Project Darkstar
Client SDK Tutorial

04/29/08

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All
rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, J2SE and Java RMI are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company,
Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control
laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological
weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including,
but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis.
Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, J2SE et Java RMI sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open
Company, Ltd.

Les produits qui font 'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation
americaine en matiere de controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine
des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucleaires, des
missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des
entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la
liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations
des produits ou des services qui sont regi par la legislation americaine en matiere de controle des exportations et
la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

Project Darkstar Client SDK Tutorial 04/29/08 ii

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PARLA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Project Darkstar Client SDK Tutorial 04/29/08

Contents

Introduction v

Lesson 1: HelloUserClient 1
SimpleClient 1
Connecting 1
Client/Server Communication 2
Running HelloUserClient 3

Code: HelloUserClient 3
HelloUserClient 3

Lesson 2: HelloChannelClient 10
Publish/Subscribe Channels 10
Joining and Leaving a Channel 10
Sending and Receiving Channel Messages 10
Running HelloChannelClient 11

Code: HelloChannelClient 11
HelloChannelClient 11

Conclusion 15

Project Darkstar Client SDK Tutorial 04/29/08

Introduction

This document is a short tutorial for programming clients that connect to the Project Darkstar Server (PDS).

Programming game clients that use servers provided by the Project Darkstar Server is not much different from
coding any other sort of game client. The big difference between PDS-based games and others is how they
connect to and communicate with the server and with each other. This tutorial focuses on the “plumbing”
necessary to make those connections.

It does not attempt to address the design issues of how to design a good client/server architecture for an online
game, since this is very game-specific and well beyond the scope of what can be covered here. There are many
good books and articles on the subject already available.

Project Darkstar Client SDK Tutorial 04/29/08

Lesson 1: HelloUserClient

This lesson shows how to connect to the PDS and then communicate with it in the basic client/server mode. It is
designed to go along with Lesson 5 of the Project Darkstar Server Application Tutorial and the HelloUser and
HelloEcho examples in those lessons. It can also be used as a client for the SwordWorld sample application in
Appendix A of the Project Darkstar Server Application Tutorial.

To test this client, you will need to start either HelloUser or HelloEcho on the server (HelloEcho has more
functionality). See the application tutorial for details on how to do this.

SimpleClient

The class com.sun.sgs.client.simple.SimpleClient is your gateway to the PDS. You create an instance of
SimpleClient and then use it and its associated listener interface SimpleClientListener to communicate with
the server.

Connecting

The first thing a PDS Client needs to do is connect to its server application. Connecting is done in four steps:

1.

Create an instance of SimpleClient.

The first thing you need to do is create an instance of the SimpleClient class. SimpleClient's
constructor takes one parameter: a SimpleClientListener to call for communication events. In most
basic clients, this is likely the client's main class, in which case the code would look something like this:

public class MyClient implements SimpleClientListener {
/] e

simpleClient = new SimpleClient (this);

Create the login properties.
The login method of SimpleClient expects one parameter as well, a Properties object. The
SimpleClient implementation code expects two properties to be set: host and port. Below is an example
of how to set these:

Properties connectProps = new Properties();

connectProps.put ("host"™, "localhost");
connectProps.put ("port"™, "1139");

Call the login method.
To actually start the login process, you call the login method. It is possible for login to throw an
IOException, so you should surround the call with a try/catch block:
try {
simpleClient.login (connectProps) ;
} catch (IOException e) {
e.printStackTrace () ;
// ... try again, or try a different hostname

}

Handle the authentication callback.
In response to your request to log in, the API will call the getPasswordAuthentication callback on your
SimpleClientListener to request the user name and password it will use to log in. “Password” in this

Project Darkstar Client SDK Tutorial 04/29/08 1

case is a general term for any authentication information returned to the API in a byte array. Exactly
what form this must take will depend on the authenticator installed on the server side. The default
authenticator ignores password completely and lets anyone in. The PDS also ships with a sample hashed
string password-file based authenticator. Other authenticators can be written to support specific user
validation infrastructures.'

