PROJEGT DARKGTAR

Coding Project Darkstar Games:

Practical Concepts and
Techniques

Jeff Kesselman
Chief Instigator, Project Darkstar
Sun Microsystems Laboratories

Austin Game Conference - 2007

PROJEGT DARKGTAR

What is Project Darkstar?
 Hopefully you heard this already

* Massively Scalable SW Server Technology for Online
Games

 Dynamic Load Balancing Across Many Machines
« Enterprise Class Performance & Reliability
 Simple Programming Model

 Shardless Architecture

* Open Source

Austin Game Conference - 2007

PROJEGT DARKGTAR

What will be covered

* Project Darkstar coding environment
* Basic Project Darkstar server app patterns
 Examples from DarkMUD

Austin Game Conference - 2007

PROJEGT DARKGTAR

Project Darkstar Application
Environment

e Two kinds of
communication

 Direct client/server
« Channels

Austin Game Conference - 2007

PROJECT DARKSTAR

Project Darkstar Application
Environment

e Task Kernel

 Executes tasks in
response to events

* Appears mono-
threaded to app coder

e ACID Transactional

* Persistent C client

» Managed Objects Drawing 7- The Task Execution Emvironmen

* AppContext

* Gateway to the system

Austin Game Conference - 2007

PROJECT DARKSTAR

Project Darkstar Application
Environment

* Services
* Called by task code
 Can generate events
 Three standard
 Channel Manager
 Data Manager
» ManagedObijects (_client D

° Managed References Drawing 7: The Task Execution Environmen

e Task Manager
 Start new tasks

« Extensible on a per «
game basis =
Java

Austin Game Conference - 2007

PROJEGT DARKGTAR

Basic Project Darkstar App
Patterns: ApplListener

* All starts with an AppListener

* Applistener is an interface that defines the most
basic system events

* initialize()
* loggedin()
 Applistener Managed Object is created for you.
e initialize() called when created
 ApplListener has two duties
e initialize application
* handle users who just loggedin

Austin Game Conference - 2007

Basic Project Darkstar App
Patterns: ApplListener

* AppListener initialize() from DarkMUD

/**

* This is where we initialize the SGS application.
* This gets run only once, the
* first time the application is brought up, or the next start-up
:/after the object store gets cleared.
public void initialize(Properties arg0) {
Il The DataManager is used to store persistent objects
DataManager dmgr = AppContext.getDataManager();

Il This is the room all newly created players will be placed in.
GenericRoom startingRoom = new GenericRoom("starting room");
startingRoom.setDescription("a big empty room.");

Il This saves a ManagedReference to the starting room
Il so that we can put new players in it when they log in
startRoomRef = dmgr.createReference(startingRoom);

etc...

Austin Game Conference - 2007

Basic Project Darkstar App
Patterns: ApplListener

* AppListener initialize() from DarkMUD

public ClientSessionListener loggedin(ClientSession arg0) {
Il This tries to get a pre-existing MudUser object
Il for the user who just logged in, using a naming
Il convention base on his or her login name

String name = USERPREFIX + arg0.getName()
MudUser user = null;
String welcome = null;

try {

user = AppContext.getDataManager().getBinding(
name, MudUser.class);
if (user.isLoggedin()) {//but it says were already logged in
return null; // reject the login

}

welcome = "Welcome back to the JavaOne MUD!\n";
} catch (NameNotBoundException e)

What happens if the NameNotBoundException is thrown?

Austin Game Conference - 2007

Basic Project Darkstar App
Patterns: ApplListener

 If name was not bound....

} catch (NameNotBoundException €) {
try {
Il create a new MudUser ManagedObject
user = new MudUser(name);
AppContext.getDataManager().setBinding(name, user);

Il get back the starting room from the ManagedReference
Il we saved off.
Il We use getForUpdate because we know we are about
Ilto change its state by adding another user to its
Il inventory
GenericRoom startingRoom =
startRoomRef.getForUpdate(GenericRoom.class);
startingRoom.addTolnventory(user);
welcome = "Welcome to the JavaOne MUD!\n";
users.add()?ppContext.getDataManager().createReference(
user));

} catch (Exception e2) {
e2.printStackTrace();
return null;

}

Il make user the ClientSessionListener for this user session
return user;

Austin Game Conference - 2007

PROJEGT DARKGTAR

Basic Project Darkstar App
Patterns: ClientSessionListener

 Returned to system from loggedIn
callback.

 In above, was the user ManagedObject
» MudUser implements ClientSessionListener
* Common and handy pattern

* ClientSessionListener handles two events
* ReceivedMessage()
 End point for direct client to server communication
* disconnected()
* Notification of end of client session

Austin Game Conference - 2007

Basic Project Darkstar App
Patterns: ClientSessionListener

* ClientSessionListener receivedMessage() from
DarkMUD

public void receivedMessage(byte[] arg0) {

String command = new String(arg0).toLowerCase().trim();
StringBuffer output = new StringBuffer();

parse(command, output);
if (output.length() == 0){
sendToUser("Nothing happens.\n");

} else {
sendToUser(output.toString());

}
¥

* MUDs use string commands
 Converts back to String and passes to parser
* More commonly binary packet protocol handler

Austin Game Conference - 2007

PROJEGT DARKGTAR

Basic Project Darkstar App
Patterns: ClientSessionListener

* ClientSessionListener disconnected() from
DarkMUD

* public void disconnected(boolean arg0) {
session = null; // session is no longer valid
setLoggedIn(false);

* Session Cleanup

* ClientSession object is no longer valid so we null
the reference to it

 Created and managed by system
* Set a boolean so others know we are logged out

* In more complex app, might delete ¢
ManagedObjects no longer needed =

Sun Microsystems

Austin Game Conference - 2007

PROJEGT DARKGTAR

Coding Project Darkstar Games:

Practical Concepts and
Techniques

Jeff Kesselman

jeffrey.kesselman@sun.com

http://www.projectdarkstar.com

Austin Game Conference - 2007

