= 2415 Virtygl Workp lace

Karl Haberl, Seth Proctor, Tim Blackman, Sun Labs

Jon Kaplan, Jennifer Kotzen Open House

Sun Microsystems Laboratories

Project Darkstar - Outline

* Some Background

> The online games market, industry challenges,
Darkstar goals, why Sun Labs?

* The Technology
> Architecture, recent work, technical challenges

* Project Wonderland
> A view of Darkstar from the developer's point of view

» Community
> Current activities and plans for the future

Project Darkstar: Background

Online Games Market

* Divided into 3 groups:
> Casual/Social — cards, chess, dice, community sites
> Mass Market — driving, classic, arcade, simple

> Hardcore - MMOG, FPS, RTS
* Online mobile still very small

* Online games are currently the fastest growing
segment of the games industry

* Online game subscriptions estimated to hit $11B by
2011* *(Source: DFC intelligence)

> not including microtransactions, shared advertising, ...

The Canonical MMOG: World of Warcraft

Approximately 9 million subscribers
> Average subscription : $15/month
> Average retention : two years +

> $135 million per month/$1.62 Billion per year
run rate

> For one game (they have others)
Unknown number of servers
~2,700 employees world wide

Company is changing
> \Was a game company
> Now a service company

World of Warcraft™ s a trademark and Blizzard Entertainment is a trademark or
registered trademark of Blizzard Entertainment in the U.S. and/or other countries.

Ganz - Webkinz

* Approximately 5+ million subscribers
> Subscription comes with toy purchase
> Subscription lasts one year
> Average 100k users at any time

> Currently only US and Canada; soon to
be world wide

> Aimed at the 8-12 demographic
* And their mothers...
* The company is changing
> Was a toy company
> Becoming a game/social site company

Webkinz® is a registered Trademark of Ganz®. Photographs and artwork © GANZ. GANZ,
WEBKINZ, the WEBKINZ logo and all character names are trademarks of GANZ.

Habbo Hotel

* Virtual hotel for teens
> 89M accounts
> 8.3M unique users (12/07)
> 100K concurrent users peak
> will break 1B page hits per month

* Grew to 1M users in first year
> started w 5 servers and 2 admins

» “Scaling was challenging’ -

S u | ka H a ro Habbo Hotel © 2007 - 2008 Sulake Corporation Oy. HABBO is a registered
trademark of Sulake Corporation Oy in the European Union, the USA, Japan, the
People's Republic of China and various other jurisdictions. All rights reserved.

Current Scaling Techniques

* Geographic Decomposition - “Shards”
> One server = some geographic area
* WoW: realm, Second Life: island, Nicktropolis/Webkinz: room
> Need to decide scale during production
> (et it wrong, game play impacted
> When server is full, must connect to a different shard
> No communication between shards; bad for guilds
> Empty shards = idle servers, poor utilization
> For social/casual, can be confusing for kids and adults

Sharded Architecture

State-of-play for on-line games

» Difficult and expensive to develop, deploy, and manage
> $30M + multi-year development for big-time MMOGs
> Scaling requirements can vary wildly from projections
> Very risky — hard to predict success of game in market
> Only the big guys can play, limits innovation

* Scale and reliability are needed
> Sharded architectures limit scalability and player interaction

> (Game developers are not networking or concurrent
programming experts (nor do they want to be)

> One call to customer service = ~3 month subscription
> Chip architectures are changing — threads, not clocks!

