
Project Darkstar Server

Application Tutorial

04/24/08

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All
rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is
described in this document. In particular, and without limitation, these intellectual property rights may include
one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or
pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, J2SE and Java RMI are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company,
Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control
laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological
weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including,
but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis.
Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le
produit qui est décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle
peuvent inclure un ou plus des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les
brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les autres pays.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, J2SE et Java RMI sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open
Company, Ltd.

Project Darkstar Server Application Tutorial 04/24/08 ii

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation
americaine en matiere de controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine
des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucleaires, des
missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des
entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la
liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations
des produits ou des services qui sont regi par la legislation americaine en matiere de controle des exportations et
la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Project Darkstar Server Application Tutorial 04/24/08 iii

Contents

Introduction vi

Coding Project Darkstar Server Applications 1
Goals and Philosophy 1

Approach to Execution 1
Tasks and Managers 1

Task Ordering 2

Task Lifetime 2

Managed Objects and Managed References 3
Accessing Managed Objects through Managed References 3

Designing Your Managed Objects 4

The Player Managed Object 5

The AppListener 6

Locating the Server API Classes 9
System Classes and Interfaces 9

Task Manager Classes and Interfaces 10

Data Manager Classes and Interfaces 10

Channel Manager Classes and Interfaces 11

Lesson One: Hello World! 12
Coding HelloWorld 12

HelloWorld 12

Running HelloWorld 13
Rerunning HelloWorld 14

Lesson Two: Hello Logger! 17
Coding HelloLogger 17

HelloLogger 17

The Logging Properties File 18

Lesson 3: Tasks, Managers, and Hello Timer! 19
Tasks 19

Managers 19

Coding HelloTimer 20

Project Darkstar Server Application Tutorial 04/24/08 iv

HelloTimer 20

Lesson 4: Hello Persistence! 23
Coding HelloPersistence 23

HelloPersistence 23

Coding HelloPersistence2 25
HelloPersistence2 26

TrivialTimedTask 27

Coding HelloPersistence3 28
HelloPersistence3 29

Lesson 5: Hello User! 32
Knowing When a User Logs In 32

HelloUser 32

Direct Communication 33
HelloUser2 33

HelloUserSessionListener 34

HelloEchoSessionListener 36

Running the Examples 38

Lesson 6: Hello Channels! 39
Coding HelloChannels 39

HelloChannels 39

HelloChannelsSessionListener 41

HelloChannelsChannelListener 43

Running HelloChannels 44

Conclusion 45
Best Practices 45

Things Not Covered in This Tutorial 47

Appendix A: SwordWorld Example Code 49
Sword World 49

SwordWorldObject 52

SwordWorldRoom 54

SwordWorldPlayer 58

Project Darkstar Server Application Tutorial 04/24/08 v

Introduction
Welcome to the Project Darkstar Server (PDS) application tutorial. This document is designed to teach you
everything you need to know to start writing game servers that run on top of the Project Darkstar Server. We call
such programs PDS applications, and you will see that term used in this and other PDS documents.

This tutorial begins with an overview of how to code a PDS application, then steps through the development of a
very simple application.

Project Darkstar Server Application Tutorial 04/24/08 vi

Coding Project Darkstar Server Applications
This chapter presents the fundamental concepts of how to code game server applications in the Project Darkstar
Server (PDS) environment. Understanding these concepts is the first step on the path to building massively
scalable, reliable, fault-tolerant, and persistent network games.

Goals and Philosophy
In order to understand the Project Darkstar Server (PDS) coding model, it is useful to understand the system's
goals. The fundamental goals are as follows:

● Make server-side game code reliable, scalable, persistent, and fault-tolerant in a manner that is
transparent to the game developer.

● Present a simple single-threaded event-driven programming model to the developer. The developer
should never have his or her code fail due to interactions between code handling different events.

Applications coded to run in the PDS environment are called PDS applications.

Approach to Execution

Tasks and Managers
From the point of view of the PDS application programmer, PDS applications execute in an apparently
monothreaded, event-driven model. The code handling the event appears to the coder to have sole ownership of
any data it modifies. Thus, execution is both race-proof and deadlock-proof. Under most conditions there is no
need to synchronize application code and, in fact, attempting to use the synchronized keyword in Managed
Objects1 can cause subtle bugs.

In actuality, the system has many threads of control all simultaneously processing their own events. These
threads of control are called tasks. The system keeps track of what data each task accesses. Should a conflict
arise, one task is aborted and scheduled for retry at a later date so that the other task can complete and get out of
the way.

Tasks are created by PDS managers. a PDS application uses these managers to effect actions in the PDS
environment and the outside world.

There are three standard managers in the system. In addition, arbitrary managers may be coded and added to the
PDS environment. The standard managers are:

● Task Manager
A PDS application can use the Task Manager to queue tasks of its own. Tasks can be queued for
immediate execution, delayed execution, or periodic execution. Tasks created from within other tasks are
called child tasks. The task that queued the child task is called the parent task. Multiple child tasks
queued by the same parent task are called sibling tasks.

● Data Manager
A PDS application can use the Data Manager to create and access persistent, distributed Java objects
called Managed Objects. The PDS application is itself composed of Managed Objects.

1 PDS applications are made out of Managed Objects, which are fully explained in “Managed Objects and Managed
References,” below.

Project Darkstar Server Application Tutorial 04/24/08 1

● Channel Manager
A PDS application can use the Channel Manager to create and control publish/subscribe data channels.
These data channels are used to communicate between groups of clients and the server.

A PDS application gets access to core PDS functionality through the AppContext class, which provides
methods to obtain references to the various managers.

Task Ordering
Tasks that handle events created by a client are guaranteed to execute in order. A task to handle a client event
that occurred later in time will not start executing until the tasks to handle all earlier events generated by the
same client have finished. A child task is ordered with regard to its parent task, but not with regard to its siblings.
This means that execution of a child task will not begin until execution of the parent has completed. There are,
however, no guarantees among sibling tasks as to order of execution.

Important: There are no other order guarantees in the system. In particular, execution of tasks to handle
events of different users are not guaranteed to start executing relative to each other in the order they
arrived at the server.2

Task Lifetime
Tasks must be short-lived so that they do not block access for an inordinate amount of time to resources that
might be needed by other tasks. The PDS is configured by its operator with a maximum task execution time (the
default is 100 milliseconds). Any task that does not finish within that time will be forcibly terminated by the
system.

If you have a task that runs too long, there are two approaches to reducing its execution time:

● Split it up into a chain of child tasks, each of which handles one discrete portion of the problem, and
then queues the next task in sequence. This is known as continuation-passing style.

● Move the time-consuming calculations into a custom manager that queues a result-task when the
calculations are complete.

Each approach has its advantages and disadvantages. The first is easier for simple problems that lend themselves
to serial decomposition. Care must be taken that each task ends with the data in a sensible and usable state,
because there is no guarantee as to exactly when the next step will be executed.

A special case of this approach is where parts of the problem are separable and handleable in parallel. In this
case, the time to complete may be reduced by launching parallel chains of tasks. These parallel chains, however,
have no guaranteed ordering in relation to each other, so the work they perform must really be independent of
each other.

The second approach is easier for problems that don't decompose well into small, discrete components; however,
it requires the writing and installation of a custom PDS manager. (Writing custom PDS managers will be covered
by a separate document explaining how to extend the PDS environment.)

A particularly important case is code that has to go into system calls that can block for more then the task
execution lifetime. These must be implemented through a custom manager in order to produce a robust PDS
application.

2 This also implies that tasks generated by two different clients will not necessarily get processed in the relative order they
were created on the clients. In practice, this is generally not true in online games anyway unless special pains are taken
to make it so, since simple variations in latencies in the two clients' net communications to the server can reorder their
arrival.

2 04/24/08 Project Darkstar Server Application Tutorial

Managed Objects and Managed References
The Data Manager maintains a persistent set of Managed Objects stored in a pool of objects called the Object
Store. Like a normal Java object, each Managed Object contains both data and the methods to act upon that data.
In order to be a Managed Object, the object must implement both the ManagedObject and Serializable
interfaces. A Managed Object does not become part of the Object Store's pool until the pool is made aware of the
object. This is done by using the Data Manager either to request a Managed Reference to the object or to bind a
name to the object.3

A Managed Reference is a reference object that looks much like the J2SE(tm) reference objects (for example,
SoftReference, WeakReference). Managed Objects must refer to other Managed Objects through Managed
References. This is how the Data Manager can tell the difference between a reference to a component object of
the Managed Object (for instance, a list) that is part of that Managed Object's state, and a reference to a separate
Managed Object with a state of its own.

A name binding associates a string with the Managed Object such that the object may be retrieved from the
Object Store by other tasks using the getBinding call on the Data Manager.

Accessing Managed Objects through Managed References
The Managed Reference has two access methods: get and getForUpdate. Both methods return a task-local copy
of the object. The difference between the two methods is:

● getForUpdate informs the system that you intend to modify the state of the Managed Object.

● get says you intend only to read the state but not write it.

Although all changes to any Managed Object are persistent (even those accessed via get), it is more efficient to
use getForUpdate if you know at that time that you are going to want to modify the Managed Object's state.
This allows the system to detect conflicts between tasks and handle them earlier and with greater efficiency.

Conversely, it is better to use get if the state of the Managed Object may not be modified. The get call can allow
for more parallel access to the Managed Object from multiple tasks. If you reach a point later in the execution
where you know you are going to modify the object's state, you can upgrade your access from get to
getForUpdate by calling the markForUpdate method on the Data Manager. (Multiple calls to mark the same
Managed Object for update are harmless.)

Subsequent calls to get or getForUpdate on equivalent Managed References in the same task will return the
same task-local copy.

You can also retrieve an object with a bound name by calling getBinding. This is equivalent to a get call on a
Managed Reference to the object, so, if you intend to modify the object's state, you should call markForUpdate
after retrieving the object.

Managed Objects in the Object Store are not garbage-collected. Once the store is made aware of a Managed
Object, it keeps the state of that object until it is explicitly removed from the object store with a call to the
removeObject call on the Data Manager. It is up to the application to manage the life cycle of Managed Objects
and to remove them from the Object Store when they are no longer needed. Failure to do so may result in
garbage building up in your Object Store and impacting its performance. Likewise, name bindings are stored
until explicitly destroyed with removeBinding. A name binding is not removed when the object it refers to is
removed.

3 Be aware that this may happen in library code or in the PDS APIs themselves. See the best practices section at the
end of this document for more information.

Project Darkstar Server Application Tutorial 04/24/08 3

Designing Your Managed Objects
Managed Objects typically fall into three general types of entity:

● Actual objects in your game's simulated environment, such as a sword, a monster, or a play-space (such
as a room).

● Purely logical or data constructs such as a quad-tree for determining player-proximity or a walk-mesh to
determine movement paths.

