
coreboot boot structure

LA-UR-06-7928

New coreboot group

March 13, 2008

Abstract

This is the new coreboot boot architecture.

1 Introduction

The new coreboot boot architecture depends on CAR, with payloads appearing
as files in a LAR archive. The device tree is defined by a device tree blob (DTB)
and all the activities flow from that. For now, the DTC will produce a standard
coreboot v2 device tree; this will, we hope, be improved. romcc is gone.

Required attributes of a CPU for coreboot v3:

• Supports CAR

Required platform attributes:

2 Goal

2.1 Design Goals

• All components are seperate modules.

• The strict seperation of normal/fallback does not exist anymore. Any
module can be available several times.

• Commonly used code is shared. There is one implementation of printk,
and one implementation for each compressor.

• Under construction, things have changed recently.

2.2 Features

3 FLASH layout

Shown in 1 is the layout of the whole FLASH. Note that we can kill the buildrom
tool, since the FLASH code is now a LAR archive. Note that the linker script
will now be very simple. The initram is roughly what is in auto.c, although
the early hardware setup from auto.c is now in the pre-initram, so that we have
serial output and other capabilities. The FLASH recovery is interesting: in
hopeless cases, the serial port can be used to load a new flash image, and allow
a successful boot from a totally hosed machine. VPD includes data such as the
MAC address, instance of the motherboard, etc. The DTB can be modified
by the flashrom tool, and hence a platform can be customized from a binary
FLASH image. Each LAR file has a checksum attached to the end, so that
the system can verify that the data is uncorrupted. We now build at least four
targets for a platform:

• Basic startup and CAR (in most cases, same for all processors of a given
type)

• Pre-initram device setup (large FLASH, serial port, etc.)

• initram

• Traditional coreboot RAM code (LAR, etc.)

• Load payload and start it

4 Introduction to the coreboot device tree

4.1 Purpose and function

The coreboot device tree is probably the single most important concept in core-
boot, and, in V2, was the least understood part of the software. The device
tree provides a tremendous amount of capability to the software. The initial
tree, which almost always will be an incomplete representation of the hardware
(consider pluggable devices), is created by the configuration tool – in V3, the
device tree compiler, or DTC. The initial tree is statically allocated at com-
pile time. At runtime, hardware must be probed, and the tree must be filled
in, extended, and even restructured as the hardware discovery process occurs.
The restructuring mainly consists of adding nodes, and reordering nodes in the
tree to accomodate these new nodes. The tree represents devices as nodes and
busses as edges (called links) between the nodes. Some devices can bridge a
bus to another; these are intermediate nodes in the tree. Other devices do not
bridge busses; these are leaf nodes. And, of course, a bridge device might exist
with nothing on the other side – this device will of course also be a leaf node.

Figure 1: FLASH layout

JMP start

VPD

VPD checksum (4 bytes)

Code Checksum (4 bytes)

0xfffffff0

0xffffff00

LAR archive
lzma
nrv2b
normal/initram
normal/coreboot.lzma
fallback/initram
fallback/coreboot.lzma
memtest86/memtest86.lzma
vgabios.lzma

Basic startup
src/cpu/x86/crt0.S

Device Tree Blob
Device Tree Code
CPIO code support
FLASH recovery from serial ROM

CAR
Pre−initram device setup

At build time, the programmer can specify, via a configuration file, hardware
that is likely to be on the mainboard, although it is not required to be present
(e.g. a 2-cpu system might have only one CPU installed). Also, hardware that
can be probed, and that does not need any special configuration, can be left
out of the configuration file and left to be discovered dynamically, even if it is
known to be on the board. At run time, the software must determine what
hardware exists, and modify the tree to accord to reality. This modification can
include deletion of nodes, including bridge nodes; and even deletion of edges
in the graph. The software must also be able to add new nodes and edges, as
bridges and devices are found.

Finally, once the tree is built, the device tree software must allocate resources
to each device. Resources, in this context, are for the most part address space
ranges, in memory or I/O space. A given device will require a certain range
of addresses and, still worse, might require that those addresses be fixed at
a certain value (such as a superio which is hardwired to address 0x4e). The
software must allocate the resources to devices, and, for a bridge, must allocate
the resources to the bridge that are held by all the devices on the other side of
the bridge.

The process of resource allocation must take into acount the fact that ad-
dresses at a bridge may have special alignment requirements (e.g. the 4096 byte
alignment for memory address ranges); that memory addresses on a device must
be aligned to the size of the region (e.g. a 512KiB region must be aligned to
512KiB); and other restrictions dependent on the device or bridge. Another
issue is the use of subtractive address ranges, which define an address range that
is picked up by default if no other resource claims it. Subtractive address ranges
are typically used for legacy PC address ranges.

4.2 Device tree structures

There are three primary objects which are used to manage the coreboot de-
vice tree: devices, links, and drivers. Devices and links are generic structures:
drivers, on the other hand, are specialized. We describe these parts, and their
relationship, below.

