
Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With
Open Source Technologies

Project Darkstar:
A Case Study in Developing Games with

Project Darkstar

Owen Kellett
Sun Microsystems

Project Darkstar Staff Engineer
September 15, 2008

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Overview

• What is Project Darkstar?

• Motivations for its design

• Problems that it solves

• Example application: Project Snowman

• Overview of game design

• Implementation with Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With
Open Source Technologies

What is Project
Darkstar?

??

Hmm...

(Image From Star Trek: Generations)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Darkstar Overview

• Project Darkstar is a software platform that simplifies the
development of multiplayer online games

• Written entirely in Java

• Automatically handles many infrastructure requirements on
the server side of such games

• Communications

• Thread management

• Contention management

• Persistence

• Automatic Scaling

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Network

Client

Client

Client

Client

Server

(Useful Diagram)

•Goal: Write a networked multiplayer game

•Problem: Where do I start?

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Client Server

?

•Observation: Most games share the same
coarse grained tasks between the client
and server

•What are they?

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Server

Authentication

Success? Failure?

Login Request

Start Game

Client

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Server

Authentication

Success? Failure?

Login Request

Start Game

Game Action Messages

Server
Game
State

(Absolute)

Process Messages

Result MessagesProcess Results

Client
Game
State

Client

C

C

C Other Clients

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Server

Authentication

Success? Failure?

Login Request

Start Game

Game Action Messages

Server
Game
State

(Absolute)

Process Messages

Result MessagesProcess Results

Client
Game
State

Process Disconnects

Logout/Disconnect

Process Disconnects

Client

C

C

C Other Clients

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 1: Communications
• Just setting up a system to

handle logins and
messages is hard work

• Network Programming?

• Sockets? RMI?

• I don't want to do that, I
want to write a Game!

Get Communications back online!

I can't sir. The rmiregistry
is down.

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 1: Communications
• Project Darkstar abstracts away ALL Network Programming

mechanics

• Provides intuitive API to handle all of the coarse grained
behavior of the communication between client and server
shown previously

• How easy is it? Three interfaces on the server side:

• AppListener (initialization and logins)

• ClientSessionListener (receiving messages)

• ClientSession (sending messages)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Server

Success? Failure?

Login Request
public void initialize(Properties props)
ClientSessionListener loggedIn(ClientSession s)

ClientSessionListener

AppListener

Result Messages

ClientSession.send(ByteBuffer message)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Server

Game Action Messages
public void receivedMessage(ByteBuffer message)

public void disconnected(boolean graceful)

Logout/Disconnect

ClientSessionListener

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Server

Success? Failure?

Login Request

Game Action Messages
public void receivedMessage(ByteBuffer message)

Result Messages

public void disconnected(boolean graceful)

Logout/Disconnect

public void initialize(Properties props)
ClientSessionListener loggedIn(ClientSession s)

ClientSessionListener

AppListener

ClientSession.send(ByteBuffer message)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 1: Communications
• What about the client?

• Language agnostic

• A client API can be easily implemented in any language by
conforming to the wire protocol

• Our Java implementation? One class and one interface:

• SimpleClient (logins/logouts and sending messages)

• SimpleClientListener (receiving messages and login
success/failure notifications)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Login Request

Game Action Messages

Logout/Disconnect

Client
SimpleClient.login(Properties props)

SimpleClient.logout()

SimpleClient.send(ByteBuffer message)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Success? Failure?

Result Messages

Client

public void receivedMessage(ByteBuffer message)

public void disconnected(boolean graceful,
String reason)

public void loggedIn()
public void loginFailed(String reason)

SimpleClientListener

Logout/Disconnect

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Success? Failure?

Login Request

Game Action Messages

Result Messages

Logout/Disconnect

Client

public void receivedMessage(ByteBuffer message)

public void disconnected(boolean graceful,
String reason)

public void loggedIn()
public void loginFailed(String reason)

SimpleClientListener

SimpleClient.login(Properties props)

SimpleClient.logout()

SimpleClient.send(ByteBuffer message)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 2: Multi-Client Communications

• What about
communicating
messages to multiple
clients?