● Proxies for human players in the world of Managed Objects.

Figure 1 below illustrates a very basic world consisting of a single room that contains two players and a sword.

Figure 1: Example of a simple ManagedObject world

When deciding where to break data up into multiple Managed Objects, consider these questions:

● How big is the data? The more data a single Managed Object encompasses in its state, the more time it
takes to load and save.

● How closely coupled is the data? Data that are generally accessed together are more efficiently stored in
the same Managed Object. Data that are accessed independently are candidates for separation onto
different Managed Objects. Data that have to be modified atomically are best stored in the same
Managed Object.

● How many simultaneous tasks are going to need access to this data? As explained above, the PDS does
its best to execute as many tasks in parallel as it can. Resolving the conflicts that arise when multiple
parallel tasks want to change the state of the same ManagedObject can be expensive.

It is best to split up data that has to be locked for update from data that can be shared with a get. Data
that is going to be updated has to be owned by the updating task, whereas data that is just read can be
shared by multiple reading tasks. When multiple tasks have to access fields on a Managed Object that is

4 04/24/08 Project Darkstar Server Application Tutorial

Sword
ManagedObject

Player 1
ManagedObject

Room
ManagedObject

Player 2
ManagedObject

Arrows denote ManagedReferences

being updated by at least one of them, that Managed Object becomes a potential bottleneck. For best
performance, you want as few bottleneck Managed Objects as possible.

Of all these considerations, the third is the most critical to a well-running PDS application.

The Player Managed Object
Managed Objects register themselves as event handlers with a manager in order to get called when outside
events occur. One very important type of Managed Object is the Player Managed Object. A Player Managed
Object implements the ClientSessionListener interface and is returned to the system as the return value from
the loggedIn callback on the AppListener. From then on, it will get called for any incoming data packets and
disconnect events from that player.

The Player Managed Object acts as a proxy for the player in the world of Managed Objects. The player sends
data packets to the server using the PDS Client API. This causes a userDataReceived event in the system,
which results in a task that calls the Player Managed Object's userDataReceived method. The Player Managed
Object should parse the packet to find out what it is supposed to do, and then act on itself and other Managed
Objects in order to accomplish the requested task.

Figure 2 shows our simple Managed Object world, with two players connected to the PDS as clients.

Figure 2: Client connections to the simple ManagedObject world

The Player Managed Objects have a “current room” field, which is a Managed Reference that points to the
Room Managed Object. The Room Managed Object has an inventory list, which is a list of Managed
References. Currently, there are three items in the list: the two players and a sword. Each is represented by a
Managed Object (Player 1 Managed Object, Player 2 Managed Object, and Sword Managed Object).

Project Darkstar Server Application Tutorial 04/24/08 5

Sword
ManagedObject

Player 1
ManagedObject

Room
ManagedObject

Player 2
ManagedObject

Game
Client 1

Game
Client 2

Big arrows denote PDS Client API

The AppListener
Above we had a world of Managed Objects consisting of a Room Managed Object, a Sword Managed Object
and a couple of Player Managed Objects. However, when we start the game in the PDS for the first time, the
world of Managed Objects doesn't look like that. In fact it looks like this:

Figure 3: World of ManagedObjects at first-time start of game

Which is to say, it is empty.

How then do the Managed Objects get into the Object Store in the first place?

The answer is a special Managed Object called the AppListener. There are two special things about the class
that defines the AppListener:

● It implements the AppListener interface. This interface defines two methods:

● initialize

● loggedIn

● It has been specified as the AppListener class for this application.

These two properties combine in the following way:

● Upon the boot of the PDS (or the installation of a new application into the PDS), the PDS attempts to
locate the AppListener for that application in the Object Store.

● If the application has never been booted before, then its Object Store in the PDS is blank (as in
Figure 3), and the PDS will fail to find the AppListener. In that case, it creates the AppListener
Managed Object itself, and then starts a task that calls initialize.

● If, on the other hand, the application has been booted at least once, the Object Store will contain the
AppListener Managed Object already. In this case, execution just resumes from where it left off when
the system came down, listening for new connections and executing any periodic tasks that were running
before.

In the case of our little demo application, the boot method will have a block in it that, in pseudo-code, looks
something like this:4

4 In all pseudo-code in this document, the pseudo-code itself is in all caps, references to variables and methods are in
mixed case beginning with a lower case letter, and references to classes and interfaces are in mixed-case beginning with
an uppercase letter.

6 04/24/08 Project Darkstar Server Application Tutorial

initialize {
CREATE ROOM MANAGED OBJECT
CREATE SWORD MANAGED OBJECT
ADD REF TO SWORD MANAGED OBJECT TO ROOM'S INVENTORY
SAVE A MANAGED OBJECT REF TO ROOM FOR LATER

}

In general, it is the responsibility of the AppListener to create the initial world of Managed Objects during the
first startup.

Figure 4: AppListener ManagedObject creates initial ManagedObject world

Now we have something that is beginning to look like our game. We still don't have Player Managed Objects,
however. We will create the Player Managed Objects as users join, in much the same way the AppListener
Managed Object was created. The first time we see a user log in, we create a new Player Managed Object for
that user. After that, every time that user logs in, we just reconnect him to his existing Player Managed Object.
Thus, the system creates Player Managed Objects as needed, and remembers user information between logins.

So how do we find out when a user has logged in?

The answer is the second callback on our AppListener: loggedIn. Every time a user logs into a PDS
application, a task is started that calls the loggedIn method on the application's AppListener.

When the loggedIn callback is called on our AppListener, it executes the following code, presented as pseudo-
code.

Project Darkstar Server Application Tutorial 04/24/08 7

Sword
ManagedObject

Room
ManagedObject

Arrows denote ManagedReferences

AppListener
ManagedObject

loggedIn {
managedObject_name = “player_”+ SESSION.PLAYER_NAME;
IF MANAGED OBJECT EXISTS(managedObject_name){

 FIND MANAGED OBJECT(managedObject_name);
} ELSE {

 CREATE NAMED PLAYER MANAGED OBJECT(managedObject_name);
}
SET currentRoom on PLAYER MANAGED OBJECT

TO SAVED MANAGED OBJECT REF TO ROOM
GET ROOM MANAGED OBJECT
ADD PLAYER REF TO ROOM MANAGED OBJECT'S PLAYERS LIST
REGISTER PLAYER MANAGED OBJECT AS SessionListener(SESSION);

}

ClientSessionListener is another event interface. It defines methods that get called on tasks to respond to
actions the client takes with the client API, such as the client sending data to the server for processing and the
client logging out.

Figure 5 illustrates that our Managed Object world is starting to look the way we want it to.

Figure 5: Client sends data to server

When a second user logs in, we will be back to our original world. Figure 6 illustrates our world after restarting
the game with our previous players:

8 04/24/08 Project Darkstar Server Application Tutorial

Sword
ManagedObject

Big arrows denote PDS Client API

Game
Client 1

Room
ManagedObject

Player 1
ManagedObject

AppListener
ManagedObject

 Figure 6: AppListener ManagedObject reestablishes simple world

So far, the logic has been laid out in pseudo-code. The actual code to implement this application is included in
Appendix A as the SwordWorld application. The actual application code goes a bit further in that it also
implements a look command, to show you how the Player Managed Object actually handles commands being
sent from the client.

Locating the Server API Classes
All the Project Darkstar Server API classes are in the com.sun.sgs.app.* package.

These are the Project Darkstar Server API classes with brief descriptions:

System Classes and Interfaces

Class Description
AppContext Provides access to facilities available in the current

application. Primarily used to find references to
managers. This is the starting point for the application
code to talk to the system.

Project Darkstar Server Application Tutorial 04/24/08 9

Player 1
ManagedObject

Room
ManagedObject

Player 2
ManagedObject

Game
Client 1

Game
Client 2

Big arrows denote PDS Client API

Sword
ManagedObject

AppListener
ManagedObject

Class Description
AppListener Interface representing a listener for application-level

events. This listener is called when the application is
started for the first time, and when client sessions log
in.

ManagerNotFoundException Thrown when a requested manager is not found.

ClientSession Interface representing a single, connected login session
between a client and the server.

ClientSessionListener Listener for messages sent from an associated client
session to the server.

Task Manager Classes and Interfaces

Class Description
TaskManager Provides facilities for scheduling tasks.

Task Defines an application operation that will be run by the
Task Manager.

PeriodicTaskHandle Provides facilities for managing a task scheduled with
the Task Manager to run periodically.

TaskRejectedException Thrown when an attempt to schedule a task fails
because the Task Manager refuses to accept the task
due to resource limitations.

ExceptionRetryStatus Implemented by exception classes that want to control
whether an operation that throws an exception of that
exception should be retried.

Data Manager Classes and Interfaces

Class Description

DataManager Provides facilities for managing access to shared,
persistent objects.

ManagedObject A marker interface implemented by shared, persistent
objects managed by the Data Manager.

ManagedReference Represents a reference to a managed object.

ObjectIOException Thrown when an operation fails because of an I/O
failure when attempting to access a Managed Object.

ObjectNotFoundException Thrown when an operation fails because it attempted

10 04/24/08 Project Darkstar Server Application Tutorial

Class Description

to refer to a Managed Object that was not found.

TransactionAbortedException Thrown when an operation fails because the system
aborted the current transaction during the operation.

TransactionConflictException Thrown when an operation fails because the system
aborted the current transaction when it detected a
conflict with another transaction.

TransactionException Thrown when an operation fails because of a problem
with the current transaction.

TransactionNotActiveException Thrown when an operation fails because there is no
current, active transaction.

TransactionTimeoutException Thrown when an operation fails because the system
aborted the current transaction when it exceeded the
maximum permitted duration.

NameNotBoundException Thrown when an operation fails because it referred to a
name that was not bound to an object.

Channel Manager Classes and Interfaces

Class Description

ChannelManager Manager for creating and obtaining channels.

Channel Interface representing a communication group, a
channel consisting of multiple client sessions and the
server.

ChannelListener A channel can be created with a ChannelListener,
which is notified when any client session sends a
message on that channel.

Delivery Representation for message delivery requirements. A
channel is created with a delivery requirement.

NameExistsException Thrown when an operation fails because it referred to a
name that is currently bound to an object.

NameNotBoundException Thrown if a channel is not bound to a name specified
to ChannelManager.getChannel().

Project Darkstar Server Application Tutorial 04/24/08 11

Lesson One: Hello World!
It is traditional in any programming tutorial for the first example to be a simple program that prints “Hello
World” to the console. This lets a programmer see the plumbing required to start even a basic application before
diving into real-world application logic.

For simplicity, this lesson and the two that follow it print their output on the server console, rather than starting
off with client-server networking. Even when a client is connected, server-side log messages are invaluable for
debugging and monitoring the application.