These structures are linked together in the static device tree. The static de-
vice tree, a set of initialized C structures, is created by the device tree compiler,
in the file build/statictree.c, using as input the dts file in the mainboard direc-
tory. This tree defines the hardware that is known to exist on the mainboard.
At run time, the static tree is elided with dynamically determined information,
and can even be restructured to some extent (e.g., the static tree has a device
at 0:4.0; if a dynamic device is found at 0:3.0, it will be placed in the tree “in
front of” the 0:4.0 device).

Each device has a void * which can be filled in, via the dts file, with non-
generic, i.e., device-specific, information.

What’s the difference between generic and non-generic information? As an
example, the PCI configuration address or “path” of a device is generic; there is
a path of some sort for every device in a system. But, not all devices have iden-

Figure 2: The files in the i440bx directory.

[rminnich@q ~]$ ls ~/src/bios/coreboot-v3/northbridge/intel/i440bxemulation/
config.h i440bx.c i440bx.h Kconfig Makefile

tical capabilities. Some PCI devices have IDE controllers, others do not; some
can drive the legacy PC XBUS, others can not; and so on. In coreboot V1, we
attempted to create devices that were the union of all possible devices, but cre-
ating such a union proved to be impossible, as new devices with new capabilities
came out. So, in V2, we split off the device-specific information into a seperate
structure. The generic device structure is defined in include/device/device.h;
the device-specific structures are defined in the source directory for a given de-
vice, always in a file named config.h, e.g. src/northbridge/intel/i440gx/config.h.

For an analogous structure, see the Linux kernel Virtual File System (VFS)
code. A VFS is a generic file system, with a generic structure, which can be
extended via individual file system structures.

More on device source directories, configuration structure and con-
fig.h file

The generic code for the device tree is contained in the device directory. The
code for a given device is contained in a single directory, which is not shared with
any other device. The naming convention is <device-type>/<vendor>/<device-
name>/filename. The config.h file contains configuration information for a given
device.

Devices, in some cases, have special control registers that need to be set. In
a few cases, generic code can handle these operations: see device/pci device.c.
Device-specific functions for controlling the device and its settings are found
in the device-specific directory. All the configuration variables for controlling a
device must be defined in a single structure; to reiterate, that structure is defined
in the file config.h. It is one structure, instead of a set of variables, because it
must be instantiated and initialized by the device tree compiler (dtc), and a
pointer to it is held in the generic device structure.

We show an example of a specific device, below. The device is the i440bx
emulation.

i440bx.h contains manifest constants defining registers, bits in registers, and
so on.

Config.h defines the structures and declarations that allow the static device
tree to compile. We show it below.

The file contains an extern declaration, pointing to a set of operations for
the chip (needed to get statictree.c to compile); and the chip-specific structure,
containing the control variable ramsize.

The Kconfig and Makefile are for the Kbuild system.

Figure 3: config.h for the i440bx

extern struct chip operations northbridge intel i440bxemulation ops;
struct northbridge intel i440bx config
{
/* The various emulators don’t always get 440BX right. So we are
* going to allow users to set the RAM size via Kconfig.
*/
int ramsize;
};

4.3 Bus

Busses, defined in include/device/device.h, connect parent devices to child de-
vices. Busses are attached to a device, and have child devices attached to them.

4.4 Generic device structure and code

Generic devices are defined in include/device/device.h. Devices:

• have a path

• are attached to a bus

• have sibling devices

• have a vendor and device ID

• have a class and hdr type

• have several booleans, describing state, including enabled, initialized, re-
sources have been read, and on the mainboard

• have a rom address, if a rom is attached to them (e.g. VGA)

• have a set of up to MAX RESOURCES (currently 12) resources. The
resources are built into the structure and are not dynamically allocated.
Functions to manage the resources attached to a device are found in de-
vice/device util.c

• have links, which are usually empty in the case of everything but a bridge

• have a set of device operations – these are per-device-type

• have a set of chip operations, per chip-type

• have a chip information structure, which is per-chip instance

Path A path names a way of accessing a device. These are defined in
include/device/path.h. The path structure is in essence a case-variant type
(struct which includes a type and a union of all possible path types).

Device Resources Resources describe memory and I/O address ranges,
IRQs, and DRQs. They are define in include/device/resource.h. There can be
variations of a resource which include things like prefetchable, cacheable, and
so on.

4.5 How are devices created? Via static and dynamic con-
structors

In V2, there was no formal model for creating and/or allocating device struc-
tures. There was not even a formal convention or way of thinking about such
operations; this lack of rigor, to some extent, was a result of our limited under-
standing of how to think about the problem, which in turn was a result of the
revolution in design which followed on the release of the Opteron, with its mul-
tiple busses per socket, integrated north bridge, ability to site a non-Opteron
device in an Opteron socket, on-chip HyperTransport router, and so on.