A sample getPasswordAuthentication callback implementation might look like this:

/*
* Returns dummy credentials where user is "guest-<random>"
* and the password is "guest". Real-world clients are likely
* to pop up a login dialog to get these fields from the player.
*/
public PasswordAuthentication getPasswordAuthentication() {
String player = "guest-" + random.nextInt (1000);
setStatus ("Logging in as " + player);
String password = "guest";

return new PasswordAuthentication(player, password.toCharArray());

}

At the completion of these steps, the API will attempt to log in to the server. If it is successful, it will call the
loggedIn callback on the SimpleClientListener. At this point, the client is connected to the server and can begin
communicating with it. If login fails, the loginFailed callback will be called instead and passed a string that
contains a description of why login failed.

Client/Server Communication

Once we are connected to the server application, we can begin communicating. There are two forms of
communication in the Project Darkstar Server API: client/server communication and publish/subscribe channel
communication. Our first example uses client/server, which is the simpler of the two.

All communication in the PDS is done by sending and receiving bytes in a language-neutral format.
To a Java coder this may seem a somewhat old-fashioned way of doing things. The PDS, however,
is a client-agnostic system. The PDS team intends to deliver client APIs for J2SE(tm), J2ME(tm),
and C/C++. Other platforms may also be identified as later client targets by the PDS team or by the
community.

While a few cross-language object systems exist, they are either platform-specific (for example,
DCOM) or very complex, with serious overhead (for example, CORBA). The conclusion of the
team was that it was best for the system to provide the common and efficient base of sending and
receiving arrays of bytes, and to let specific applications build on top of that according to their
needs.

To send a packet to the server, all we have to do is pass the packet in a byte array to the send method on the
SimpleClient object. Since this call can throw an IOException, it too needs to be in a try/catch block. Here is a
simple example from the HelloUserClient program:
try {
simpleClient.send (encodeString (getInputText ()));
} catch (IOException e) {
e.printStackTrace () ;

}

When the server sends a packet back to the client, it gets delivered to the application via the receivedMessage
callback on the SimpleClientListener. Here again is a simple example from HelloUserClient:

1 Writing and using custom authenticators will be covered in the Project Darkstar Server Stack Extension Manual.

2 04/29/08 Project Darkstar Client SDK Tutorial

public void receivedMessage (byte[] message) {

}

That's all there is to getting client/server communication working with the Project Darkstar Server. Below is the
complete code to HelloUserClient. If you start the HelloEcho server application from the Project Darkstar
Server Application Tutorial and then run HelloUserClient, you should see the user log in on the server; anything
typed into the input field at the bottom of HelloUserClient's window will be sent to the server application. The
server application will echo it back, and you should see it appear in the large text output space in the top of the

appendOutput ("Server sent: " + decodeString(message));

client's window.

Running HelloUserClient

The tutorial comes with all the examples pre-compiled in the tutorial-client.jar file. To run HelloUserClient

from the jar file:

1. Change your working directory to the tutorial directory in the Project Darkstar Client SDK directory..

2. Type the following command line:

For Win32:

java -cp tutorial-client.jar;..\lib\sgs-client.jar
com.sun.sgs.tutorial.client.lesson1.HelloUserClient

For Unix:

java -cp tutorial-client.jar:../lib/sgs-client.jar
com.sun.sgs.tutorial.client.lesson1.HelloUserClient

Code: HelloUserClient

HelloUserClient

/*

P R S A A T S I S S S

Copyright (c) 2007-2008, Sun Microsystems, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of Sun Microsystems, Inc. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

Project Darkstar Client SDK Tutorial 04/29/08

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ok % X X ok % %

package com.sun.sgs.tutorial.client.lessonl;

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.UnsupportedEncodingException;
import java.net.PasswordAuthentication;
import java.nio.ByteBuffer;

import java.util.Properties;

import java.util.Random;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

import com.sun.sgs.client.ClientChannel;

import com.sun.sgs.client.ClientChannellistener;
import com.sun.sgs.client.simple.SimpleClient;

import com.sun.sgs.client.simple.SimpleClientListener;

*

/
A simple GUI client that interacts with an SGS server-side app.
It presents a basic chat interface with an output area and input
field.
<p>
The client understands the following properties:

<code>{@value #HOST PROPERTY}</code>

<i>Default:</i> {@value #DEFAULT HOST}

The hostname of the server.<p>

<code>{@value #PORT PROPERTY}</code>

<i>Default:</i> {@value #DEFAULT PORT}

The port that the server is listening on.<p>

P T S S i . S

~

public class HelloUserClient extends JFrame
implements SimpleClientListener, ActionListener