Coding HelloWorld
All PDS applications start with an AppListener. An AppListener is the object that handles an application's
startup and client login events. An application's AppListener is simply a class that implements the AppListener
interface. Since an AppListener is also a Managed Object, it must implement the Serializable marker interface
as well.

As mentioned above, AppListener contains two methods: initialize and loggedIn. The initialize method gets
called on the startup of the application if and only if the Object Store for this application is empty. The
AppListener is automatically created in the Object Store by the system the first time the application is started
up; in practice, this means that it is created once per application, unless the Object Store for this application is
deleted and the system is returned to its pristine “never having run this application” state. 5

A “Hello World” AppListener looks like this:

HelloWorld
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson1;

import java.io.Serializable;
import java.util.Properties;

import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;

5 The SwordWorld example in the appendix shows how to use this behavior to create your initial world of Managed
Objects in the Object Store.

12 04/24/08 Project Darkstar Server Application Tutorial

import com.sun.sgs.app.ClientSessionListener;

/**
 * Hello World example for the Project Darkstar Server.
 * Prints {@code "Hello World!"} to the console the first time it is started.
 */
public class HelloWorld
 implements AppListener, // to get called during application startup.
 Serializable // since all AppListeners are ManagedObjects.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /**
 * {@inheritDoc}
 * <p>
 * Prints our well-known greeting during application startup.
 */
 public void initialize(Properties props) {
 System.out.println("Hello World!");
 }

 /**
 * {@inheritDoc}
 * <p>
 * Prevents client logins by returning {@code null}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 return null;
 }
}

Running HelloWorld
To run HelloWorld you need the following:

● The Project Darkstar Server installed on your system. Make sure that Darkstar is correctly installed,
and that the required supporting libraries have also been installed in the correct locations (see the
README file for details).

● A JDK™ 5 installation.6 The version can be found with:

java -version

If java is not in your default execution path, you will need to set JAVA_HOME to point to the root of
its installation on your system.

Path Conventions

Unix and many Unix-derived systems use a forward slash (/) to show subdirectories in a file path.
Win32, however, uses a backslash (\) for this purpose. Throughout this document we use the Unix
convention for file paths unless it is in a Windows-specific example.

Please remember that you may have to substitute backslashes for forward slashes in the generic
examples if you are working in Windows.

The tutorial.jar file in the tutorial folder contains pre-compiled .class files for all the tutorial examples. The
data directory contains subdirectories for the object store data for all the different examples.

6 The PDS is compatible with JDK™ 6 as well, though this configuration is experimental.

Project Darkstar Server Application Tutorial 04/24/08 13

You run a tutorial example by using the sgs script in the root of the PDS installation on your computer. It has the
following form:

● For Unix:

sgs.sh app_classpath app_config_file

● For Windows:

sgs app_classpath app_config_file

Where app_classpath is a default classpath in which to find the application classes, and app_config_file is the
configuration file for the application you want to launch.

We have provided default configuration files that use relative paths. These paths assume your working directory
is the tutorial folder in the SDK. So, to run HelloWorld as it is shipped to you in the tutorial directories, do the
following:

1. Add the environment variable SGSHOME to your environment and set it to the directory where you
installed the Project Darkstar Server.

2. Add SGSHOME to your execution path, where SGSHOME is your PDS install directory.

3. Open a Unix shell, a Windows command window, or whatever you do to get a command line on your
development system.

4. Change your working directory to the tutorial directory of your PDS. In Unix, the command might be
something like this:

cd ~/sgs/tutorial

5. Type the following:

● For Unix:

sgs.sh tutorial.jar HelloWorld.properties

● For Windows:

sgs tutorial.jar HelloWorld.properties

You should see the application print out “Hello World!” to standard output (as well as a couple of PDS startup
log messages) and then sit doing nothing. At this point you can kill the application; in Unix or Win32, just type
Ctrl-c in the shell window to stop the server and get the prompt back.

If you are interested, you can examine the script files sgs.bat and sgs.sh to see how to run PDS applications, and
the HelloWorld.properties file to see the details of how you set up an application configuration to run in the
PDS.

Rerunning HelloWorld
If you stop the PDS and then run the HelloWorld application again, you will notice that you don't get a “Hello
World!” output the second time. This is because the AppListener already exists in the Object Store from the
previous run, and thus the initialize method on it is never called.

If you want to see “Hello World” again, you can do it by clearing the Object Store with the following
commands:

● For Unix:

rm -r data/HelloWorld/dsdb/*

● For Windows:

14 04/24/08 Project Darkstar Server Application Tutorial

del /s data\HelloWorld\dsdb*.*

Project Darkstar Server Application Tutorial 04/24/08 15

Lesson Two: Hello Logger!

Coding HelloLogger
The PDS supports the standard Java logging mechanisms in the java.util.logging.* package. This is a flexible
and configurable logging API used by most servers written in Java. The PDS server itself uses the logger to
report various internal states and events. It is highly recommended that applications use the same logging
mechanisms for their reporting.

Below is a rewrite of HelloWorld that sends the “Hello World!” string to the logger rather than to standard out:

HelloLogger
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson2;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;

/**
 * Hello World with Logging example for the Project Darkstar Server.
 * It logs {@code "Hello World!"} at level {@link Level#INFO INFO}
 * when first started.
 */
public class HelloLogger
 implements AppListener, // to get called during application startup.
 Serializable // since all AppListeners are ManagedObjects.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =

Project Darkstar Server Application Tutorial 04/24/08 17

 Logger.getLogger(HelloLogger.class.getName());

 /**
 * {@inheritDoc}
 * <p>
 * Logs our well-known greeting during application startup.
 */
 public void initialize(Properties props) {
 logger.log(Level.INFO, "Hello World!");
 }

 /**
 * {@inheritDoc}
 * <p>
 * Prevents client logins by returning {@code null}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 return null;
 }
}

The Logging Properties File
The Java logging API has a concept of message severity level. By logging at Level.INFO, we are telling the
system we want to log this message at the info level of severity.

The Java logger's behavior is controlled by a logging properties file. The sgs script you use to run your
applications uses the file sgs-logging.properties that is present in the root of your PDS installation. This is
accomplished by setting the java.util.logging.config.file property on the java command line.

By default this file sets the logging level to info. This means that logging messages below the level of info, such
as “fine” debugging messages, will not be printed. You can change this by editing the sgs-logging.properties
file. For more information on how to edit this file, please see the JDK™ 5 API documentation.

18 04/24/08 Project Darkstar Server Application Tutorial

Lesson 3: Tasks, Managers, and Hello Timer!

Tasks
In Lessons 1 and 2, the system automatically invoked the initialize method for us in response to an event (in this
case, the initial run of a newly installed PDS application). This meant executing code within the PDS
environment.

All code run in the PDS environment must be part of a task. From the point of view of the application coder, a
task is a piece of monothreaded, transactional, event-driven code. This means that the task runs as if it were the
only task executing at that moment, and all actions done by the task to change data occur in an all-or-nothing
manner.

The realities of task execution

Each individual task executes in a monothreaded manner. However, if we executed them serially,
waiting for each one to finish before the next one started, it would not be possible to get the kind of
scaling the PDS provides.

Instead, the PDS executes many of these monothreaded tasks simultaneously and watches for
contention on the individual Managed Objects. If two tasks contend for control over a Managed
Object, one task will be held up and will wait for the other to finish before it can proceed.

Many tasks can read the state of the same Managed Object at the same time without causing
contention. If any of them wants to write to it, however, that can cause contention with tasks that
read from or write to the same Managed Object.

To achieve optimal performance, it is important to design your data structures and game logic
with as little potential object-contention as possible. Be especially wary of places where
multiple tasks that are likely to occur simultaneously might have to write to the same Managed
Object.

All tasks registered with the PDS scheduler implement the interface Task, which has one method on it — run.7
A task may be submitted to the scheduler to be executed either as soon as possible, or after a minimum delay
time. A task can be one-shot or repeating. If it is a repeating task, it is also submitted with a period of repeat.

A repeating task is the same thing as a “timer” or “heartbeat” in traditional game systems; it lets you effectively
generate an event to be handled every specified number of milliseconds.

Managers
All communication between your server application's game logic and the world outside of it is accomplished
through managers. As described above, there are three standard managers:

● Task Manager

● Data Manager

● Channel Manager

7 Although the event-handling interfaces like AppListener do not implement Task, these listeners get called from an
internal Task just like regular PDS application code.

Project Darkstar Server Application Tutorial 04/24/08 19

There can also be installation-specific managers; these can be written by the author of the server application and
deployed with the application into a PDS back end. The following static calls on the AppContext class are used
by server application code to get a reference to a manager to talk to:

● getTaskManager()

● getDataManager()

● getChannelManager()

● getManager(managerClass)

The first three are covered in this tutorial. The last is a generic call to get an installation-specific manager; it will
be covered in the forthcoming Project Darkstar Server Extension Manual.

IMPORTANT: A Manager Reference is valid only for the life of the task within which the get manager call
was invoked. Therefore, you should not try to cache manager references for use outside of that one invocation
chain; get them from the AppContext instead.

The Task Manager is the part of the PDS that contains the scheduler, and thus what we use to schedule tasks. In
order to be scheduled with the Task Manager as a task to be run, an object must be serializable and must
implement the Task interface.8 The example below turns our AppListener into a task and starts it logging
“Hello Timer” messages after a five-second delay at a half-second repeat period.

IMPORTANT: While the PDS stack makes a best effort to run tasks on schedule, it may back off execution of
repeating tasks under heavy load. In that case, the task will skip execution of this period and reschedule to the
next period. Additionally, contention for Managed Objects may cause a timed task to delay its execution.

The requested repeat frequency of a timed task is similar to a target frame rate in a game client, where frames
may be dropped if they are taking too long to compute. If your application logic is tied to elapsed time or
absolute number of “beats” in a given period of time, you'll need to check the elapsed time and handle skipped
periods in your run logic.

Coding HelloTimer
The HelloTimer application below uses the TaskManager to schedule a repeating task. The task will run after a
delay of 5000ms at a frequency of once every 500ms.

HelloTimer
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of

8 You might wonder why the Task and ManagedObject interfaces don't just extend Serializable. The answer has to do
with a subtlety of Serialization version control on interfaces. To guard against serialVersionUID mismatches, any class
or interface that extends Serializable should declare a private serialVersionUID field. But since interfaces can only
declare public fields, the best practice is to avoid making interfaces Serializable and leave it to the concrete (or abstract)
classes to implement Serializable instead.