• Project Darkstar
provides a mechanism
that will batch send
messages to groups of
clients

• Referred to as
Channels

(Image From Star Trek: TNG Parallels)

Captain, we're receiving
285,000 hails

-Lt. Wesley Crusher

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 2: Multi-Client Communications

• Example scenarios:

• Multiple, isolated games

• Separate teams with isolated communications or chat
messages

• You enter a dungeon and now need to receive messages
about what's going on

• etc..

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 2: Multi-Client Communications

• AppContext.getChannelManager();

• ChannelManager (acquired directly from the PDS stack via the
static AppContext class)

• createChannel(..);

• getChannel(..);

• Provides mechanisms for creating and retrieving Channels

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 2: Multi-Client Communications

• Server side: Two interfaces.

• Channel (object acquired from Project Darkstar stack and
used to add/remove clients and send messages to all clients
on Channel)

• ChannelListener (processes incoming messages on a
channel)

• Client side: Two interfaces.

• ClientChannel (used to send messages to all clients on the
channel)

• ClientChannelListener (processes incoming messages on
a channel)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 3: Thread Management

• How can we efficiently
process messages in
parallel?

• One thread per client? One
thread per game? Thread
pools?

• This sounds tricky, can
Project Darkstar do this for
me? Yes!

(Image From Star Trek: TNG The Best of Both Worlds)

Fire all weapons!

Sorry sir. We've hit the
max thread limit. Only
one weapon at a time.

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 3: Thread Management

• Project Darkstar is a multi-threaded environment under the
hood

• Implementing message processing game logic code appears
single threaded to the developer

• Each incoming message is run in a separate task

• AppListener.loggedIn(..)

• ClientSessionListener.receivedMessage(..)

• ClientSessionListener.disconnected(..)

• ChannelListener.receivedMessage(..)

• Tasks are queued up and run by a configurable pool of threads

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 3: Thread Management

• AppContext.getTaskManager();

• TaskManager (acquired directly from the Project Darkstar
stack via the static AppContext class)

• schedulePeriodicTask(..);

• scheduleTask(..);

• Provides mechanisms for scheduling your own tasks

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 4: Data Consistency

• With multiple threads of
work operating on the same
data, we need to manage
potential data consistency
errors.

• Project Darkstar
automatically runs every
task in an ACID transaction

• No explicit synchronization
code required!

(Image From Star Trek: DS9 Doctor Bashir, I Presume)

Duplication bug huh?
Remember what I said about

performing all tasks in a
transactional context?

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 4: Data Consistency

• AppContext.getDataManager();

• DataManager (acquired directly from the Project Darkstar
stack via the static AppContext class)

• ManagedObject, Serializable – any shared object must
implement these marker interfaces

• ManagedObjects are managed by the DataManager

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 4: Data Consistency

Data Store
ManagedObject

ManagedObject

ManagedObject

ManagedObject

DataManager

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 4: Data Consistency

• Two ways to save an object into the Data Store
(both DataManager methods):

• <T> ManagedReference<T> createReference(T object);

• void setBinding(String name, Object object);

Data Store
ManagedObject

ManagedObject

ManagedObject

ManagedObject

DataManager

ManagedReference

Name Binding

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

• Three ways to retrieve an object from the Data
Store:

• From a ManagedReference

• T get();

• T getForUpdate();

• Directly from the DataManager

• ManagedObject getBinding(String name);

Problem 4: Data Consistency

Data Store
ManagedObject

ManagedObject

ManagedObject

ManagedObject

DataManager

ManagedReference

Name Binding

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

• Two ways to notify the DataManager that an
object is to be modified:

• From a ManagedReference

• T getForUpdate();

• Directly from the DataManager

• void markForUpdate(Object object);

Problem 4: Data Consistency

Data Store
ManagedObject

ManagedObject

ManagedObject

ManagedObject

DataManager

ManagedReference

Name Binding

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 5: Persistence

• When developing large
virtual worlds, it is desirable
to protect against server
crashes and other
unrecoverable problems

• Project Darkstar's default
Data Store is implemented
as a Berkeley DB database

• All ManagedObjects are
automatically persisted to
disk after every transaction!

I really wish we only
had to play this

poker game once.

Sorry no data persistence.
Every time the server crashes

we have to start over.