We learned a lot with V2, and that knowledge underlies the architecture of
the V3 device tree. We have introduced a standardized device id, and are using
the notion of C++ constructors to unify our thinking.

The device id is very similar to the existing path structure. It is defined in
include/device/device.h, and is a standard C case-variant type with a tag and
a union.

The device tree compiler is the static constructor. It reads the dts file in the
mainboard directory and creates the initial device tree, with the devices and
busses already set up.

The dynamic constructor is part of the device tree code. There is a set of
default constructors, but each device can have its own private constructors if
needed. The constructor structure is simple: it is a standard device id, and a
pointer to a device operations structure.

The purpose of a dynamic constructor is to take a standard device path and
a device id, and create a device structure, with as much information filled in as
possible. At minimum the device id, path, and device operations are filled in.

5 Boot Process

The boot process consists of a number of independent, seperately compiled
components. Unlike V2, we are not using ld scripts to glue these components
together, since the overall bugginess of the various tools (as and ld in particular)
made use of ldscripts very hard to maintain.

By design, the seperate components can be individually replaced without
replacing any other component. This design implies that functions such as

print are duplicated in the code. If this duplication causes problems we can
revisit this decision.

5.1 Stage 0: Basic startup (ASM, PIC) and CAR (ASM,
PIC) in arch/{architecture}

The Stage 0 code is a binary blob that (on x86) lives in 8192 bytes at the top of
memory. This code comprises a jump vector to get from reset to the start of the
stage 0 code. The stage 0 code is responsible for any steps needed to make the
processor behave properly, such as flushing TLBs, clearing paging bits, and so
on. Stage 0, on the x86, enables segments but not paging; on other platforms,
stage1 might also set up an initial page table. Stage 0 at minimum switches
to a protected mode of some sort, and on x86, at minimum switches on 32-bit
mode. Stage 0 then sets up Cache-As-Ram (CAR) so that stage 1 can be be
written in C, and use functions.

This code “begins life” executing in real mode, at 0xf000:fff0. The code does
initial setup, transitions to 32-bit mode, and then falls into the CAR code.

The files are named for the type of target. The current code, named stage0 i586.S,
is designed for a generic i586. The file to assemble is determined from the
CONFIG STAGE0 makefile variable, which is set in the mainboard Kconfig
file. Please note, there are NO code files included. The assembly code for early
startup rarely changes. To give an example, much of the Stage 0 code was
written in 1999/2000, and has changed little since. The CAR code has been
unchanged since it was written two years ago.

CAR is a standard cache-as-ram assembly source for the architecture. It
is actually included in the stage0 *.S file; but we maintain a distinction in the
stage nomenclature for now. This code sets up cache-as-ram, zeros a memory
area, sets up a stack, and then calls stage 1.

Config variables:

1. CONFIG CARTEST. Test the CAR once it is enabled.

2. CONFIG ROMSIZE. Size of the ROM part.

5.2 Stage 1: C, in arch/{architecture}
Initial entry point for stage 1 is arch/{architecture}/stage1.c:stage1 main().

printk() may be used from anywhere in C code, but it will output characters
only after the welcome banner has been printed.

1. POST(0x02). (C)

2. Stop secondary processors. (C)

3. Preboot hardware, as from auto.c (C). hardware stage1()

4. Initialize serial port. (C)

5. Initialize USB debug port. (C)

6. Print welcome banner to celebrate working printk() output. (C)

7. Enable ROM. (C)

8. Decide whether we can proceed or must recover from serial port. Criteria?
(C)

9. Checksum the top flash “boot area”, if it is bad then ... recover from
serial port (C, PIC). We can definitely reflash LAR archive, but NOTE:
reflashing the boot block is tricky ... (C)

10. Examine the flash. Look in DTB option node, normal property for direc-
tory named by the boot type (e.g. ’normal’, “fallback’, etc.). (C)

11. In that directory, execute ’initram’. If that fails, execute ’initram’ in any
other directory. If that fails as well, recover from serial port. (C, PIC)

12. Make sure that in ’/’, there is a decompressor for each compression type
used. (C)

13. In the directory named by the boot type, execute ’stage2’. (C)

14. In that directory, look for a file ’payload’, and load all of ’payload/segment%d’.
(C)

15. Jump to the entry point of ’payload/segment0’. (C)

5.3 Stage 2: Device tree

Run the standard device tree code. This code runs in 6 phases. The device tree,
as set up by dts, has two ways it can be traversed.

The first is the hierarchy formed by busses and devices. Devices have up
to MAX LINKS links, which are initialized as part of the process of creating
the static tree. These links point to busses. A bus has a child device, a device
associated with it (e.g. a PCI bridge device), and other attributes described
elsewhere. Some operations, such as enumeration, require that the tree be
traversed in the hierarchy represented by the bus/device relationship. This
traversal starts at the root device, and for each link, follows those busses to the
other devices.