10

N2
»

Project Darkstar

* A software server designed to (_lﬁr"'
change the develop-and-deploy
model for multiplayer online
games and virtual worlds

» Written entirely in the Java™

game Ioglc game logic

programming language engin | anis
* Game agnostlc and platform ¢:: =
agnOS IC ; commu._ruca-;;r;.— ‘ ; comn'.lu_ni;;aticns
* Avallable as open source under

GPLV2 license e w— WIOE ot

> Commercial licenses and
support can be provided

* Research project in Sun Labs

consumer devices

1

Project Darkstar Goals/Differentiators

* Enterprise class performance
* Simple programming model

* Shardless architecture

* Not a game engine

* Dynamic load balancing

* Server utilization
> Higher efficiencies
> |nfrastructure flexibility and reuse

* Open and extensible
> 100% Java technology
> Open Source — GPL v2

12

The View from Sun Labs

* Interesting technology challenges and open
questions — high risk

* A new potential market for Sun

* A different kind of research project

> core technology, community and business models all
being developed simultaneously

* Constant challenge to manage expectations while
building community around an evolving, as-yet
unproven technology

13

Project Darkstar: Core Technology

14

Outline

* Introduction to the Project Darkstar technology
* Changes for “multi-node’
* Current and future research

15

Project Darkstar Goals (1)

* Massive scale, low-latency platform
* Highly durable and fault-tolerant

* Coherent

* Familiar, event-driven model

* Easy to develop against

16

Project Darkstar Goals (2)

* Server-side model
> Single system
> Single-threaded

> No concurrency complexity
» Contention becomes the key issue

* Client-side model:
> Very simple protocol
> Platform-agnostic

* This talk focuses on the server-side

17

The Project Darkstar Stack

* A single server has 3 conceptual layers
> Application code
> Managers & Services
> Core components

* Applications are developed...
> In a transactional, event-driven model
> Using Managers to access the system

18

Services and Transactions

* Services provide most core facilities
> Data Service for shared data store
> Channel Service for group communication
> Task Service for scheduling durable events
> Session Service for client sessions

* Services “see” the transaction model
* Extension API for writing custom Services

19

Core Components

» Basic facilities to support Services
> Transaction coordination
> Transactional scheduling
> Non-transactional scheduling
> Authentication
> Profiling

20

Outline

* Introduction to the Project Darkstar technology
* Changes for “multi-node’
* Current and future research

21

Initial “Multi-Node” Goals

* A clustered solution
> The stack runs on multiple machines
> State is shared between these instances
> Nodes can be added or removed

* An early 1.0 developer release
> Applications work the same as in single-node
> Focused on behavior, not performance

22

Initial “Multi-Node” Non-Goals

» Strong horizontal scaling
* Resource-aware load-balancing
* No single points of failure

> More on these later in the talk

23

Concepts for Multi-Node (1)

» Shared data space
> Replicate the view of the data store to all servers
> Provide consistency across the cluster

* Node as an abstraction
> Single Project Darkstar server instance
> Application and core nodes

24

Concepts for Multi-Node (2)

* Node monitoring
> Availability of nodes
> Failure and recovery

* |dentity mapping
> All work is done for some identity
> Each identity is assigned to a node

* Task migration

25

Updating the Data Service

* Embedded store exported to network
> Data Service instances are clients
> Objects kept at server
> Contention managed at server

* Darkstar transactions mapped to data store model
> Transaction time-out
> Connection leasing

26

The Watchdog Service

* Supporting Service for node management

* Node resolution
> Query for available nodes
> Resolve state of a given node
> Listen for node status changes

* Node recovery
> Notification on node failure/shutdown
> Verify recovery handling

27

The Node Mapping Service

* Supporting Service for identity mapping
> Find where identities are mapped
> Assign un-mapped identities
> Resolve the identities on a given node

* Listen for mapping updates
* Manage identity status

28

Updating the Session/Task Services

* Session Service redirects connections
> Handle moving sessions based on mappings
> \/ote status active on the connected nodes

* Task Service migrates tasks
> Tasks are persisted in the data store
> Tasks are handed-off as identities move
> Tasks will only run once in the cluster

29

Core (Server) Node

- Standard Project Darkstar stack
> No application code running

* Limited Services
> Data, Watchdog, and NodeMapping
> Services are run in “server mode”
> Data Is persisted at this point

30

Outline

* Introduction to the Project Darkstar technology
* Changes for “multi-node’
* Current and future research

31

What Was Successful in 1.07?