(Image From Star Trek: TNG Cause and Effect)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 6: Scalability

• Large virtual worlds means
a lot of connected players, a
lot of game state
information, and a lot of
server side processing.

• Current industry solution:
zones and shards

• Project Darkstar supports
multi-node server
deployments using the
same game code

(Image From Star Trek: DS9 What You Leave Behind)

Are you sure
the server can
handle this?

Not Really

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Problem 6: Scalability

• Difficult problems in this
space

• Distributed data storage

• Automatic load balancing

• Intelligent load distribution

• Fault-tolerance and failover

• Goal: near-linear scaling

• Current Reality: fully
functional multi-node
system but expected
performance scaling not
there yet

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Recap So Far

Project Darkstar Core Services

DataManagerTaskManagerChannelManager

AppContext

ChannelListenerClientSessionListenerAppListener

lo
g
g
e
d
In

(.
.)

re
ce

iv
e
d
M

e
ss

a
g
e
(.

.)

d
is

co
n
n
e
ct

e
d
(.

.)

re
ce

iv
e
d
M

e
ss

a
g
e
(.

.)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Recap So Far
• Network Communications

handled automatically

• Multi-client communications
natively supported

• Thread management and
data consistency is
transparent

• Persistence is automatic

• Supports scalable
deployments with minimal
additional effort

• Allows developers to focus
solely on game logic

We can't get this game to work!

It's just logic
Captain.

(Image From Star Trek: TOS This Side of Paradise)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example: Project Snowman

• Capture the Flag style snowball fight

• Rules:

• Two teams of Snowmen players

• Object of game is to retrieve opponents flag and bring it
back to your base

• Snowmen can throw snowballs at eachother

• If a snowman gets hit with a snowball, snowman gets bigger
and slower, but increases its attack range

• After so many hits, a snowman will fall over, drop the flag (if
holding it), and respawn

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer

Player Queue

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

logins

SnowmanPlayer

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer

Player Queue

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

logins

SnowmanPlayer

SnowmanGame

SnowmanPlayer

SnowmanPlayer

Flag

Flag

SnowmanGame

SnowmanPlayer

SnowmanPlayer

Flag

Flag

Matchmaker

Pull players
off queue

Initialize
game

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer

Player Queue

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

logins

SnowmanPlayer

SnowmanGame

SnowmanPlayer

SnowmanPlayer

Flag

Flag

SnowmanGame

SnowmanPlayer

SnowmanPlayer

Flag

Flag

Matchmaker

Pull players
off queue

Initialize
game

Game messages

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer
(AppListener)

Player Queue

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

logins

SnowmanPlayer

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

(ManagedObject)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer Pseudo-code
public class SnowmanServer implements AppListener, ManagedObject, Serializable {
 private ManagedReference<Queue<ManagedReference<SnowmanPlayer>>> queueRef;
 ...
 public void initialize(Properties props) {
 ...
 //create the waiting player queue
 Queue<ManagedReference<SnowmanPlayer>> queue = INITIALIZE QUEUE;
 //save the queue into the data store by creating a reference
 queueRef = AppContext.getDataManager().createReference(queue);
 ...
 //create self scheduling MatchmakerTask
 AppContext.getTaskManager().scheduleTask(new MatchmakerTask(.., queueRef, ..));
 }

 public ClientSessionListener loggedIn(ClientSession session) {
 //create the player
 SnowmanPlayerListener playerListener =
 new SnowmanPlayerListener(.., session, ..);

 //retrieve the queue from the data store and add the player
 queueRef.get().add(playerListener.getPlayerRef());

 return playerListener;
 }
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanPlayerListener Pseudo-code
public class SnowmanPlayerListener implements ClientSessionListener, Serializable {
 ...
 private final ManagedReference<SnowmanPlayer> playerRef;
 ...
 public void receivedMessage(ByteBuffer message) {
 //retrieve the player from the data store
 SnowmanPlayer player = playerRef.get();

 PROCESSMESSAGE(player, message);
 }

 public void disconnected(boolean graceful) {
 try {
 //retrieve the player from the data store for updating
 SnowmanPlayer player = playerRef.getForUpdate();

 if (player.getGame() != null)
 player.getGame().removePlayer(player);