The second is a simple traversal, via linked list, of all the devices. This faster,
less complex traversal, is performed when there is no need to be concerned with
the bus/device relationship.

Figure 4: The dts for the emulation/qemu target

/{ config="mainboard,emulation,qemu-i386";
~ ~ ~ ~cpus { ...};

%%
struct mainboard emulation qemu i386 config root = { .nothing = 1, };

Phase 1 – very early setup This phase existed to make printk work and
has been obsoleted.

The simple traversal (forall devices) is used for this phase.
Post codes:

• Entry: 0x20

• Exit: 0x2f

Phase 2 – preparation for bus scan These are functions that are re-
quired before any PCI operations of any kind are run.

The simple traversal (forall devices) is used for this phase.

Post codes:

• Entry: 0x30

• Exit: 0x3f

Phase 3 – bus scan This phase is typical of all the phases that do a
hierarchical traversal. It starts at the root device (i.e. the mainboard), which
uses the distinguished function dev root phase3. Some root devices have special
setup requirements, and there is a way to call this special setup code. If the
dts has specified a configuration for the root device, it is possible to set up an
enable dev function. In other words, for any device, it is possible to call some
’preparation’ code for that device. We show an example of such a function
below, from the QEMU mainboard. First, we show the dts, to show how the
chip operations can be enabled.

The dts has been shortened for readability. Note the use of the ’config=’
in the root. It specifies that there is an initialized structure after the %% in
the dts file. The structure is at the bottom. The dts generates the code shown
below.

The code after the %% is reproduced exactly. The dts generates a generic
device struct, and initializes the .chip ops struct member to point to the main-
board emulation qemu i386 ops structure.

When phase 3 is run, the code checks the chip ops structure member and,
if it is non-zero, checks the chip ops->enable dev pointer and, if it is non-zero,
calls it.

Figure 5: Code generated for the dts

struct mainboard emulation qemu i386 config root = { .nothing = 1, };
struct device dev root = {

.path = { .type = DEVICE PATH ROOT },
.chip ops = &mainboard emulation qemu i386 ops,

.

.

.
};

Figure 6: What the mainboard file looks like with enable dev

static void enable dev(struct device *dev){
printk(BIOS INFO, "qemu-i386 enable dev done\n");

}
struct chip operations mainboard emulation qemu i386 ops = {

.name = "QEMU Mainboard",
.enable dev = enable dev

};

The mainboard code is shown below. The enable dev function will be called
in phase 3, before any other enumeration is done for that device.

Root dev phase3, which is called with the root device, calls dev phase3, for
each device attached to the root device. The devices are, in fact, bridge devices,
i.e. the device attached to a bus. Dev phase3, in turn, checks the bus device to
see if it is a non-NULL pointer, if is enabled, if it has ops and a phase 3 ops; if
so, the functions calls the bus device’s phase 3 op to kick off scanning of busses.

The phase 3 op is different for each type of bus. For the root bus, which is
statically configured, the phase 3 operation walks the set of statically initialized
pointers for the root device; for the (e.g.) PCI device, which is much more
dynamic, the code does actual probing.

Some busses require a reset operation after scanning. The dev phase3 code
will scan its subordinate busses, and then test all the busses to see if a reset is
needed. If so, for each bus that needs a reset, a reset is performed, and the bus
scanning operation is repeated until a reset is no longer needed.

To sum up, the operation for phase 3, bus scanning, is as follows

• The root device is the starting point for bus scanning

• After some initial setup, including an optional call to the chip ops->enable dev
method for the root device, the dev phase3 function is called with the root

device as the parameter.

• The dev phase3 function, after checking that the bus has the ability to be
scanned (i.e. the device has an ops->phase3 pointer), scans the bus by
calling the phase3 function for the bus.

• If scanning results in a need for a reset, the reset(s) are performed on the
links that need it, and the scan operation is repeated. This cycle continues
until no resets are needed.

The per-device phase 3 operation for a bus has a mutually recursive relationship
with dev phase3. The per-device function is called with the pointer to the device
that was passed into dev phase3. The per-device phase 3 iterates over the set of
child links (i.e. busses) that are attached to the device and, for each link, checks
the chip ops of the child link device for each link, and determines whether to
call the enable dev for each child link device. The one quite non-intuitive action
that some of these functions take is to enable the child link device, whether the
child link device is enabled or not in the configuration. This enable is done in
order to ensure that child busses are properly enumerated, whether they are
enabled or not.

Once the child link devices have been properly examined and (for some
busses) set up for enumeration, the per-device phase 3 operation iterates over
the child link devices one more time and calls dev phase 3 for each child link
device. This final loop completes the enumeration for this level of the hierarchy.