{
/** The version of the serialized form of this class. */
private static final long serialVersionUID = 1L;

/** The name of the host property. */
public static final String HOST PROPERTY = "tutorial.host";

/** The default hostname. */
public static final String DEFAULT HOST = "localhost";

/** The name of the port property. */

04/29/08 Project Darkstar Client SDK Tutorial

public static final String PORT PROPERTY = "tutorial.port";

/** The default port. */
public static final String DEFAULT PORT = "1139";

/** The message encoding. */
public static final String MESSAGE CHARSET = "UTF-8";

/** The output area for chat messages. */
protected final JTextArea outputArea;

/** The input field for the user to enter a chat message. */
protected final JTextField inputField;

/** The panel that wraps the input field and any other UI. */
protected final JPanel inputPanel;

/** The status indicator. */
protected final JLabel statusLabel;

/** The {@link SimpleClient} instance for this client. */
protected final SimpleClient simpleClient;

/** The random number generator for login names. */
private final Random random = new Random() ;

// Main

/**
* Runs an instance of this client.
*
* (@param args the command-line arguments (unused)
*/
public static void main(String[] args) {
new HelloUserClient () .login();

}
// HelloUserClient methods

/**
* Creates a new client UI.
*/
public HelloUserClient () {
this (HelloUserClient.class.getSimpleName ()) ;
}

/**
* Creates a new client UI with the given window title.
*
* (@param title the title for the client's window
*/
protected HelloUserClient (String title) {
super (title);
Container c¢ = getContentPane();
JPanel appPanel = new JPanel();
appPanel.setFocusable (false);
c.setlLayout (new BorderLayout());
appPanel.setlLayout (new BorderLayout());
outputArea = new JTextAreal();
outputArea.setEditable (false);
outputArea.setFocusable (false);
appPanel.add (new JScrollPane (outputArea), BorderLayout.CENTER) ;
inputField = new JTextField();

Project Darkstar Client SDK Tutorial 04/29/08

inputField.addActionListener (this);
inputPanel = new JPanel () ;
inputPanel.setlLayout (new BorderLayout ());
populateInputPanel (inputPanel) ;
inputPanel.setEnabled(false);

appPanel.add (inputPanel, BorderLayout.SOUTH) ;
c.add (appPanel, BorderLayout.CENTER) ;
statusLabel = new JLabel () ;
statusLabel.setFocusable (false) ;

setStatus ("Not Started");

c.add (statusLabel, BorderLayout.SOUTH) ;
setSize (640, 480);
setDefaultCloseOperation (DISPOSE ON CLOSE) ;
setVisible (true) ;

simpleClient = new SimpleClient (this);

*

Allows subclasses to populate the input panel with
additional UI elements. The base implementation
simply adds the input text field to the center of the panel.

* % X X ok %

@param panel the panel to populate
*/
protected void populateInputPanel (JPanel panel) {
panel.add (inputField, BorderLayout.CENTER) ;
}

/**
* Appends the given message to the output text pane.
*
* @param x the message to append to the output text pane
*/
protected void appendOutput (String x) {
outputArea.append(x + "\n");
}

/**
* Initiates asynchronous login to the SGS server specified by
* the host and port properties.
*/
protected void login() {
String host = System.getProperty (HOST PROPERTY, DEFAULT HOST) ;
String port = System.getProperty (PORT PROPERTY, DEFAULT PORT) ;

try {
Properties connectProps = new Properties();
connectProps.put ("host", host);
connectProps.put ("port", port):;
simpleClient.login (connectProps);

} catch (Exception e) {
e.printStackTrace () ;
disconnected(false, e.getMessage());

}
/**

* Displays the given string in this client's status bar.
*

* (@param status the status message to set
*/
protected void setStatus (String status) {
appendOutput ("Status Set: " + status);

04/29/08 Project Darkstar Client SDK Tutorial

statusLabel.setText ("Status: " + status);
}

/**
* Encodes a {@code String} into a {@link ByteBuffer}.
*
* @param s the string to encode
* @return the {@code ByteBuffer} which encodes the given string
*/
protected static ByteBuffer encodeString(String s) {
try {
return ByteBuffer.wrap (s.getBytes (MESSAGE CHARSET)) ;
} catch (UnsupportedEncodingException e) {
throw new Error ("Required character set " + MESSAGE CHARSET +
" not found", e);

