we choose this card be-



cause Nvidia have never publicly released any program-
ming documentation on the hardware. This meant that
FreeVGA would not be able to do any direct card config-
uration and would have to rely totally on running the ven-
dor supplied VGA BIOS. Much to our surprise, execut-
ing the VGA BIOS work successfully on the first attempt
and we were greeted with the Nvidia banner messages on
the screen. It turned out that the VGA BIOS did not do
anything unusual, nor did it require any BIOS callbacks.
After the successful initialization, we were able to run
Linux VGA console without problem.

In order to fully exercise the Nvidia card, we ran a
benchmark using the Unreal game [3] under the XFree86
X-window system. This also allowed us to test two dif-
ferent versions of the X server driver, one provided by
the XFree86 Project and the one provided by Nvidia.
Both drivers worked flawlessly and there was no signif-
icant difference running the benchmark as compared to
the system booted with a traditional BIOS. This bench-
mark also exercised the 3D and AGP operation of the
card and no problems were found.

Figure 4: Direct and Indirect BIOS call

4.2 ATI Radeon 9800 Pro

The ATI Redeon 9800 Pro is a high performance 3D
graphics accelerator card with 256MB of memory. The
card was manufactured and supplied by Tyan. It is com-
parable in performance to the Nvidia card.

The first time we tested the emulator on the ATI card it
crashed the system. By examining the I/O logs we found
that during the initialization, the VGA BIOS was setting
the video mode and then displaying some messages on

the screen. As shown in Figure 4, the Nvidia BIOS did
this by calling subroutines in the BIOS directly. In the
case of the ATI card, the VGA BIOS tried to install a
BIOS callback handler in the interrupt vector table and
then call the handler using the software interrupt mech-
anism. Although using a BIOS callback was not a prob-
lem for FreeVGA, the problem was that we were inter-
cepting the software interrupt and implementing our own
handler base on our limited knowledge of legacy VGA.
Obviously, the way we implemented the handler was in-
correct for the ATI hardware and caused the crash. Once
we stopped intercepting the BIOS call and executed the
handler in the ATI BIOS, the card was initialized without
problem.

At this point we ran the same benchmark on the ATI
card. This verified that there were no differences in the
performance and operation of the card compared to a sys-
tem booted with the traditional BIOS.

5 Future Work

The work to date has shown that it is possible to use
our methodology to reliably initialize two very different
VGA cards. Because of the different nature of the cards,
and the fact that we have not needed any vendor input to
achieve this result, we are confident that this technique
will apply to virtually any type of VGA card. How-
ever there are still a number of issues that need to be
addressed before FreeVGA is ready for general use.

Chipset Dependencies At the time of writing, we have
only tested the emulator on an AMD K8 platform. Each
vendor chipset has its own, very different, way of caching
the frame buffer memory and forwarding I/O and mem-
ory accesses. The HyperTransport architecture of the
AMD K8 is the most complicated one we have ever seen
so far, however there is no guarantee that the techniques
we have used here will be applicable to other chipsets.
More testing is required so that that the experience we
have gained on AMD K8 can be extended to the support
of other chipsets.

Other Architectures One of the advantage of
FreeVGA is its architecture independence. Since
LinuxBIOS already supports other non-x86 archi-
tectures, such as the PowerPC, it will be necessary
to port FreeVGA support these other architectures
too. Currently, VGA cards have to be programmed
using OpenFirmware instead of the x86 VGA BIOS
in the expansion ROM to be usable on PowerPC.
This has severely limited the choice of VGA cards on
PowerPC-based system. By using FreeVGA to initialize
VGA cards on PowerPC, the same VGA cards that are



available for the x86 architecture will be available for
the PowerPC.

The main issue of porting the emulator to these archi-
tectures is that they have very different ways of access-
ing legacy VGA IO and memory. The legacy VGA IO
and memory are mapped to physical memory address in
a chipset and mainboard dependent way. The mecha-
nism of accessing PCI Configuration Space is different
from x86 architecture too. We expect a much more com-
plicated implementation of X86EMU pioFuncs and
X86EMU memFuncs for these architectures.

6 Conclusion

In this paper, we have described FreeVGA, an architec-
ture independent method for initializing video graphics
adapter cards. The technique was developed so that Lin-
uxBIOS, an open source replacement for the traditional
PC BIOS, would be able to initialize graphics hardware
very early in the boot process. To achieve this, FreeVGA
uses an x86 emulator based on x86emu to run the actual
VGA BIOS from the graphics card. This ensures that
the card is initialized correctly, and does not require any
knowledge of proprietary hardware information.

FreeVGA has been successfully tested using a Tyan
S2885 mainboard configured with both ATI Radoen
9800 and Nvidia FX 5600 cards. Our testing showed
that these cards could be successfully initialized with
FreeVGA, and then support the operation of the XFree86
X-window system without any problems. Both the AGP
and 3D features of the cards were completely opera-
tional, and benchmarking showed no performance dif-
ference compared to the system booted with the standard
PC BIOS. Although there are still a number of issues
to be addressed to enable seamless integration with Lin-
uxBIOS, the results of our testing gives us great confi-
dence that FreeVGA will be an effective, vendor inde-
pendent, alternative for initializing VGA hardware on a
range of different platforms.

7 Acknowledgment

The author would like to thank David Hedricks for set-
ting up the development platform and performing the
elaborate testing.

Tyan Computer Corp. kindly provided the S2885
mainboard and the ATI Radeon 9800 Pro card. Tyan is a
long time supporter of the LinuxBIOS project, and ships
LinuxBIOS on a number of its mainboard products.

References

[1] http://www.scitechsoft.com/.

[2] http://www.svgalib.org/.

[3] http://www.unrealtournament.com/.

[4] http://www.xfree86.org.

[5] Adam Agnew, Adam Sulmicki, Ronald Minnich,
and Willian Arbaugh. Flexibility in rom: A stack-
able open source bios. In 2003 USENIX Annual
Techinical Conference, San Antonio, Texas, USA,
June 2003.

[6] AMD. BIOS and Kernel Developer’s Guide for
AMD Athlon 64 and AMD Opteron Processors,
May 2003.

[7] Richard F. Ferraro. Programmer’s Guide to the
EGA, VGA, and Super VGA Cards. Addison Wes-
ley, 1994.

[8] HyperTransport Technology Consortium. Hyper-
Transport I/O Link Specification, January 2003.

[9] Ron Minnich, James Hendricks, and Dale Webster.
The Linux BIOS. In Proceedings of the Fourth An-
nual Linux Showcase and Conference, Atlanta, GA,
October 2000.

[10] PCI-SIG. PCI Local Bus Specification, December
1998.

[11] Gregory R. Watson, Matthew J. Sottile, Ronald G.
Minnich, Erik A. Hendriks, and Sung-Eun Choi.
Pink: A 1024-node single-system image linux clus-
ter. In Proceedings of HPC Asia 2004, Toyko,
Japan, July 2004.