At the end of the per-device phase 3 operation, the structure of the physical
device tree has been completely determined, including both the static devices
and any dynamic devices, such as cards plugged into PCI slots. For each level
of the tree, the structure which define the devices, and busses, have been filled
in, and the presence or absence of devices has been determined. At the end of
this pass, it is possible to determine what resources each device will need, and
to allocate those resources as needed.

Post codes:

• root dev phase3 entry: 0x40

• After enable dev is tested and potentially called: 0x41

• dev phase3 entry: 0x42

• dev phase3 entry: 0x4e (note: since this is a recursive function, the post
codes can cycle from 4e to 43 and back again)

• root dev phase3 exit: 0x4f

Phase 4 The point of phase 4 is to determine what resources are needed
for each device; to allocate those resources; and to configure the devices with
those resource values. Resources are determined in one of two ways. Some
devices, if present, have static resource requirements (e.g. superio parts, which
have a fixed requirement for two I/O addresses). Other devices have resource
requirements that can be determined by reading registers (such as Base Address
Registers in PCI) and are hence dynamic.

A similar mutual recursion is employed, starting again at the root. The root
devices phase 4 ops are called with the root device as a parameter. For each link
on the device, and for each type of resource that is needed to be determined,
the compute allocate resource function is called. This function takes a bus,
resource, mask, and type as a parameter. As busses as scanned, and resources
are read, the mask is applied ot the resource and compared to the type, so as
to select the type of resource desired.

Once the reading of resources is done, the root device has IO resources as
resource 0, and mem resources as resource 1.

After the generic resource reading has been done, there is one special case,
for VGA, which overrides the standard hierarchical traversal. If VGA con-
sole is enabled, the bridges must be configured in such a way as to pick a
“primary” VGA device. Once the resources have been enumerated, a function
called allocate vga resource is called. This function traverses the devices in non-
hierarchical order, and selects one of them as the VGA device for the so-called
“compatibilty chain”. Once this device is selected, the function walkss the tree
from the device to the root, enabling the VGA CTL bit in each bridge.

Once this phase has been done, all the memory and IO resources have been
enumerated and allocated to each device, and to each bridge, in the system.
This phase is easily the most complex of all the phases in stage 2.

Post codes:

• Entry: 0x50

• Exit: 0x5f

Phase 5

Post codes:

• Entry: 0x60

• Exit: 0x6f

Phase 6 Post codes:

• Entry: 0x70

• Exit: 0x7f

5.4 Stage 3: elf boot

WARNING: you can not load any elf segment in the range 0 to
0x1000. That is our stack.

1. Each file has a four-byte checksum at the end. Check the checksum for
each one. (C)

2. If all the tests pass, run each one, in order, decompressing those which
need it. The last one might not return. If the checksum fails, If the
test fails, use the backup property in the option node to find a backup.
initram is (C, PIC) as it must execute in place. The coreboot payload will
be uncompressed to RAM, and is in C, but need not be PIC.

5.5 Stage 4

6 The static tree (This part needs to be up-
dated, once the other stages are done)

The static tree is generated from the DTS. Shown is a sample DTS, for QEMU.
Note that we don’t fill out all properties of each node, e.g. the northbridge.
The sum total of all properties is found in the dts for that node in the source
directory, i.e. src/northbridge/intel/440bx/440bx.dts (is this name ok? Or just
chip.dts?)

6.1 How DTC will compile the DTS

There are two pieces to the static tree. The first is the tree itself. As in v2, the
user does not see the structures and types that define this tree; the user does
define the structure of the tree by the way they lay out the config file. Sibling,
child, and parent references are defined by the use of reserved names (sibling,
child, and parent, unsurprisingly) and the use of & to define what the sibling,
child, and parent keywords are referring to.

The second part of the tree is the per-chip and per-device information. As
in v2, each device or chip can define a structure which defines per-device infor-
mation. These structures are called config structures, and define per-instance
configuration of a chip. A survey of all the v2 structures shows that for almost
all such config structures, almost all use int, unsigned long and unsigned int,
char, and array of char types. However, for superio parts, the config structures
in almost all cases contain structure declarations. We could in theory resolve
the superio issue as follows: define the superio struct as having links, much as
our other structures do now:

struct superio {
void *links[8];

};

Figure 7: Sample DTS
/{

model = "qemu";
#address-cells = <1>;
#size-cells = <1>;
compatible = "emulation-i386,qemu";
cpus {

#address-cells = <1>;
#size-cells = <0>;
emulation,qemu-i386@0{

name = "emulation,qemu-i386";
device type = "cpu";
clock-frequency = <5f5e1000>;
timebase-frequency = <1FCA055>;
linux,boot-cpu;
reg = <0>;
i-cache-size = <2000>;
d-cache-size = <2000>;

};
};
memory@0 {

device type = "memory";
reg = <00000000 20000000>;