 //remove the player from the data store
 AppContext.getDataManager().removeObject(player);
 } catch (ObjectNotFoundException alreadyDisconnected) {
 HANDLE EXCEPTION;
 }
 }
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer
(AppListener)

Player Queue

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

logins

SnowmanPlayer

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

MatchmakerTask

Initialize
game

Pull players
off queue

(ManagedObject)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

SnowmanServer
(AppListener)

Player Queue

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

SnowmanPlayer

logins

SnowmanPlayer

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

SnowmanGame

SnowmanPlayer

SnowmanPlayer

Flag

Flag

MatchmakerTask

Initialize
game

Pull players
off queue

SnowmanPlayerListener
(ClientSessionListener)

SnowmanPlayerListener
(ClientSessionListener)

Game messages

(ManagedObject)

Game Channel

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

MatchmakerTask Pseudo-code
public class MatchmakerTask implements Task, Serializable {
 private List<ManagedReference<SnowmanPlayer>> waitingPlayers;
 private ManagedReference<Queue<ManagedReference<SnowmanPlayer>>> queueRef;
 ...
 public void run() throws Exception {
 boolean playersFound = false;
 for(int i = 0; i < numPlayersPerGame; i++) {
 //pull players off of queue
 ManagedReference<SnowmanPlayer> nextPlayer = queueRef.get().poll();
 if(nextPlayer != null) {
 playersFound = true;
 waitingPlayers.add(nextPlayer);
 }
 if(waitingPlayers.size() == numPlayersPerGame) {
 startGame(waitingPlayers); //create game with players and add to data store
 break;
 }
 }

 //reschedule task for the next cycle
 if(playersFound)
 AppContext.getTaskManager().scheduleTask(this);
 else
 AppContext.getTaskManager().scheduleTask(this, POLLINGINTERVAL);
 }
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Status

• Complete login and matchmaking system
with minimal effort

• What's next?

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Message Protocol

• We need to define what messages the client can
send, what messages the server can send, and how
each message is processed

This is proper protocol right?

(Image From Star Trek: ENT Kir'Shara)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Message Protocol

• We need to define what messages the client can
send, what messages the server can send, and how
each message is processed

• Project Darkstar allows us to think about this, and
this alone:

• No network communications code

• No thread management

• No synchronization required during message
processing

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Message Protocol

Client Messages
TYPE (payload)
 - Description...

MOVEME (float startX, float startY, float endX, float endY)
 - A MOVEME message is sent by the client with its current believed start
 position and its intended target move position

ATTACK (int targetId, float x, float y)
 - An ATTACK message is sent by the client with its intended target
 snowman id and its current believed position

GETFLAG (int flagId, float x, float y)
 - A GETFLAG message is sent by the client with its intended target flag
 id and its current believed position

SCORE (float x, float y)
 - A SCORE message is sent by the client its current believed position

• Each message is delivered as a ByteBuffer. The first byte in the buffer represents the
message type. The remaining payload and number of bytes are determined by the
message type and parsed out accordingly.

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Message Protocol

Server Messages
NEWGAME (int myId, String mapName)
STARTGAME ()
ENDGAME (enum endState)
ADDMOB (int id, float x, float y, enum type, enum team)
REMOVEMOB (int id)
MOVEMOB (int id, float startX, float startY, float endX, float endY)
STOPMOB (int id, float x, float y)
ATTACHOBJ (int sourceId, int targetId)
ATTACKED (int sourceId, int targetId, int hp)
RESPAWN (int id, float x, float y)

• Each message is delivered as a ByteBuffer. The first byte in the buffer represents the
message type. The remaining payload and number of bytes are determined by the
message type and parsed out accordingly.

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Message Protocol

Common Messages
READY ()

• Each message is delivered as a ByteBuffer. The first byte in the buffer represents the
message type. The remaining payload and number of bytes are determined by the
message type and parsed out accordingly.