20 04/24/08 Project Darkstar Server Application Tutorial

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson3;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.Task;
import com.sun.sgs.app.TaskManager;

/**
 * A simple timed-task example for the Project Darkstar Server.
 * It uses the {@link TaskManager} to schedule itself as a periodic task
 * that logs the current timestamp on each execution.
 */
public class HelloTimer
 implements AppListener, // to get called during application startup.
 Serializable, // since all AppListeners are ManagedObjects.
 Task // to schedule future calls to our run() method.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloTimer.class.getName());

 /** The delay before the first run of the task. */
 public static final int DELAY_MS = 5000;

 /** The time to wait before repeating the task. */
 public static final int PERIOD_MS = 500;

 // implement AppListener

 /**
 * {@inheritDoc}
 * <p>
 * Schedules the {@code run()} method to be called periodically.
 * Since SGS tasks are persistent, the scheduling only needs to
 * be done the first time the application is started. When the
 * server is killed and restarted, the scheduled timer task will
 * continue ticking.
 * <p>
 * Runs the task {@value #DELAY_MS} ms from now,
 * repeating every {@value #PERIOD_MS} ms.
 */
 public void initialize(Properties props) {
 TaskManager taskManager = AppContext.getTaskManager();
 taskManager.schedulePeriodicTask(this, DELAY_MS, PERIOD_MS);
 }

Project Darkstar Server Application Tutorial 04/24/08 21

 /**
 * {@inheritDoc}
 * <p>
 * Prevents client logins by returning {@code null}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 return null;
 }

 // implement Task

 /**
 * {@inheritDoc}
 * <p>
 * Logs the current timestamp whenever this {@code Task} gets run.
 */
 public void run() throws Exception {
 logger.log(Level.INFO,
 "HelloTimer task: running at timestamp {0,number,#}",
 System.currentTimeMillis());
 }
}

Now that we have a repeating event, we have our first application that will do something when stopped and
restarted. Task registration is persistent, which is to say, it survives a crash and reboot. Try stopping the server
and restarting it again to see this in action.

The periodic task is information stored in the Object Store along with your managed objects, so if you clear the
data directory and return it to its pristine, uninitialized state, the periodic tasks will also get cleared.

This behavior allows you to write your code as if the server were always up, with the caveat that you do have to
check elapsed time in your periodic task's run method if a delay between that and the last time it was run has
significance to your logic.

How you keep track of the last time run was called is the subject of the next lesson.

22 04/24/08 Project Darkstar Server Application Tutorial

Lesson 4: Hello Persistence!
Lesson 3 explained that tasks that are run on a delay or repeat don't necessarily happen exactly at the time you
asked for. They could happen a bit later if (for example) the system is very loaded, or a lot later if (for example)
the entire data center has actually come down and had to be restarted.9

To track the last time the run task was called and calculate the true time-delta, we need a way of storing the past
time value so that it will survive the system going down. This is called persistent storage, and in real games it is
very important. Imagine how your users would react if your machine went down and they all lost their characters
and everything on them!

A Managed Object is an object for which the system tracks state and which the system makes persistent. We
mentioned above that AppListener interface inherits the Managed Object interface and that your AppListener
instance is automatically created by the system for you. The system also registers your AppListener as a
Managed Object with the Data Manager. This means that its state will be preserved by the PDS for you.

Coding HelloPersistence
Since our HelloTimer task is a Managed Object, all we need to do is add a field to track the last time run was
called. Below is the code for HelloPersistence.

Run HelloPersistence as a PDS application. Stop the PDS, wait a minute, and then start it again. You will see
that the elapsed time reported includes the down time. This is because currentTimeMillis is based on the system
clock, and time kept moving forward even when the PDS wasn't running.10

Persistence is that simple and automatic in the PDS. Any non-transient field on a registered Managed
Object will be persisted.11

HelloPersistence

/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.

9 A full Project Darkstar Server production environment provides failover mechanisms so that the loss of one server won't
bring the game down. In a true disaster, such as loss of power across the entire data center, it is possible the entire back
end might go off-line.

10 Depending on your operating system, you may see the elapsed time reported by HelloPersistence while the PDS is
running to be a bit over or a bit under 500ms. This is because currentTimeMillis does not necessarily have a 1 ms
accuracy. In particular, Windows systems tend to have a lower currentTimeMillis accuracy than other Java™ SE
platforms.

11 A transient field is one marked with the transient key word. Some values aren't valid beyond the task in which they are
used, and thus should be marked transient – for example, a field that caches a Manager during the current task.

Project Darkstar Server Application Tutorial 04/24/08 23

 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson4;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.ManagedObject;
import com.sun.sgs.app.Task;
import com.sun.sgs.app.TaskManager;

/**
 * A simple persistence example for the Project Darkstar Server.
 * As a {@link ManagedObject}, it is able to modify instance fields,
 * demonstrated here by tracking the last timestamp at which a task
 * was run and displaying the time delta.
 */
public class HelloPersistence
 implements AppListener, // to get called during application startup.
 Serializable, // since all AppListeners are ManagedObjects.
 Task // to schedule future calls to our run() method.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloPersistence.class.getName());

 /** The delay before the first run of the task. */
 public static final int DELAY_MS = 5000;

 /** The time to wait before repeating the task. */
 public static final int PERIOD_MS = 500;

 /** The timestamp when this task was last run. */
 private long lastTimestamp = System.currentTimeMillis();

 // implement AppListener

 /**
 * {@inheritDoc}
 * <p>
 * Schedules the {@code run()} method to be called periodically.
 * Since SGS tasks are persistent, the scheduling only needs to
 * be done the first time the application is started. When the
 * server is killed and restarted, the scheduled timer task will
 * continue ticking.
 * <p>
 * Runs the task {@value #DELAY_MS} ms from now,
 * repeating every {@value #PERIOD_MS} ms.
 */
 public void initialize(Properties props) {
 TaskManager taskManager = AppContext.getTaskManager();

24 04/24/08 Project Darkstar Server Application Tutorial

 taskManager.schedulePeriodicTask(this, DELAY_MS, PERIOD_MS);
 }

 /**
 * {@inheritDoc}
 * <p>
 * Prevents client logins by returning {@code null}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 return null;
 }

 // implement Task

 /**
 * {@inheritDoc}
 * <p>
 * Each time this {@code Task} is run, logs the current timestamp and
 * the delta from the timestamp of the previous run.
 */
 public void run() throws Exception {
 long timestamp = System.currentTimeMillis();
 long delta = timestamp - lastTimestamp;

 // Update the field holding the most recent timestamp.
 lastTimestamp = timestamp;

 logger.log(Level.INFO,
 "timestamp = {0,number,#}, delta = {1,number,#}",
 new Object[] { timestamp, delta }
);
 }
}

Coding HelloPersistence2
While we could put all the fields of our application on the AppListener, there are many good reasons not to do
this. As any Managed Object grows larger, it takes more time for the system to store and retrieve it. Also,
although PDS task code is written as if it were monothreaded, many tasks are actually executing in parallel at
any given time. Should the tasks conflict in what data they have to modify, then one will either have to wait for
the other to finish or, in a worst-case situation, actually abandon all the work it had done up to that point and try
again later.

For these reasons, an application will want to create other Managed Objects of its own. Luckily, that's easy to
do!

All Managed Objects must meet two criteria:

● They must be Serializable.

● They must implement the ManagedObject marker interface. (AppListener actually inherits the
ManagedObject marker interface for you.)

One good way to break your application up into multiple Managed Objects is by the events they handle. A
Managed Object can handle only one event at a time, so you want to separate all event handlers for events that
might occur in parallel into separate Managed Objects. Below is the code to HelloPersistence2. It creates a
separate TrivialTimedTask Managed Object from the AppListener to handle the timed task.

Project Darkstar Server Application Tutorial 04/24/08 25

HelloPersistence2
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson4;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.TaskManager;

/**
 * A simple persistence example for the Project Darkstar Server.
 */
public class HelloPersistence2
 implements AppListener, Serializable
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloPersistence2.class.getName());

 /** The delay before the first run of the task. */
 public static final int DELAY_MS = 5000;

 /** The time to wait before repeating the task. */
 public static final int PERIOD_MS = 500;

 // implement AppListener

 /**
 * {@inheritDoc}
 * <p>
 * Creates a {@link TrivialTimedTask} and schedules its {@code run()}
 * method to be called periodically.
 * <p>
 * Since SGS tasks are persistent, the scheduling only needs to
 * be done the first time the application is started. When the

26 04/24/08 Project Darkstar Server Application Tutorial

 * server is killed and restarted, the scheduled timer task will
 * continue ticking.
 * <p>
 * Runs the task {@value #DELAY_MS} ms from now,
 * repeating every {@value #PERIOD_MS} ms.
 */
 public void initialize(Properties props) {
 TrivialTimedTask task = new TrivialTimedTask();

 logger.log(Level.INFO, "Created task: {0}", task);

 TaskManager taskManager = AppContext.getTaskManager();
 taskManager.schedulePeriodicTask(task, DELAY_MS, PERIOD_MS);
 }

 /**
 * {@inheritDoc}
 * <p>
 * Prevents client logins by returning {@code null}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 return null;
 }
}

TrivialTimedTask
This is the Managed Object we are going to have respond to the repeating task.

/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson4;

import com.sun.sgs.app.AppContext;
import java.io.Serializable;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.ManagedObject;
import com.sun.sgs.app.Task;

/**
 * A simple repeating Task that tracks and prints the time since it was
 * last run.

Project Darkstar Server Application Tutorial 04/24/08 27

 */
public class TrivialTimedTask
 implements Serializable, // for persistence, as required by ManagedObject.
 ManagedObject, // to let the SGS manage our persistence.
 Task // to schedule future calls to our run() method.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(TrivialTimedTask.class.getName());

 /** The timestamp when this task was last run. */
 private long lastTimestamp = System.currentTimeMillis();

 // implement Task

 /**
 * {@inheritDoc}
 * <p>
 * Each time this {@code Task} is run, logs the current timestamp and
 * the delta from the timestamp of the previous run.
 */
 public void run() throws Exception {
 // We will be modifying this object.
 AppContext.getDataManager().markForUpdate(this);
 long timestamp = System.currentTimeMillis();
 long delta = timestamp - lastTimestamp;

 // Update the field holding the most recent timestamp.
 lastTimestamp = timestamp;

 logger.log(Level.INFO,
 "timestamp = {0,number,#}, delta = {1,number,#}",
 new Object[] { timestamp, delta }
);
 }
}

Coding HelloPersistence3
A Managed Object does not actually become managed by the Data Manager, and thus persistent, until the Data
Manager is made aware of it. The reason HelloPersistence2 works is because the Task Manager persisted the
TrivialTimedTask object for us. In order to persist other Managed Objects, though, an application needs to take
on the responsibility of informing the Data Manager itself. One way the Data Manager can become aware of a
Managed Object is through a request for a Managed Reference.

Managed Objects often need to refer to other Managed Objects. This is done with a Managed Reference. It is
very important that the only fields on one Managed Object that reference another Managed Object be Managed
References. This is how the Data Manager knows that it is a reference to a separate Managed Object. If you store
a simple Java reference to the second Managed Object in a field on the first Managed Object, the second object
will become part of the first object's state when the first object is stored. The result will be that, the next time the
first object tries to access the second, it will get its own local copy and not the real second Managed Object.