}

/**
* Decodes a {@link ByteBuffer} into a {@code String}.
*
* @param buf the {@code ByteBuffer} to decode
* @return the decoded string
*/
protected static String decodeString(ByteBuffer buf) {
try {
byte[] bytes = new byte[buf.remaining()];
buf.get (bytes);
return new String(bytes, MESSAGE CHARSET);
} catch (UnsupportedEncodingException e) {
throw new Error ("Required character set " + MESSAGE CHARSET +
" not found", e);

}
/**

* Returns the user-supplied text from the input field, and clears

* the field to prepare for more input.
*

* @return the user-supplied text from the input field

*/
protected String getInputText () {
try {
return inputField.getText () ;
} finally {

inputField.setText ("");
}
}

// Implement SimpleClientListener

/**
* {Q@inheritDoc}
* <p>
* Returns dummy credentials where user is "guest-<randomé>"
* and the password is "guest." Real-world clients are likely
* to pop up a login dialog to get these fields from the player.
*/
public PasswordAuthentication getPasswordAuthentication() {
String player = "guest-" + random.nextInt (1000);
setStatus ("Logging in as " + player);
String password = "guest";

return new PasswordAuthentication(player, password.toCharArray()):;

Project Darkstar Client SDK Tutorial 04/29/08

}
/**

* {@inheritDoc}
* <p>
* Enables input and updates the status message on successful login.
*/
public void loggedIn () {
inputPanel.setEnabled (true) ;
setStatus ("Logged in");
}

/**
* {Q@inheritDoc}
* <p>
* Updates the status message on failed login.
*/
public void loginFailed(String reason) {
setStatus ("Login failed: " + reason);
}
/**
* {Q@inheritDoc}
* <p>

* Disables input and updates the status message on disconnect.
*/
public void disconnected(boolean graceful, String reason) {
inputPanel.setEnabled(false);

setStatus ("Disconnected: " + reason);
}
/**
* {@inheritDoc}
*/

public ClientChannellistener joinedChannel (ClientChannel channel) {
return new NullClientChannelListener();

}

/**
* {Q@inheritDoc}
* <p>
* Decodes the message data and adds it to the display.
*/
public void receivedMessage (ByteBuffer message) {
appendOutput ("Server sent: " + decodeString(message));
}
/**
* {Q@inheritDoc}
* <p>
* Updates the status message on successful reconnect.
*/
public void reconnected() {

setStatus ("reconnected") ;

}

/**
* {Q@inheritDoc}
* <p>
* Updates the status message when reconnection is attempted.
*/
public void reconnecting() {

setStatus ("reconnecting") ;

}

04/29/08 Project Darkstar Client SDK Tutorial

// Implement ActionListener

/**
* {Q@inheritDoc}
* <p>
* Encodes the string entered by the user and sends it to the server.
*/
public void actionPerformed (ActionEvent event) {
if (! simpleClient.isConnected())

return;

String text = getInputText();
send (text) ;
}

/**
* Encodes the given text and sends it to the server.
*
* (@param text the text to send.
*/
protected void send(String text) {
try {
ByteBuffer message = encodeString(text);
simpleClient.send (message) ;
} catch (Exception e) {
e.printStackTrace() ;
}
}

/**
* A ClientChannellistener that does nothing at all (this basic
* client does not support channels).
*/
private static class NullClientChannellListener
implements ClientChannellistener
{
/** {@inheritDoc} */
public void leftChannel (ClientChannel channel) {
System.out.println ("Unexepected call to leftChannel");
}
/** {@inheritDoc} */

public void receivedMessage (ClientChannel channel, ByteBuffer message) {
System.out.println ("Unexepected call to receivedMessage");

Project Darkstar Client SDK Tutorial 04/29/08

Lesson 2: HelloChannelClient

Lesson 1 illustrated how to connect to a Project Darkstar Server application from a client and do client/server
communication between them. This lesson adds the ability to handle sending and receiving data on
publish/subscribe channels.

Publish/Subscribe Channels

As mentioned in Lesson 1, in addition to client/server communication, the PDS also supports publish/subscribe
channels. Client/server communication always has the server and one client on either end of the message; in
contrast, the channel system has N participating clients who can send and receive messages. Clients are made
participants of the channel by being joined to it by the server. A client may be joined to many channels at once.