};
/* the I/O stuff */
northbridge,intel,440bx{

associated-cpu = <&/cpus/emulation,qemu-i386@0>;
southbridge,intel,piix4{

superio,nsc,sucks{
uart@0{

enabled=<1>;
};

};
};

};
chosen {

bootargs = "root=/dev/sda2";
linux,platform = <00000600>;
linux,stdout-path="/dev/ttyS0";

};
options {

normal="normal";
fallback="fallback";

};
};

Figure 8: How we get from the mainboard DTS to C

Then initialize them:

struct superio superio {
.links = {&pc keyboard, &com1, &com2, 0};

}

In our opinion, this is asking for trouble. We currently, in the superio code, can
catch stupid errors in usage that would be lost were we to go to this void * based
approach. In fact, we can argue that we ought to be adding stronger type checking
to the tree, not taking it away. As of this version of the document, the handling of
the superio is not defined.

Note that we are going to need an unflatten tool to generate the device tree.
The steps are as follows:

• Compile time creation of the C structures.

• Run-time filling in the blanks with data about real hardware.

• Runtime generation of the OFW device tree.

The DTS is defined per each mainboard. It uses elements which are actually
defined elsewhere – for example, if the user references the Intel 440BX north-
bridge, the DTC must pull in northbidge/intel/440bx/dts to get the full set of
definitions. Call the full DTS the base DTS; call the DTS mentioned in the
mainboard DTS the instance DTS. Each member of the DTS from the base
DTS must be initialized in some manner so we can infter type and default val-
ues. The instance can define some, all, or none of the values. The DTC will
create a C file with structure declarations and initializations in it.

We show how this looks in

7 Makefile targets

7.1 lzma

This is for creating the coreboot.lzma file.

7.2 initram

This is for creating initram. The actual files used can be defined in any Makefile
that is part of this build. Typically, the files are defined in the northbridge
Makefile.

7.3 coreboot ram

This is the code that runs in RAM. This is almost always hardwaremain(). This
code is almost always defined by the mainboard Makefile.

7.4 payload

This is what we boot. Almost always this is FILO, Etherboot, Linux kernel,
Open FirmWare, and so on.

7.5 coreboot.lar

This is the “file system” that contains the lzma, initram, coreboot ram, and
payload targets.

7.6 jumpvector

This is the jumpvector. Jumpvector is entered at power on reset (POR) or hard
or soft reset.

7.7 vpd

This contains information that a payload can use to find out about the main-
board.

8 Conclusions

This is great stuff.

9 Appendix A: Issues

• On most non-x86 architectures, the bootblock is at the start of the flash,
not at the end. The general structure of the flash layout can stay the same
on such systems, just flipped upside down.

• Move over to the Xorg version of x86emu/biosemu, drop the one we have
now as it is not complete enough. (Ron is not so sure about this, since we
have done our own bug-fixes to x86emu)

10 Comments from Peter Stuge

• Ridiculous and error-prone to require commands in three dirs for a build.
(Edit targets/foo/bar/Config.lb, run ./buildtarget foo/bar in targets and
finally cd targets/foo/bar/baz to make.) (Deps fail on reconfig, I’ve
gotten the wrong payload a couple of times causing annoying extra re-
boots/hotswaps/flashes.)

• Flash ROM size needs to affect one option, and one option only. Maybe
even autodetect it for those building on the target. All other sizes can
and MUST be derived from this value. Also: What about option ROMs?
Should we aim to produce a ready-to-use lb-2.0-epia.rom and require a
correct (how carefully do we check?) vgabios.rom in order to build with
VGA support - or just dump a half- finished product in the user’s lap and
require them to finish the puzzle on their own? Licensing issues? Is ”cat”
considered ”linking”?

• Any redundancy in the config/build process should be removed. I must
not need to type the target name more than once. Brings me to..

• Global vs. local builds - pros/cons with kernel style (global) build (al-
ways produces arch/x/*Image) and coreboot v2 style build (produces tar-
get/x/y/z/coreboot.rom for each target) Either way the config/build sys-
tem must be consistently either global or local.

• Support for target variants? Same mobo with/without certain parts pop-
ulated. Perhaps just sets of default options that can be pre-selected as
a base config and then still allow user to change whatever they want.
(Kconfig has just one variant per arch, right?)

• ..basically we want a system that is able to do very complex detailed
configurations but that’s also able to hide all the details behind ”512KiB
EPIA-MII 6000E without CF addon” (hypothetical example)

• Some boards will require more from the user, but when possible a config
and build should be dirt simple.

• One idea is a kind of iterative config with increasing resolution per itera-
tion. Novice users with a known-good board need only complete the first
iteration: flash size, board name and board variant if any. Further iter-
ations are optional and allow increasingly specific settings. Think fdisk
normal/expert mode.