HelloPersistence3 below illustrates this by creating a second persistent object that is called from the
TrivialTimedTask and that keeps the last-called time as part of its persistent state.

28 04/24/08 Project Darkstar Server Application Tutorial

HelloPersistence3
HelloPersistence3, below, is a task that delegates to a sub-task (a TrivialTimedTask that is not scheduled to run
on its own). The sub-task is stored in a Managed Reference on HelloPersistence3.

/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson4;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.DataManager;
import com.sun.sgs.app.ManagedReference;
import com.sun.sgs.app.Task;
import com.sun.sgs.app.TaskManager;

/**
 * A simple persistence example for the Project Darkstar Server.
 */
public class HelloPersistence3
 implements AppListener, Serializable, Task
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloPersistence3.class.getName());

 /** The delay before the first run of the task. */
 public static final int DELAY_MS = 5000;

 /** The time to wait before repeating the task. */
 public static final int PERIOD_MS = 500;

 /** A reference to our subtask, a {@link TrivialTimedTask}. */
 private ManagedReference<TrivialTimedTask> subTaskRef = null;

 /**

Project Darkstar Server Application Tutorial 04/24/08 29

 * Gets the subtask this task delegates to. Dereferences a
 * {@link ManagedReference} in this object that holds the subtask.
 * <p>
 * This null-check idiom is common when getting a ManagedReference.
 *
 * @return the subtask this task delegates to, or null if none is set
 */
 public TrivialTimedTask getSubTask() {
 if (subTaskRef == null)
 return null;

 return subTaskRef.get();
 }

 /**
 * Sets the subtask this task delegates to. Stores the subtask
 * as a {@link ManagedReference} in this object.
 * <p>
 * This null-check idiom is common when setting a ManagedReference,
 * since {@link DataManager#createReference createReference} does
 * not accept null parameters.
 *
 * @param subTask the subtask this task should delegate to,
 * or null to clear the subtask
 */
 public void setSubTask(TrivialTimedTask subTask) {
 if (subTask == null) {
 subTaskRef = null;
 return;
 }
 DataManager dataManager = AppContext.getDataManager();
 subTaskRef = dataManager.createReference(subTask);
 }

 // implement AppListener

 /**
 * {@inheritDoc}
 * <p>
 * Schedules the {@code run()} method of this object to be called
 * periodically.
 * <p>
 * Since SGS tasks are persistent, the scheduling only needs to
 * be done the first time the application is started. When the
 * server is killed and restarted, the scheduled timer task will
 * continue ticking.
 * <p>
 * Runs the task {@value #DELAY_MS} ms from now,
 * repeating every {@value #PERIOD_MS} ms.
 */
 public void initialize(Properties props) {
 // Hold onto the task (as a managed reference)
 setSubTask(new TrivialTimedTask());

 TaskManager taskManager = AppContext.getTaskManager();
 taskManager.schedulePeriodicTask(this, DELAY_MS, PERIOD_MS);
 }

 /**
 * {@inheritDoc}
 * <p>
 * Prevents client logins by returning {@code null}.
 */

30 04/24/08 Project Darkstar Server Application Tutorial

 public ClientSessionListener loggedIn(ClientSession session) {
 return null;
 }

 // implement Task

 /**
 * {@inheritDoc}
 * <p>
 * Calls the run() method of the subtask set on this object.
 */
 public void run() throws Exception {
 // Get the subTask (from the ManagedReference that holds it)
 TrivialTimedTask subTask = getSubTask();

 if (subTask == null) {
 logger.log(Level.WARNING, "subTask is null");
 return;
 }

 // Delegate to the subTask's run() method
 subTask.run();
 }
}

Another way to register a Managed Object to the Data Manager is with the setBinding call. This call does not
return a Managed Reference, but instead binds the Managed Object to the string passed in with it to the call.
Once a Managed Object has a name bound to it, the Managed Object may be retrieved by passing the same name
to the getBinding call. Note that name bindings must be distinct. For each unique string used as a name binding
by an application, there can be one and only one Managed Object bound.

Retrieving a Managed Object by its binding has some additional overhead, so it's better to keep Managed
References to Managed Objects in the other Managed Objects that need to call them. There are, however, some
problems that are best solved with a name-binding convention; one common example is finding the player object
for a particular player at the start of his or her session.

There are a number of other interesting methods on the Data Manager. You might want to look at the Javadoc
now, but discussion of them will be put off until required by the tutorial applications.

Project Darkstar Server Application Tutorial 04/24/08 31

Lesson 5: Hello User!
Up till now the tutorial lessons have focused on getting your logic up and running in the PDS. But there is
another side to the online game equation ─ the users and their computers. This lesson shows how to start
communicating between clients and the PDS.

In this tutorial, the server side of that communication will be explained and illustrated using a simple pre-built
client. For the client-side coding, please see the Project Darkstar Client Tutorial.

Knowing When a User Logs In
The first step in communicating with users is knowing who is available to communicate with. The PDS provides
a callback method on the AppListener for this: loggedIn. The loggedIn method gets passed an object that
describes the user; this object is called a ClientSession.12

Below is the code for HelloUser, a trivial application that logs the login of a user.

HelloUser
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson5;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;

/**
 * Simple example of listening for user {@linkplain AppListener#loggedIn login}
 * in the Project Darkstar Server.
 * <p>

12 In fact, ClientSession describes the new connection session, the user being one of those parameters. This distinction is
important, in that you cannot save a ClientSession object and expect it to be valid after the session has ended, which is
when the user disconnects.

32 04/24/08 Project Darkstar Server Application Tutorial

 * Logs each time a user logs in, then kicks them off immediately.
 */
public class HelloUser
 implements AppListener, // to get called during startup and login.
 Serializable // since all AppListeners are ManagedObjects.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloUser.class.getName());

 // implement AppListener

 /** {@inheritDoc} */
 public void initialize(Properties props) {
 // empty
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs a message each time a new session tries to login, then
 * kicks them out by returning {@code null}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 // User has logged in
 logger.log(Level.INFO, "User {0} almost logged in", session.getName());

 // Kick the user out immediately by returning a null listener
 return null;
 }
}

Direct Communication
You will note that, when you run the server application above and connect to it with a client, the client is
immediately logged out. This is because we are returning null from loggedIn. The PDS interprets this as our
rejecting the user. To accept the user and allow him or her to stay logged in, you need to return a valid
ClientSessionListener. To be valid, this object must implement both ClientSessionListener and Serializable.
Below is HelloUser2, which does this.

HelloUser2
HelloUser2 is identical to HelloUser except for the loggedIn method:

/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *

Project Darkstar Server Application Tutorial 04/24/08 33

 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson5;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;

/**
 * Simple example of listening for user {@linkplain AppListener#loggedIn login}
 * in the Project Darkstar Server.
 * <p>
 * Logs each time a user logs in, and sets their listener to a
 * new {@link HelloUserSessionListener}.
 */
public class HelloUser2
 implements AppListener, // to get called during startup and login.
 Serializable // since all AppListeners are ManagedObjects.
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloUser2.class.getName());

 // implement AppListener

 /** {@inheritDoc} */
 public void initialize(Properties props) {
 // empty
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs a message each time a new session logs in.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 // User has logged in
 logger.log(Level.INFO, "User {0} has logged in", session.getName());

 // Return a valid listener
 return new HelloUserSessionListener(session);
 }
}

HelloUserSessionListener
/*

34 04/24/08 Project Darkstar Server Application Tutorial

 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson5;

import java.io.Serializable;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.ManagedReference;

/**
 * Simple example {@link ClientSessionListener} for the Project Darkstar
 * Server.
 * <p>
 * Logs each time a session receives data or logs out.
 */
class HelloUserSessionListener
 implements Serializable, ClientSessionListener
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloUserSessionListener.class.getName());

 /** The session this {@code ClientSessionListener} is listening to. */
 private final ManagedReference<ClientSession> sessionRef;

 /**
 * Creates a new {@code HelloUserSessionListener} for the given session.
 *
 * @param session the session this listener is associated with
 */
 public HelloUserSessionListener(ClientSession session) {
 if (session == null)
 throw new NullPointerException("null session");

 sessionRef = AppContext.getDataManager().createReference(session);
 }

 /**
 * Returns the session for this listener.

Project Darkstar Server Application Tutorial 04/24/08 35

 *
 * @return the session for this listener
 */
 protected ClientSession getSession() {
 // We created the ref with a non-null session, so no need to check it.
 return sessionRef.get();
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs when data arrives from the client.
 */
 public void receivedMessage(ByteBuffer message) {
 logger.log(Level.INFO, "Message from {0}", getSession().getName());
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs when the client disconnects.
 */
 public void disconnected(boolean graceful) {
 String grace = graceful ? "graceful" : "forced";
 logger.log(Level.INFO,
 "User {0} has logged out {1}",
 new Object[] { getSession().getName(), grace }
);
 }
}

HelloUserSessionListener is a glue object that listens for either data from the user or the disconnect of the user;
it allows our server code to respond to these events. So far, all we do is log some information, but in a complete
PDS application, these would both be important events to which we would want to respond.

There are two kinds of communication in the PDS:

● Direct Communication

● Channel Communication

Direct Communication is built into the core of the system and provides a pipe for the flow of data between a
single user client and its PDS application.

Channel Communication is provided by a standard manager, the Channel Manager, and provides for
publish/subscribe group communications. While there is nothing in the Channel Manager's functionality that
could not be implemented on top of the Direct Communication mechanisms, putting the channel functionality in
a manager allows for a much more efficient implementation.

The HelloEcho PDS application echoes back to the user anything the user sends to the application. Besides the
name, there is only one line difference in HelloEchoSessionListener from HelloUserSessionListener: the
addition of a session.send call.