Server applications are in control of channels. They are the ones who create the channel, add users to it, or
remove users from it. Clients can send requests to the server to be added or removed from channels, and can
request that a message be sent to the channel. Server applications can choose to listen to packets sent on the
channel to decide if they should be modified or discarded.

Joining and Leaving a Channel

As mentioned above, adding and removing users from the channel is under the control of the server application.
How then does a client know what channels it is a part of and how to communicate on them? The answer is
another callback on the SimpleClientListener interface: joinedChannel. The joinedChannel callback receives
a ClientChannel object as its one parameter. The client application should save this object, since this is its
interface for sending messages on the channel.

The SimpleClient expects this callback to return an object that implements the ClientChannelListener
interface. This interface has two methods on it, receivedMessage and leftChannel. The first is called on a
callback whenever a packet for this user is received from the channel. The second callback is called if the server
removes this user from the channel.

Below is an implementation of joinedChannel from our second sample client application, HelloChannelClient.
This client adds a combo box to the left of the input field in HelloUserClient so you can select if the input is
sent directly to the server or to one of the channels the server has joined you to. You can use the server
application called HelloChannels (described in Lesson 6 of the Project Darkstar Server Application Tutorial) to
test this client. This server application creates two channels, Foo and Bar, and automatically joins all users to
them.
public ClientChannellistener joinedChannel (ClientChannel channel) {

String channelName = channel.getName () ;

channelsByName.put (channelName, channel);

appendOutput ("Joined to channel " + channelName) ;

channelSelectorModel.addElement (channelName) ;

return new HelloChannelListener () ;

}

The complete implementation of HelloChannelClient can be found at the end of this lesson.

Sending and Receiving Channel Messages

Once you have processed the joinedChannel callback, sending and receiving channel messages is just about as

10 04/29/08 Project Darkstar Client SDK Tutorial

easy as client/server messages. To send a message on a channel, you use the send method, which just takes a
byte buffer and broadcasts it to all users who are currently joined to the channel. This is how it is used in
HelloChannelClient:

ClientChannel channel = channelsByName.get (channelName) ;
channel.send (message) ;

The receivedMessage callback on the ClientChannelListener has two parameters:
e A ClientChannel object that represents the channel on which the message was received.
e The actual data sent.

Below is the entire code for HelloChannelClient, including the HelloChannelListener implementation, which
is implemented as an inner class of HelloChannelClients. You should use the HelloChannels application from
the “Project Darkstar Server Application Tutorial” as the server for running this client.

Running HelloChannelClient

The tutorial comes with all the examples pre-compiled in the tutorial-client.jar file. To run
HelloChannelClient from the jar file:

1. Change your working directory to the tutorial directory in the Project Darkstar Client SDK directory..
2. Type the following command line:
For Win32:

java -cp tutorial-client.jar;..\lib\sgs-client.jar
com.sun.sgs.tutorial.client.lesson2.HelloChannelClient

For Unix:

java -cp tutorial-client.jar:../lib/sgs-client.jar
com.sun.sgs.tutorial.client.lesson2.HelloChannelClient

Code: HelloChannelClient

HelloChannelClient

/*
Copyright (c) 2007-2008, Sun Microsystems, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of Sun Microsystems, Inc. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

P S T S I R S

Project Darkstar Client SDK Tutorial 04/29/08 1

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

% o ok ok X X b ok % X X

package com.sun.sgs.tutorial.client.lesson2;

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.nio.ByteBuffer;

import java.util.HashMap;

import java.util.Map;

import java.util.concurrent.atomic.AtomicInteger;

import javax.swing.DefaultComboBoxModel;
import javax.swing.JComboBox;
import javax.swing.JPanel;

import com.sun.sgs.client.ClientChannel;
import com.sun.sgs.client.ClientChannellistener;
import com.sun.sgs.tutorial.client.lessonl.HelloUserClient;

/**

* A simple GUI client that interacts with an SGS server-side app using
* both direct messaging and channel broadcasts.

* <p>

* It presents a basic chat interface with an output area and input

* field, and adds a channel selector to allow the user to choose which
* method is used for sending data.

*

* (@see HelloUserClient for a description of the properties understood
* by this client.