• Payload. I say something must be included in the coreboot tree or trivially
added to a tree by download or command. FILO is candidate for inclusion.
What’s up with FILO(EB) and FILO(CB) ? Merge them? Make EB
default payload? FILO? memtest86? All about making a usable product.
memtest86 would have to be explicitly selected in expert mode in favor of
the default option that would be able to load an OS. Doesn’t matter much
if it’s only Linux right now because that’s the most likely boot candidate
for early CB adopters.

• Payload config. Long/tedious for EB, simple default for boards with on-
board LAN, what to do otherwise? Tricky for FILO. (e.g. EPIA-MII CF
boot requires IDE+!PCI, !PCI requires !USB or build fails) filesystems,
devices, etc.

• Kernel payload and payload utilities - where to get mkelfImage? I had
to look hard. Should it be downloaded on demand? Perhaps after the
user chooses her payload? Think cygwin installer that downloads selected
packages. Maybe a bad idea.

• Consistent terminology - the payload seems to have many names in the
decompression code. ;)

11 Case study: new port

This is a case study of installing the amd norwich board into V3. For each
commit, I’ll record what we did.

11.1 319

• Index: mainboard/Kconfig – had to modify this to include the amd direc-
tory

• Index: mainboard/amd/Kconfig – had to add and modify this for the
norwich

• Index: mainboard/amd/norwich/Kconfig – created by modifying the qemu
target.

11.2 320

• Index: southbridge/Kconfig – had to modify this to include the amd op-
tions

• Index: southbridge/amd/Kconfig – had to modify this to include the
cs5536 options

• Index: southbridge/amd/cs5536/Makefile – created by modifying the Intel
piix4 target.

• Index: southbridge/amd/Makefile – had to modify this to include the amd
directory

• Index: southbridge/Makefile– had to add and modify this for the cs5536

11.3 321

• Index: northbridge/Kconfig – had to modify this to include the amd op-
tions

• Index: northbridge/amd/Kconfig – had to modify this to include the
cs5536 options

• Index: northbridge/amd/geodelx/Makefile – created from scratch – we’re
getting the hang of this

• Index: northbridge/amd/Makefile – had to modify this to include the
geodelx

• Index: northbridge/Makefile – had to add and modify this for adding amd

11.4 322

We had some errors and made some changes for building.

• Index: mainboard/amd/Kconfig

• Index: mainboard/amd/norwich/Makefile

11.5 R323

The real work begins. To this point it has been more directory structure and
Kconfig.

• Create the file arch/x86/amd geode lx.h. This file contains definitions for
the chip. This is from V2, and had a few mods for V3 conventions. Also,
there were complaints about spacing etc. and these got fixed.

• Create the file arch/x86/stage0 amd geodelx.S. This contains the CAR
code for the CPU. We took the qemu target and pulled out the “CAR”
part and pulled in the v2 car code for the LX. The CAR part really gets
sandwiched in between startup stuff at the beginning of the file and the
jmp vector at the end. It begins at the DCacheSetup label and ends before
the leave DCacheSetup label. This builds.

Next we bring in the initram.c from v2. This is coreboot-v2/src/mainboard/amd/norwich/cache as ram auto.c.
It will not build in V3, as the includes are wrong. We fix these and, while we are
at it, change the entry point to be called main(). This file will be a standalone
file in the coreboot Lightweight Archive (LAR), and hence needs to have main()
as the entry point.

We pretty much get a ton of errors once include is fixed. Why? Because the
old code was started from romcc, and included lots of .c files, since that is how
romcc worked. The new code is going to be linked. We took all the .c includes
out, so now we get this:

/home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c: In function ’spd read byte’: /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:30: error: implicit declaration of function ’smbus read byte’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c: In function ’msr init’: /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:41: error: ’msr t’ undeclared (first use in this function) /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:41: error: (Each undeclared identifier is reported only once /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:41: error: for each function it appears in.) /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:41: error: expected ’;’ before ’msr’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:43: error: ’msr’ undeclared (first use in this function) /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:45: error: implicit declaration of function ’wrmsr’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c: In function ’main’: /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:79: error: implicit declaration of function ’POST CODE’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:81: error: array type has incomplete element type /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:82: error: field name not in record or union initializer /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:82: error: (near initialization for ’memctrl’) /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:85: error: implicit declaration of function ’SystemPreInit’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:88: error: implicit declaration of function ’cs5536 early setup’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:95: error: implicit declaration of function ’cs5536 setup onchipuart’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:97: error: implicit declaration of function ’uart init’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:100: error: implicit declaration of function ’pll reset’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:102: error: implicit declaration of function ’cpuRegInit’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:104: error: implicit declaration of function ’sdram initialize’ /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:110: warning: ’return’ with no value, in function returning non-void /home/rminnich/src/bios/coreboot-v3/mainboard/amd/norwich/initram.c:81: warning: unused variable ’memctrl’ make: exit 2 make: *** [/home/rminnich/src/bios/coreboot-v3/build/mainboard/amd/norwich/initram.o] Error 1

Now what we have to do is start building initram in the familiar way, via linking
it with other .o files so it can become a true standalone program.