HelloEchoSessionListener
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *

36 04/24/08 Project Darkstar Server Application Tutorial

 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson5;

import java.io.Serializable;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.ManagedReference;

/**
 * Simple example {@link ClientSessionListener} for the Project Darkstar
 * Server.
 * <p>
 * Logs each time a session receives data or logs out, and echoes
 * any data received back to the sender.
 */
class HelloEchoSessionListener
 implements Serializable, ClientSessionListener
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloEchoSessionListener.class.getName());

 /** The session this {@code ClientSessionListener} is listening to. */
 private final ManagedReference<ClientSession> sessionRef;

 /**
 * Creates a new {@code HelloEchoSessionListener} for the given session.
 *
 * @param session the session this listener is associated with
 */
 public HelloEchoSessionListener(ClientSession session) {
 if (session == null)
 throw new NullPointerException("null session");

 sessionRef = AppContext.getDataManager().createReference(session);
 }

 /**
 * Returns the session for this listener.
 *
 * @return the session for this listener
 */

Project Darkstar Server Application Tutorial 04/24/08 37

 protected ClientSession getSession() {
 // We created the ref with a non-null session, so no need to check it.
 return sessionRef.get();
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs when data arrives from the client, and echoes the message back.
 */
 public void receivedMessage(ByteBuffer message) {
 ClientSession session = getSession();

 logger.log(Level.INFO, "Message from {0}", session.getName());

 // Echo message back to sender
 session.send(message);
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs when the client disconnects.
 */
 public void disconnected(boolean graceful) {
 ClientSession session = getSession();

 String grace = graceful ? "graceful" : "forced";

 logger.log(Level.INFO,
 "User {0} has logged out {1}",
 new Object[] { session.getName(), grace }
);
 }
}

Running the Examples
To try all the examples in this part of the server tutorial, you need a simple client capable of logging in, as well
as direct client/server communication. You can find this client as part of Lesson 1 of the Project Darkstar Client
Tutorial (com.sun.sgs.tutorial.client.lesson1.HelloUserClient in the tutorial-client.jar file).

38 04/24/08 Project Darkstar Server Application Tutorial

Lesson 6: Hello Channels!
The previous lessons have introduced the Task Manager and Data Manager. The final standard manager is the
Channel Manager. The core of the PDS provides us with basic client/server communications. For simple games,
this may be enough. However, for games that organize players into groups, either to isolate game sessions (such
as in many casual and fast action games), or to tame the n-squared user-to-user communications scaling issues
inherent in massive numbers of simultaneous players, something with lower overhead and more control is
required.

The Channel Manager provides publish/subscribe channels. The server application can create these channels and
then assign users to one or more of them. Communication between users in a channel does not involve the Task
or Data Manager.

Coding HelloChannels
The HelloChannels Managed Object is similar to our previous AppListener implementations with the addition
that it opens two reliable channels, Foo and Bar.

HelloChannels
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson6;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.Channel;
import com.sun.sgs.app.ChannelManager;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.Delivery;
import com.sun.sgs.app.ManagedReference;

/**

Project Darkstar Server Application Tutorial 04/24/08 39

 * Simple example of channel operations in the Project Darkstar Server.
 * <p>
 * Extends the {@code HelloEcho} example by joining clients to two
 * channels.
 */
public class HelloChannels
 implements Serializable, AppListener
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloChannels.class.getName());

 /* The name of the first channel {@value #CHANNEL_1_NAME} */
 static final String CHANNEL_1_NAME = "Foo";
 /* The name of the second channel {@value #CHANNEL_2_NAME} */
 static final String CHANNEL_2_NAME = "Bar";

 /**
 * The first {@link Channel}. The second channel is looked up
 * by name.
 */
 private ManagedReference<Channel> channel1 = null;

 /**
 * {@inheritDoc}
 * <p>
 * Creates the channels. Channels persist across server restarts,
 * so they only need to be created here in {@code initialize}.
 */
 public void initialize(Properties props) {
 ChannelManager channelMgr = AppContext.getChannelManager();

 // Create and keep a reference to the first channel.
 Channel c1 = channelMgr.createChannel(CHANNEL_1_NAME,
 null,
 Delivery.RELIABLE);
 channel1 = AppContext.getDataManager().createReference(c1);

 // We don't keep a reference to the second channel, to demonstrate
 // looking it up by name when needed. Also, this channel uses a
 // {@link ChannelListener} to filter messages.
 channelMgr.createChannel(CHANNEL_2_NAME,
 new HelloChannelsChannelListener(),
 Delivery.RELIABLE);
 }

 /**
 * {@inheritDoc}
 * <p>
 * Returns a {@link HelloChannelsSessionListener} for the
 * logged-in session.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 logger.log(Level.INFO, "User {0} has logged in", session.getName());
 return new HelloChannelsSessionListener(session, channel1);
 }
}

40 04/24/08 Project Darkstar Server Application Tutorial

The HelloChannelsSessionListener is identical to HelloEchoSessionListener except for the constructor. When
we create the session listener, we also join its session to two channels. One channel is passed in, while the
second is looked up by name.

The first channel.join is passed null for a ChannelListener, so all communication on it is only received by
clients. The second channel joined however is given a channel listener. This will be called back whenever a
message from this session is posted to that channel. The listener can examine the message and sender and decide
to discard the message, send a different message to the channel, or send the original, unmodified message to the
channel.

Note that, with this code, each session has it own listener for messages on the second channel. This is preferable
to registering a single channel-wide listener, since messages from different clients can be processed in parallel.
However, if your design really requires a single listener to all messages sent by any client on a channel, you
would declare the listener as the second parameter to the createChannel call.

HelloChannelsSessionListener
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson6;

import java.io.Serializable;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.Channel;
import com.sun.sgs.app.ChannelManager;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.DataManager;
import com.sun.sgs.app.ManagedReference;

/**
 * Simple example {@link ClientSessionListener} for the Project Darkstar
 * Server.
 * <p>
 * Logs each time a session receives data or logs out, and echoes
 * any data received back to the sender.
 */
class HelloChannelsSessionListener
 implements Serializable, ClientSessionListener

Project Darkstar Server Application Tutorial 04/24/08 41

{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(HelloChannelsSessionListener.class.getName());

 /** The session this {@code ClientSessionListener} is listening to. */
 private final ManagedReference<ClientSession> sessionRef;

 /**
 * Creates a new {@code HelloChannelsSessionListener} for the session.
 *
 * @param session the session this listener is associated with
 * @param channel1 a reference to a channel to join
 */
 public HelloChannelsSessionListener(ClientSession session,
 ManagedReference<Channel> channel1)
 {
 if (session == null)
 throw new NullPointerException("null session");

 DataManager dataMgr = AppContext.getDataManager();
 sessionRef = dataMgr.createReference(session);

 // Join the session to all channels. We obtain the channel
 // in two different ways, by reference and by name.
 ChannelManager channelMgr = AppContext.getChannelManager();

 // We were passed a reference to the first channel.
 channel1.get().join(session);

 // We look up the second channel by name.
 Channel channel2 = channelMgr.getChannel(HelloChannels.CHANNEL_2_NAME);
 channel2.join(session);
 }

 /**
 * Returns the session for this listener.
 *
 * @return the session for this listener
 */
 protected ClientSession getSession() {
 // We created the ref with a non-null session, so no need to check it.
 return sessionRef.get();
 }

 /**
 * {@inheritDoc}
 * <p>
 * Logs when data arrives from the client, and echoes the message back.
 */
 public void receivedMessage(ByteBuffer message) {
 ClientSession session = getSession();
 String sessionName = session.getName();

 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, "Message from {0}", sessionName);
 }
 session.send(message);
 }

42 04/24/08 Project Darkstar Server Application Tutorial

 /**
 * {@inheritDoc}
 * <p>
 * Logs when the client disconnects.
 */
 public void disconnected(boolean graceful) {
 ClientSession session = getSession();
 String grace = graceful ? "graceful" : "forced";
 logger.log(Level.INFO,
 "User {0} has logged out {1}",
 new Object[] { session.getName(), grace }
);
 }
}

HelloChannelsChannelListener is a simple skeletal listener that just logs what it receives.

HelloChannelsChannelListener
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.lesson6;

import java.io.Serializable;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.Channel;
import com.sun.sgs.app.ChannelListener;
import com.sun.sgs.app.ClientSession;
import java.nio.ByteBuffer;

/**
 * Simple example {@link ChannelListener} for the Project Darkstar Server.
 * <p>
 * Logs when a channel receives data.
 */
class HelloChannelsChannelListener
 implements Serializable, ChannelListener
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */

Project Darkstar Server Application Tutorial 04/24/08 43

 private static final Logger logger =
 Logger.getLogger(HelloChannelsChannelListener.class.getName());

 /**
 * {@inheritDoc}
 * <p>
 * Logs when data arrives on a channel. A typical listener would
 * examine the message to decide whether it should be discarded,
 * modified, or sent unchanged.
 */
 public void receivedMessage(Channel channel,
 ClientSession session,
 ByteBuffer message)
 {
 if (logger.isLoggable(Level.INFO)) {
 logger.log(Level.INFO,
 "Channel message from {0} on channel {1}",
 new Object[] { session.getName(), channel.getName() }
);
 }
 channel.send(session, message);
 }
}

Running HelloChannels
To try HelloChannels you need a client that will connect and allow you to talk on selected channels. One is
provided in Lesson 2 of the Project Darkstar Client Tutorial
(com.sun.sgs.tutorial.client.lesson2.HelloChannelClient in tutorial-client.jar).

44 04/24/08 Project Darkstar Server Application Tutorial

Conclusion
At this point you know all the basics of writing PDS applications. The applications you write using the PDS API
on a single-node system will operate unmodified in exactly the same way on a large-scale multiple-node PDS
production back end. In that environment they will scale out horizontally, handle failover, and be fault-tolerant.

There are, however, some best practices to follow to ensure optimal scalability for your application. Failing to
follow these can seriously limit how many users your application will be able to support at once.

Best Practices
● Do not design with bottleneck Managed Objects.

You can think of each Managed Object as an independent worker who can only do one task at a time.
When one task is modifying the state of a Managed Object, any other tasks that want to read or change
its state must wait. A Managed Object may have many readers at once if no one is writing to it, but any
writing turns it into a potential bottleneck. In general, a pattern of one writer and many readers is the
best configuration, although it is not always possible.

In the worst case, multiple lockers of the same objects will cause potential deadlock situations that are
computationally more expensive to resolve and can result in processing delays (additional latency).

● Avoid contending for object access.
Although the PDS will detect and resolve contentions for write access to objects between parallel events
such that your code never actually stops processing, this deadlock avoidance can significantly load the
CPU and slow response time to the users. In the worst case, contention can actually prevent parallel
processing, seriously impacting the scalability of your code.

A classic example of a deadlock is two combatants who have to modify both their own data and that of
their enemies when resolving an attack. If all the data is on a combatant Managed Object, then both
combat tasks need to lock both objects, typically in the opposite order, which is a formula for deadlock.
One solution is to divide the combatants' combat statistics into two groups, the ones they modify
themselves and the ones modified by an attacker, and store them on separate Managed Objects. The
combatant object would then retain Managed References to these objects, and only lock them as needed.

Another practical solution is partial serialization of the problem. This is especially appropriate if you
want the combatants attacks to be processed in a fixed order. Here you have a single “combat clock”
task (generally a repeating task) that processes in sequence all the attacks from all the combatants in a
given battle.

Not all contention situations are this easy to spot and design around. The PDS gives you feedback at
runtime as to what objects are deadlocking. Use this to tune your application.