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
public class SnowmanPlayerListener implements ClientSessionListener, Serializable {
 ...
 private final ManagedReference<SnowmanPlayer> playerRef;
 ...
 public void receivedMessage(ByteBuffer message) {
 //retrieve the player from the data store
 SnowmanPlayer player = playerRef.get();

 PROCESSMESSAGE(player, message);
 }

 public void disconnected(boolean graceful) {
 try {
 //retrieve the player from the data store for updating
 SnowmanPlayer player = playerRef.getForUpdate();

 if (player.getGame() != null)
 player.getGame().removePlayer(player);

 //remove the player from the data store
 AppContext.getDataManager().removeObject(player);
 } catch (ObjectNotFoundException alreadyDisconnected) {
 HANDLE EXCEPTION;
 }
 }
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

public class SnowmanPlayerListener implements ClientSessionListener, Serializable {
 ...
 private final ManagedReference<SnowmanPlayer> playerRef;
 ...
 public void receivedMessage(ByteBuffer message) {
 //retrieve the player from the data store
 SnowmanPlayer player = playerRef.get();

 PROCESSMESSAGE(player, message);
 }

 public void disconnected(boolean graceful) {
 try {
 //retrieve the player from the data store for updating
 SnowmanPlayer player = playerRef.getForUpdate();

 if (player.getGame() != null)
 player.getGame().removePlayer(player);

 //remove the player from the data store
 AppContext.getDataManager().removeObject(player);
 } catch (ObjectNotFoundException alreadyDisconnected) {
 HANDLE EXCEPTION;
 }
 }
}

Example Message Processor: GETFLAG

➔Application code parses incoming message
(ByteBuffer)

➔Recognizes message as a GETFLAG
message

➔Extracts expected parameters from
message (flagId, x, y)

➔Calls getFlag(long now, int flagId,
float x, float y)on the player
ManagedObject

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
• When a GETFLAG message is received, the

getFlag(long now, int flagId, float x, float y)
method is called on the associated SnowmanPlayer object.

• GETFLAG game logic:

IF SnowmanPlayer is DEAD
 NO-OP

GET the flag with id flagId.
IF there is no flag OR
 the flag is my team color OR
 the flag is already held
 NO-OP

IF x,y is a valid start position AND
 x,y is within grab range of the flag
 STOP movement of the SnowmanPlayer
 GRAB the flag
 NOTIFY all other clients with
 ATTACHOBJ message

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
protected void getFlag(long now, int flagID, float x, float y) {
 IF SnowmanPlayer is DEAD
 NO-OP

 GET the flag with id flagId.
 IF there is no flag OR
 the flag is my team color OR
 the flag is already held
 NO-OP

 IF x,y is a valid start position AND
 x,y is within grab range of the flag
 STOP movement of the SnowmanPlayer
 GRAB the flag
 NOTIFY all other clients with
 ATTACHOBJ message
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
protected void getFlag(long now, int flagID, float x, float y) {
 if(state == PlayerState.DEAD)
 return;

 GET the flag with id flagId.
 IF there is no flag OR
 the flag is my team color OR
 the flag is already held
 NO-OP

 IF x,y is a valid start position AND
 x,y is within grab range of the flag
 STOP movement of the SnowmanPlayer
 GRAB the flag
 NOTIFY all other clients with
 ATTACHOBJ message
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
protected void getFlag(long now, int flagID, float x, float y) {
 if(state == PlayerState.DEAD)
 return;

 SnowmanFlag flag = gameRef.get().getFlag(flagID);
 if(flag == null || flag.getTeamColor() == teamColor ||
 flag.isHeld() || holdingFlagRef != null)
 return;

 IF x,y is a valid start position AND
 x,y is within grab range of the flag
 STOP movement of the SnowmanPlayer
 GRAB the flag
 NOTIFY all other clients with
 ATTACHOBJ message
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
protected void getFlag(long now, int flagID, float x, float y) {
 if(state == PlayerState.DEAD)
 return;

 SnowmanFlag flag = gameRef.get().getFlag(flagID);
 if(flag == null || flag.getTeamColor() == teamColor ||
 flag.isHeld() || holdingFlagRef != null)
 return;

 Coordinate expectedPosition = this.getExpectedPositionAtTime(now);
 if(checkTolerance(expectedPosition.getX(), expectedPosition.getY(),
 x, y, POSITIONTOLERANCESQD) &&
 checkTolerance(x, y, flag.getX(), flag.getY(),
 GRABRANGESQD)) {
 STOP movement of the SnowmanPlayer
 GRAB the flag
 NOTIFY all other clients with
 ATTACHOBJ message
 }
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Example Message Processor: GETFLAG
protected void getFlag(long now, int flagID, float x, float y) {
 if(state == PlayerState.DEAD)
 return;