*/

public class HelloChannelClient extends HelloUserClient
{

/** The version of the serialized form of this class. */
private static final long serialVersionUID = 1L;

/** Map that associates a channel name with a {@link ClientChannel}. */
protected final Map<String, ClientChannel> channelsByName =
new HashMap<String, ClientChannel>();

/** The UI selector among direct messaging and different channels. */
protected JComboBox channelSelector;

/** The data model for the channel selector. */
protected DefaultComboBoxModel channelSelectorModel;

/** Sequence generator for counting channels. */
protected final AtomicInteger channelNumberSequence =

new AtomicInteger (1) ;

// Main

04/29/08 Project Darkstar Client SDK Tutorial

/**
* Runs an instance of this client.
*
* (@param args the command-line arguments (unused)
*/
public static void main(String[] args) {
new HelloChannelClient () .login();
}

// HelloChannelClient methods

/**
* Creates a new client UI.
*/
public HelloChannelClient () {
super (HelloChannelClient.class.getSimpleName ()) ;
}

*

{@inheritDoc}

<p>

This implementation adds a channel selector component next
to the input text field to allow users to choose between

* direct-to-server messages and channel broadcasts.

*/

@Override
protected void populateInputPanel (JPanel panel) {
super.populateInputPanel (panel) ;

/

P

channelSelectorModel = new DefaultComboBoxModel () ;
channelSelectorModel.addElement ("<DIRECT>") ;
channelSelector = new JComboBox (channelSelectorModel) ;
channelSelector.setFocusable (false) ;
panel.add (channelSelector, BorderLayout.WEST) ;

}

/**
* {Q@inheritDoc}
* <p>

* Returns a listener that formats and displays received channel
* messages in the output text pane.
*/
@Override
public ClientChannellistener joinedChannel (ClientChannel channel) {
String channelName = channel.getName () ;
channelsByName.put (channelName, channel);
appendOutput ("Joined to channel " + channelName) ;
channelSelectorModel.addElement (channelName) ;
return new HelloChannellListener () ;

}
/**

* {@inheritDoc}
*/
@Override
public void actionPerformed (ActionEvent event) ({
if (! simpleClient.isConnected())
return;

String text = getInputText();
String channelName =

(String) channelSelector.getSelectedItem() ;
if (channelName.equalsIgnoreCase ("<DIRECT>")) {

Project Darkstar Client SDK Tutorial 04/29/08

send (text) ;
} else {
ClientChannel channel = channelsByName.get (channelName) ;
try {
channel.send(encodeString (text));
} catch (Exception e) {
e.printStackTrace() ;

}
}
/**

* A simple listener for channel events.
*/
public class HelloChannellListener
implements ClientChannellistener
{
/**
* An example of per-channel state, recording the number of
* channel joins when the client joined this channel.
*/

private final int channelNumber;

/**

* Creates a new {@code HelloChannellListener}. Note that
* the listener will be given the channel on its callback
* methods, so it does not need to record the channel as
* state during the join.

*/
public HelloChannellistener () {
channelNumber = channelNumberSequence.getAndIncrement () ;
}
/**
* {Q@inheritDoc}
* <p>
* Displays a message when this client leaves a channel.
*/
public void leftChannel (ClientChannel channel) {
appendOutput ("Removed from channel " + channel.getName());
}
/**
* {Q@inheritDoc}
* <p>
* Formats and displays messages received on a channel.
*/
public void receivedMessage (ClientChannel channel, ByteBuffer message) {
appendOutput ("[" + channel.getName() + "/ " + channelNumber +

"] " + decodeString(message));

04/29/08 Project Darkstar Client SDK Tutorial

Conclusion

That's all you need to know in order to write Project Darkstar client applications. The Project Darkstar team has
made every effort to make this revision of the API simple and intuitive. We hope you find it pleasant and easy to
work with. For more details and options, please see the Project Darkstar Client API Javadocs.

Project Darkstar Client SDK Tutorial 04/29/08

15

	Introduction
	Lesson 1: HelloUserClient
	SimpleClient
	Connecting
	Client/Server Communication
	Running HelloUserClient
	Code: HelloUserClient
	HelloUserClient

	Lesson 2: HelloChannelClient
	Publish/Subscribe Channels
	Joining and Leaving a Channel
	Sending and Receiving Channel Messages
	Running HelloChannelClient
	Code: HelloChannelClient
	HelloChannelClient

	Conclusion