● Give all serializable objects a fixed serialVersionUID.
The PDS uses Serialization internally. If you don't give your Serializable classes a serialVersionUID,
then any change to their public interface could invalidate the stored copies, leading to a need to delete
the entire Object Store. Giving them a fixed serialVersionUID will allow you to make “compatible
changes” without invalidating your existing store. (For what constitutes a compatible change, please see
the JDK™ documents on Serialization.)

● Avoid inner classes in Serializable objects.
Serialization of objects whose classes contain non-static inner classes gets complicated. It is best to

Project Darkstar Server Application Tutorial 04/24/08 45

avoid inner classes, including anonymous inner classes. If you must use them, the safest thing is to
declare them as static inner classes.13

● Do not create non-final static fields on Managed Objects.
The most important reason for this is that static fields exist only within the scope of a single VM, and a
PDS back end floats Managed Objects between many different VMs.

● Do not use the synchronized keyword in Managed Objects.
First, this is unnecessary in a PDS application. Synchronization is used to prevent contention over data
between multiple parallel threads of control. The PDS programming model handles this transparently for
you. Second, it won't work, since synchronization is relative to a single VM and a full PDS back-end
operates over many VM instances simultaneously. Finally, it causes interactions between tasks that can
defeat the system's deadlock-proofing feature and actually cause your code to lock up.

Any task that locks up for too long will be forced by the PDS to yield its control of Managed Objects
back to the system, but this is a last-ditch safety feature and will result in significant delays in code
execution.

● Do not make blocking I/O calls or stay in a loop for a long period.
The system contains the assumption that tasks are short-lived. If a task lives too long, it will be forcibly
terminated by the back end. The right way to do blocking I/O and the like is to create an extension
manager, do the blocking calls in it, and submit a task to the Task Manager to handle the results when
done. (Writing and installing custom managers will be covered in the Project Darkstar Server
Extension Manual.)

● Do not catch java.lang.Exception.
Instead, catch the explicit exceptions you are expecting. The PDS also uses exceptions to communicate
exceptional states to the execution environment. Although the system does its best to do the right thing
even if you hide these exceptions from it, it will operate more efficiently if you don't.

● Do not carry a non-transient Java reference on a Managed Object to another Managed Object.
Instead, use a Managed Reference. Any object that is referred to by a Java reference chain that starts at
the Managed Object is assumed to be part of the private state of that particular Managed Object. This
means that, while you may set two Java references on two different Managed Objects to the same Java
object during a task, they will each end up with their own copy of that object at the termination of the
task.

● Never try to save a Manager Instance on a non-transient field of a Managed Object.
This is because Manager References are only valid for the life of the task that fetched them. Manager
instances are not serializable objects. Any attempt to save a reference to one in your Managed Object
will cause the Data Manager to throw a non-retriable exception and the entire task to be abandoned.

● Carefully manage the life cycle of your Managed Objects.
Remember that the Object Store does no garbage collection for you. Managed Objects are “real objects”
in the simulation sense. They don't exist until explicitly created, exist in one and only one state at any
given time, and persist until explicitly destroyed. These are very good properties from a simulation
programming stance, but if you go wild creating Managed Objects and don't destroy them when they are
no longer useful, you can load down the Object Store with garbage and potentially impact performance.

Be aware that any PDS API call that accepts a Managed Object may create a Managed Reference to that
object. If this is the first time the Data Manager has been made aware of the Managed Object, this will
result in the Managed Object being added to the Object Store. It is still the developer's responsibility to

13 In terms of code generated, a static inner class is no different from an outer class, except that it's classname exists in the
name-space of its outer class.

46 04/24/08 Project Darkstar Server Application Tutorial

remove the Managed Object from the Object Store when it is no longer in use. For this reason, it is best
to avoid passing Managed Objects that your application is not explicitly managing into the PDS APIs.

Things Not Covered in This Tutorial
This tutorial is intended to introduce you to the fundamentals of coding a PDS application. Although we present
all basic uses of the standard managers, these managers have additional functions and capabilities not covered
here. Please see the Javadoc for those other functions.

As discussed, the list of managers in a given PDS back end is extensible. This tutorial does not cover writing or
using plug-in managers. For that, see the forthcoming document on PDS extensions.

Although we use PDS client programs in Lessons 5 and 6, this tutorial does not explain how those are written.
For those explanations, please see the Project Darkstar Client Tutorial.

Finally, for the sake of clarity, this tutorial shows very simple examples. For more complex patterns of PDS
usage, please see the community examples at www.projectdarkstar.com.

Project Darkstar Server Application Tutorial 04/24/08 47

Appendix A: SwordWorld Example Code

Sword World
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.swordworld;

import java.io.Serializable;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.AppListener;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.DataManager;
import com.sun.sgs.app.ManagedReference;

/**
 * A tiny sample MUD application for the Project Darkstar Server.
 * <p>
 * There is a Room. In the Room there is a Sword...
 */
public class SwordWorld
 implements Serializable, AppListener
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(SwordWorld.class.getName());

 /** A reference to the one-and-only {@linkplain SwordWorldRoom room}. */
 private ManagedReference<SwordWorldRoom> roomRef = null;

 /**
 * {@inheritDoc}
 * <p>

Project Darkstar Server Application Tutorial 04/24/08 49

 * Creates the world within the MUD.
 */
 public void initialize(Properties props) {
 logger.info("Initializing SwordWorld");

 // Create the Room
 SwordWorldRoom room =
 new SwordWorldRoom("Plain Room", "a nondescript room");

 // Create the Sword
 SwordWorldObject sword =
 new SwordWorldObject("Shiny Sword", "a shiny sword.");

 // Put the Sword to the Room
 room.addItem(sword);

 // Keep a reference to the Room
 setRoom(room);

 logger.info("SwordWorld Initialized");
 }

 /**
 * Gets the SwordWorld's One True Room.
 * <p>
 * @return the room for this {@code SwordWorld}
 */
 public SwordWorldRoom getRoom() {
 if (roomRef == null)
 return null;

 return roomRef.get();
 }

 /**
 * Sets the SwordWorld's One True Room to the given room.
 * <p>
 * @param room the room to set
 */
 public void setRoom(SwordWorldRoom room) {
 DataManager dataManager = AppContext.getDataManager();
 dataManager.markForUpdate(this);

 if (room == null) {
 roomRef = null;
 return;
 }

 roomRef = dataManager.createReference(room);
 }

 /**
 * {@inheritDoc}
 * <p>
 * Obtains the {@linkplain SwordWorldPlayer player} for this
 * {@linkplain ClientSession session}'s user, and puts the
 * player into the One True Room for this {@code SwordWorld}.
 */
 public ClientSessionListener loggedIn(ClientSession session) {
 logger.log(Level.INFO,
 "SwordWorld Client login: {0}", session.getName());

 // Delegate to a factory method on SwordWorldPlayer,

50 04/24/08 Project Darkstar Server Application Tutorial

 // since player management really belongs in that class.
 SwordWorldPlayer player = SwordWorldPlayer.loggedIn(session);

 // Put player in room
 player.enter(getRoom());

 // return player object as listener to this client session
 return player;
 }
}

Project Darkstar Server Application Tutorial 04/24/08 51

SwordWorldObject
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.swordworld;

import java.io.Serializable;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.ManagedObject;

/**
 * A {@code ManagedObject} that has a name and a description.
 */
public class SwordWorldObject
 implements Serializable, ManagedObject
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The name of this object. */
 private String name;

 /** The description of this object. */
 private String description;

 /**
 * Creates a new {@code SwordWorldObject} with the given {@code name}
 * and {@code description}.
 *
 * @param name the name of this object
 * @param description the description of this object
 */
 public SwordWorldObject(String name, String description) {
 this.name = name;
 this.description = description;
 }

 /**
 * Sets the name of this object.
 *
 * @param name the name of this object
 */
 public void setName(String name) {
 AppContext.getDataManager().markForUpdate(this);

52 04/24/08 Project Darkstar Server Application Tutorial

 this.name = name;
 }

 /**
 * Returns the name of this object.
 *
 * @return the name of this object
 */
 public String getName() {
 return name;
 }

 /**
 * Sets the description of this object.
 *
 * @param description the description of this object
 */
 public void setDescription(String description) {
 AppContext.getDataManager().markForUpdate(this);
 this.description = description;
 }

 /**
 * Returns the description of this object.
 *
 * @return the description of this object
 */
 public String getDescription() {
 return description;
 }

 /** {@inheritDoc} */
 @Override
 public String toString() {
 return getName();
 }
}

Project Darkstar Server Application Tutorial 04/24/08 53

SwordWorldRoom
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.swordworld;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.DataManager;
import com.sun.sgs.app.ManagedReference;

/**
 * Represents a room in the {@link SwordWorld} example MUD.
 */
public class SwordWorldRoom extends SwordWorldObject
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(SwordWorldRoom.class.getName());

 /** The set of items in this room. */
 private final Set<ManagedReference<SwordWorldObject>> items =
 new HashSet<ManagedReference<SwordWorldObject>>();

 /** The set of players in this room. */
 private final Set<ManagedReference<SwordWorldPlayer>> players =
 new HashSet<ManagedReference<SwordWorldPlayer>>();

 /**
 * Creates a new room with the given name and description, initially
 * empty of items and players.
 *
 * @param name the name of this room
 * @param description a description of this room

54 04/24/08 Project Darkstar Server Application Tutorial

 */
 public SwordWorldRoom(String name, String description) {
 super(name, description);
 }

 /**
 * Adds an item to this room.
 *
 * @param item the item to add to this room.
 * @return {@code true} if the item was added to the room
 */
 public boolean addItem(SwordWorldObject item) {
 logger.log(Level.INFO, "{0} placed in {1}",
 new Object[] { item, this });

 // NOTE: we can't directly save the item in the list, or
 // we'll end up with a local copy of the item. Instead, we
 // must save a ManagedReference to the item.