 SnowmanFlag flag = gameRef.get().getFlag(flagID);
 if(flag == null || flag.getTeamColor() == teamColor ||
 flag.isHeld() || holdingFlagRef != null)
 return;

 Coordinate expectedPosition = this.getExpectedPositionAtTime(now);
 if(checkTolerance(expectedPosition.getX(), expectedPosition.getY(),
 x, y, POSITIONTOLERANCESQD) &&
 checkTolerance(x, y, flag.getX(), flag.getY(),
 GRABRANGESQD)) {
 appContext.getDataManager().markForUpdate(this);
 appContext.getDataManager().markForUpdate(flag);

 this.timestamp = now;
 this.setLocation(x, y);

 flag.setHeldBy(this);
 holdingFlagRef = AppContext.getDataManager().createReference(flag);
 channel.send(ServerMessages.createAttachObjPkt(flagID, id));
 }
}

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

protected void getFlag(long now, int flagID, float x, float y) {
 if(state == PlayerState.DEAD)
 return;

 SnowmanFlag flag = gameRef.get().getFlag(flagID);
 if(flag == null || flag.getTeamColor() == teamColor ||
 flag.isHeld() || holdingFlagRef != null)
 return;

 Coordinate expectedPosition = this.getExpectedPositionAtTime(now);
 if(checkTolerance(expectedPosition.getX(), expectedPosition.getY(),
 x, y, POSITIONTOLERANCESQD) &&
 checkTolerance(x, y, flag.getX(), flag.getY(),
 GRABRANGESQD)) {
 appContext.getDataManager().markForUpdate(this);
 appContext.getDataManager().markForUpdate(flag);

 this.timestamp = now;
 this.setLocation(x, y);

 flag.setHeldBy(this);
 holdingFlagRef = appContext.getDataManager().createReference(flag);
 channel.send(ServerMessages.createAttachObjPkt(flagID, id));
 }
}

Scenario: GETFLAG (Multiple Players)

protected void getFlag(long now, int flagID, float x, float y) {
 if(state == PlayerState.DEAD)
 return;

 SnowmanFlag flag = gameRef.get().getFlag(flagID);
 if(flag == null || flag.getTeamColor() == teamColor ||
 flag.isHeld() || holdingFlagRef != null)
 return;

 Coordinate expectedPosition = this.getExpectedPositionAtTime(now);
 if(checkTolerance(expectedPosition.getX(), expectedPosition.getY(),
 x, y, POSITIONTOLERANCESQD) &&
 checkTolerance(x, y, flag.getX(), flag.getY(),
 GRABRANGESQD)) {
 appContext.getDataManager().markForUpdate(this);
 appContext.getDataManager().markForUpdate(flag);

 this.timestamp = now;
 this.setLocation(x, y);

 flag.setHeldBy(this);
 holdingFlagRef = appContext.getDataManager().createReference(flag);
 channel.send(ServerMessages.createAttachObjPkt(flagID, id));
 }
}

• Contention handled
automatically

• Object locking and
transaction rollback/retry
are transparent

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Writing a game with Project Darkstar

1. Design game world state with POJOs appropriately
using ManagedObject and ManagedReference

2. Handle logins and disconnects by implementing
appropriate API methods

3. Define message protocol for your game

4. Implement message parsing behavior

5. Implement handlers for each message, interacting
with Project Darkstar's Manager objects

6. That's it!

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Final Recap
• Project Darkstar allows

developers to focus almost
exclusively on game logic

• Strips away mechanics of
burdensome requirements

• Communications

• Thread management

• Contention management

• Persistence

• Automatic Scaling

All of this for free?!
NICE!

(Image From Star Trek: Generations)

Project Darkstar

Sponsored by Sun Microsystems, Inc. - 2008 Austin Game Developers’ Conference

Developing Games With Open Source Technologies

Project Snowman: Demo
• Checkout a live, playable demo of the game at booth 422

• http://www.projectdarkstar.com

• http://project-snowman.dev.java.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