Hold on. What are we doing here? We need to create an initram file
for the LAR. This initram file is going to set up DRAM. Coreboot supplies a
skeleton function, which we show below, and the programmer needs to supply
some functions for their chipsets, so that this function can work.

What code is needed? A few things. The northbridge code must supply
register set functions. The southbridge or superio must supply smbus read
functions. The basic sdram setup is found in lib/ram.c, and is dead simple:

void ram initialize(int controllers, void *ctrl) {
int i;

/* Set the registers we can set once to reasonable values. */

for (i = 0; i < controllers; i++) {
printk(BIOS INFO,

"Setting registers of RAM controller %d\n", i);

ram set registers(ctrl, i);

}
/* Now setup those things we can auto detect. */

for (i = 0; i < controllers; i++) {
printk(BIOS INFO,

"Setting SPD based registers of RAM controller %d\n", i);

ram set spd registers(ctrl, i);

}
/* Now that everything is setup enable the RAM. Some chipsets do

* the work for us while on others we need to it by hand. */

printk(BIOS DEBUG, "Enabling RAM\n");
ram enable(controllers, ctrl);

/* RAM initialization is done. */

printk(BIOS DEBUG, "RAM enabled successfully\n");
}

Ram initialize is a core function of initram. When it is called, RAM is not
working; after it is called, RAM is working. This function in turn calls functions
in the northbridge code (or, in some cases, CPU code; it depends on the part).
The basic idea is that this code is called with a pointer to an opaque type (ctlr
*), and an int indicating how many controllers, dram slots, or whatever “things”
there are, where a “thing” is totally chipset dependent. The lib/ram.c code sets
hardcoded settings, then sets dynamic settings by querying the SPD bus, then
enables the RAM. This basic cycle has been refined now for eight years and has
worked well on many systems.

The northbridge code has to provide three basic functions. The first function,
ram set registers, sets up basic parameters. It will be called for each of the ram
“things”, where, as described above, “thing” can be just about anything, de-
pending on the chipset. The function will be called with the ctlr pointer, and in
index in the range 0..controllers-1. The second function, ram set spd registers,
is called to tell the northbridge code that it should do spd setup for “thing” i.
Finally, the northbridge-provided enable function is called.

Any or all of these functions may be empty. In the common case, they all
do something. These functions, in turn, may require other functions from other
chipset parts. The most important, and common, set of functions reads SPD
values using the SMBUS. The mainboard must configure, as part of stage2,
a file to be compiled which provides these functions. The simplest function
is called smbus read byte(unsigned device, unsigned address). This function
should do any needed initialization, to keep life simple for the northbridge code,
and then read from SMBUS device ’device’ at address ’address’. Typically, the
device address range is 0xa0 up to 0xa8. The address depends on the DRAM
technology.

All of the coreboot code that is run after this point uses the device tree;
none of the initram code uses the device tree. The reason is simple: the device
tree lives in RAM. This bootstrap code is intentionally simple and does not use
the device tree.

We will start by providing SMBUS functions. The SMBUS for this board
is supported on the AMD CS5536 chip. The file we create will be in south-
bridge/amd/cs5536/smbus initram.c.

The revision numbers skip a bit here, since others are also working on V3.
We start with revision 339.

R339

Get the old code:

cp coreboot-v2/src/southbridge/amd/cs5536/cs5536 early smbus.c southbridge/amd/cs5536/smbus initram.c

Then we need to set up the mainboard Makefile to include this file in the main-
board stage2. This is pretty easy: add the .o for this file to the INITRAM OBJ
in the mainboard Makefile:

INITRAM OBJ=$(obj)/stage0.init $(obj)/stage0.o $(obj)/mainboard/$(MAINBOARDDIR)/initram.o $(obj)/southbridge/amd/cs5536/smbus initram.o

Now we get lots more errors, so off we go to fix them!

R334 The errors were mainly changes to printk. Also, we had to copy the old
cs5536.h from the V2 tree. This file is only used for the southbridge part, so,
following coreboot include rules, cs5536.h does not go in include; rather, it goes
in the southbridge/amd/cs5536 directory. We fix the includes so that they
have proper names, and add Doxygen comments, which as of June 1, 2007, are
required for all commits. Also, all functions save smbus read byte are static,
as only that one function is needed externally; smbus read byte has a static,
first time, which is checked and, if set, smbus read byte will initialize the smbus
hardware via smbus enable.

At this point, we have smbus support for the chipset, an essential first step.

R345 We bring across the cs5536 early setup.c, and make the few changes
needed to get it to compile.

Now it is time to fix the compilation errors. First, we need to get the
pll reset.c function from V2. This function requires few changes. Mainly, they
involve removing artifacts of romcc, such as a lack of include directives, and use
of simple print functions instead of printk.