 DataManager dataManager = AppContext.getDataManager();
 dataManager.markForUpdate(this);

 return items.add(dataManager.createReference(item));
 }

 /**
 * Adds a player to this room.
 *
 * @param player the player to add
 * @return {@code true} if the player was added to the room
 */
 public boolean addPlayer(SwordWorldPlayer player) {
 logger.log(Level.INFO, "{0} enters {1}",
 new Object[] { player, this });

 DataManager dataManager = AppContext.getDataManager();
 dataManager.markForUpdate(this);

 return players.add(dataManager.createReference(player));
 }

 /**
 * Removes a player from this room.
 *
 * @param player the player to remove
 * @return {@code true} if the player was in the room
 */
 public boolean removePlayer(SwordWorldPlayer player) {
 logger.log(Level.INFO, "{0} leaves {1}",
 new Object[] { player, this });

 DataManager dataManager = AppContext.getDataManager();
 dataManager.markForUpdate(this);

 return players.remove(dataManager.createReference(player));
 }

 /**
 * Returns a description of what the given player sees in this room.
 *
 * @param looker the player looking in this room
 * @return a description of what the given player sees in this room
 */

Project Darkstar Server Application Tutorial 04/24/08 55

 public String look(SwordWorldPlayer looker) {
 logger.log(Level.INFO, "{0} looks at {1}",
 new Object[] { looker, this });

 StringBuilder output = new StringBuilder();
 output.append("You are in ").append(getDescription()).append(".\n");

 List<SwordWorldPlayer> otherPlayers =
 getPlayersExcluding(looker);

 if (! otherPlayers.isEmpty()) {
 output.append("Also in here are ");
 appendPrettyList(output, otherPlayers);
 output.append(".\n");
 }

 if (! items.isEmpty()) {
 output.append("On the floor you see:\n");
 for (ManagedReference<SwordWorldObject> itemRef : items) {
 SwordWorldObject item = itemRef.get();
 output.append(item.getDescription()).append('\n');
 }
 }

 return output.toString();
 }

 /**
 * Appends the names of the {@code SwordWorldObject}s in the list
 * to the builder, separated by commas, with an "and" before the final
 * item.
 *
 * @param builder the {@code StringBuilder} to append to
 * @param list the list of items to format
 */
 private void appendPrettyList(StringBuilder builder,
 List<? extends SwordWorldObject> list)
 {
 if (list.isEmpty())
 return;

 int lastIndex = list.size() - 1;
 SwordWorldObject last = list.get(lastIndex);

 Iterator<? extends SwordWorldObject> it =
 list.subList(0, lastIndex).iterator();
 if (it.hasNext()) {
 SwordWorldObject other = it.next();
 builder.append(other.getName());
 while (it.hasNext()) {
 other = it.next();
 builder.append(" ,");
 builder.append(other.getName());
 }
 builder.append(" and ");
 }
 builder.append(last.getName());
 }

 /**
 * Returns a list of players in this room excluding the given
 * player.
 *

56 04/24/08 Project Darkstar Server Application Tutorial

 * @param player the player to exclude
 * @return the list of players
 */
 private List<SwordWorldPlayer>
 getPlayersExcluding(SwordWorldPlayer player)
 {
 if (players.isEmpty())
 return Collections.emptyList();

 ArrayList<SwordWorldPlayer> otherPlayers =
 new ArrayList<SwordWorldPlayer>(players.size());

 for (ManagedReference<SwordWorldPlayer> playerRef : players) {
 SwordWorldPlayer other = playerRef.get();
 if (! player.equals(other))
 otherPlayers.add(other);
 }

 return Collections.unmodifiableList(otherPlayers);
 }
}

Project Darkstar Server Application Tutorial 04/24/08 57

SwordWorldPlayer
/*
 * Copyright 2007-2008 Sun Microsystems, Inc.
 *
 * This file is part of Project Darkstar Server.
 *
 * Project Darkstar Server is free software: you can redistribute it
 * and/or modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation and
 * distributed hereunder to you.
 *
 * Project Darkstar Server is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package com.sun.sgs.tutorial.server.swordworld;

import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.sun.sgs.app.AppContext;
import com.sun.sgs.app.ClientSession;
import com.sun.sgs.app.ClientSessionListener;
import com.sun.sgs.app.DataManager;
import com.sun.sgs.app.ManagedReference;
import com.sun.sgs.app.NameNotBoundException;

/**
 * Represents a player in the {@link SwordWorld} example MUD.
 */
public class SwordWorldPlayer
 extends SwordWorldObject
 implements ClientSessionListener
{
 /** The version of the serialized form of this class. */
 private static final long serialVersionUID = 1L;

 /** The {@link Logger} for this class. */
 private static final Logger logger =
 Logger.getLogger(SwordWorldPlayer.class.getName());

 /** The message encoding. */
 public static final String MESSAGE_CHARSET = "UTF-8";

 /** The prefix for player bindings in the {@code DataManager}. */
 protected static final String PLAYER_BIND_PREFIX = "Player.";

 /** The {@code ClientSession} for this player, or null if logged out. */
 private ManagedReference<ClientSession> currentSessionRef = null;

 /** The {@link SwordWorldRoom} this player is in, or null if none. */
 private ManagedReference<SwordWorldRoom> currentRoomRef = null;

 /**

58 04/24/08 Project Darkstar Server Application Tutorial

 * Find or create the player object for the given session, and mark
 * the player as logged in on that session.
 *
 * @param session which session to find or create a player for
 * @return a player for the given session
 */
 public static SwordWorldPlayer loggedIn(ClientSession session) {
 String playerBinding = PLAYER_BIND_PREFIX + session.getName();

 // try to find player object, if non existent then create
 DataManager dataMgr = AppContext.getDataManager();
 SwordWorldPlayer player;

 try {
 player = (SwordWorldPlayer) dataMgr.getBinding(playerBinding);
 } catch (NameNotBoundException ex) {
 // this is a new player
 player = new SwordWorldPlayer(playerBinding);
 logger.log(Level.INFO, "New player created: {0}", player);
 dataMgr.setBinding(playerBinding, player);
 }
 player.setSession(session);
 return player;
 }

 /**
 * Creates a new {@code SwordWorldPlayer} with the given name.
 *
 * @param name the name of this player
 */
 protected SwordWorldPlayer(String name) {
 super(name, "Seeker of the Sword");
 }

 /**
 * Returns the session for this listener.
 *
 * @return the session for this listener
 */
 protected ClientSession getSession() {
 if (currentSessionRef == null)
 return null;

 return currentSessionRef.get();
 }

 /**
 * Mark this player as logged in on the given session.
 *
 * @param session the session this player is logged in on
 */
 protected void setSession(ClientSession session) {
 DataManager dataMgr = AppContext.getDataManager();
 dataMgr.markForUpdate(this);

 currentSessionRef = dataMgr.createReference(session);

 logger.log(Level.INFO,
 "Set session for {0} to {1}",
 new Object[] { this, session });
 }

 /**

Project Darkstar Server Application Tutorial 04/24/08 59

 * Handles a player entering a room.
 *
 * @param room the room for this player to enter
 */
 public void enter(SwordWorldRoom room) {
 logger.log(Level.INFO, "{0} enters {1}",
 new Object[] { this, room }
);
 room.addPlayer(this);
 setRoom(room);
 }

 /** {@inheritDoc} */
 public void receivedMessage(ByteBuffer message) {
 String command = decodeString(message);

 logger.log(Level.INFO,
 "{0} received command: {1}",
 new Object[] { this, command }
);

 if (command.equalsIgnoreCase("look")) {
 String reply = getRoom().look(this);
 getSession().send(encodeString(reply));
 } else {
 logger.log(Level.WARNING,
 "{0} unknown command: {1}",
 new Object[] { this, command }
);
 // We could disconnect the rogue player at this point.
 //currentSession.disconnect();
 }
 }

 /** {@inheritDoc} */
 public void disconnected(boolean graceful) {
 setSession(null);
 logger.log(Level.INFO, "Disconnected: {0}", this);
 getRoom().removePlayer(this);
 setRoom(null);
 }

 /**
 * Returns the room this player is currently in, or {@code null} if
 * this player is not in a room.
 * <p>
 * @return the room this player is currently in, or {@code null}
 */
 protected SwordWorldRoom getRoom() {
 if (currentRoomRef == null)
 return null;

 return currentRoomRef.get();
 }

 /**
 * Sets the room this player is currently in. If the room given
 * is null, marks the player as not in any room.
 * <p>
 * @param room the room this player should be in, or {@code null}
 */
 protected void setRoom(SwordWorldRoom room) {
 DataManager dataManager = AppContext.getDataManager();

60 04/24/08 Project Darkstar Server Application Tutorial

 dataManager.markForUpdate(this);

 if (room == null) {
 currentRoomRef = null;
 return;
 }

 currentRoomRef = dataManager.createReference(room);
 }

 /** {@inheritDoc} */
 @Override
 public String toString() {
 StringBuilder buf = new StringBuilder(getName());
 buf.append('@');
 if (getSession() == null) {
 buf.append("null");
 } else {
 buf.append(currentSessionRef.getId());
 }
 return buf.toString();
 }

 /**
 * Encodes a {@code String} into a {@link ByteBuffer}.
 *
 * @param s the string to encode
 * @return the {@code ByteBuffer} which encodes the given string
 */
 protected static ByteBuffer encodeString(String s) {
 try {
 return ByteBuffer.wrap(s.getBytes(MESSAGE_CHARSET));
 } catch (UnsupportedEncodingException e) {
 throw new Error("Required character set " + MESSAGE_CHARSET +
 " not found", e);
 }
 }

 /**
 * Decodes a message into a {@code String}.
 *
 * @param message the message to decode
 * @return the decoded string
 */
 protected static String decodeString(ByteBuffer message) {
 try {
 byte[] bytes = new byte[message.remaining()];
 message.get(bytes);
 return new String(bytes, MESSAGE_CHARSET);
 } catch (UnsupportedEncodingException e) {
 throw new Error("Required character set " + MESSAGE_CHARSET +
 " not found", e);
 }
 }
}

Project Darkstar Server Application Tutorial 04/24/08 61

	Introduction
	Coding Project Darkstar Server Applications
	Goals and Philosophy
	Approach to Execution
	Tasks and Managers
	Task Ordering
	Task Lifetime

	Managed Objects and Managed References
	Accessing Managed Objects through Managed References
	Designing Your Managed Objects
	The Player Managed Object
	The AppListener

	Locating the Server API Classes
	System Classes and Interfaces
	Task Manager Classes and Interfaces
	Data Manager Classes and Interfaces
	Channel Manager Classes and Interfaces

	Lesson One: Hello World!
	Coding HelloWorld
	HelloWorld

	Running HelloWorld
	Rerunning HelloWorld

	Lesson Two: Hello Logger!
	Coding HelloLogger
	HelloLogger

	The Logging Properties File

	Lesson 3: Tasks, Managers, and Hello Timer!
	Tasks
	Managers
	Coding HelloTimer
	HelloTimer

	Lesson 4: Hello Persistence!
	Coding HelloPersistence
	HelloPersistence

	Coding HelloPersistence2
	HelloPersistence2
	TrivialTimedTask

	Coding HelloPersistence3
	HelloPersistence3

	Lesson 5: Hello User!
	Knowing When a User Logs In
	HelloUser

	Direct Communication
	HelloUser2
	HelloUserSessionListener
	HelloEchoSessionListener

	Running the Examples

	Lesson 6: Hello Channels!
	Coding HelloChannels
	HelloChannels
	HelloChannelsSessionListener
	HelloChannelsChannelListener

	Running HelloChannels

	Conclusion
	Best Practices
	Things Not Covered in This Tutorial

	Appendix A: SwordWorld Example Code
	Sword World
	SwordWorldObject
	SwordWorldRoom
	SwordWorldPlayer