* Working prototype

* Use one or many nodes with same development
model

» Community is increasingly active
* Learn about how to build out this environment

32

Where Does That Leave Us?

* Building a system meant we set aside some
research

» Community wants quick fixes to hard scaling issues

 We have what we need to start investigating the
hard research problems

33

Future Research Topics —
Short-term and Long-term

* Throttling and push-back

* Improving concurrency

* Transactions and contention
* Scheduling

34

Throttling and Push-back

* Avoid system overload when there are too many
requests

* Provide push-back to clients and other components

35

Throttling in the Current Release

* Delay reading next session message until current
message task is done

* Throw MessageRejectedException
when:

> Sending session message if session write buffer
is full

> Sending channel message if local buffer is full
* May still overwhelm other nodes due to fanout

36

Throttling: Future Work

* User login
* Reading session messages when task queue is full
» Scheduling new tasks when task queue is full

» Sending channel messages when node send
queues are full

* Feedback for other communication between
components

37

Improving Concurrency

* Applications need to be designed to avoid
concurrency hot-spots

* System should provide high-concurrency data
structures

» System facilities should support high concurrency

38

Concurrent Collections

ScalableHashMap and ScalableHashSet

* Added in release 0.9.5
* Uses a TRIE structure to improve concurrency
* For applications and services

39

Concurrent Queue

* Provide read/write concurrency

* For applications, also client session and channel
services

* Provide write concurrency using “funny” semantics

> Extra concurrency possible if pending added
elements cannot be read

> For services only

40

Data ServiceObject Allocation

» Concurrent allocation in current release
* Problems with page-level locking

* Problems with object-level locking

* Use random allocation

* Support explicit object clustering

41

Observing Contention

» Contention is a key performance issue

* Core scheduler runs all tasks
> \We know when transactions conflict
> We don't know much about the cause

* Currently adding:
> Tracking for what objects are being accessed
> What transactions are causing conflict

* Very useful for debugging/profiling

42

Reacting to Contention

* Drive re-try policy

* Exploring full contention coordinator
> Define our own policy for priority
> Dictate optimism/pessimism for locking
> Requires coordination between nodes

* Provide feedback to the scheduler

43

Tra

nsaction-Aware Scheduling

* Project Darkstar scheduling requirements
> Low-latency
> Low-jitter
> Whole task execution

* Sc

neduler is aware of transactions and results

> Handles re-trying aborted transactions

* Sc

neduler is aware of task operations

44

Node-Local Scheduling

* Fair priority-scheduling...
> ...for some definition of “fair”

* Task-predictive scheduling

* Currently exploring:
> Better policies for re-try on transaction abort
> Using a contention coordinator to track patterns

> How transaction coordinator and scheduler can better
collaborate

45

Scheduling for Multi-Node

* Node-level scheduling may be affected by...
> Contention with other nodes
> Re-try for transactions across nodes
> ...easier when contention is localized

* Node-level scheduling should feed-back...
> \What objects are needed?
> Who is interacting with whom?
> How well is the node keeping up with load?

* Exploring how to work with mapping and caching for
more efficient cluster-wide scheduling

46

Other Research Topics

» Caching and partitioning in the data store
* Load balancing

* Zones/shards versus a shardless world

* Persistence and backing stores

* External transaction coordination

* Monitoring and management

- Still others that we can explore now that we have a
working prototype...

Wonderland: A Project Darkstar Application

Project Wonderland

* Business grade virtual world toolkit
* Open source, Java-based, highly extensible

* Implemented as serious game on top of Project
Darkstar

=-Demo Video: MPK20 o

http://wonderland.dev.java.net e

Lesson 1: Communications

51

Our Original Architecture

[Artwork Voice]}
Movement
Art Data Voice
Data Data

Art Repository

Voice Mixer]}

52

[Artwork

N

Art
Data

#}1

Art RepositOhy~

N

Voice Mixer]}

53

Project Darkstar Channels

* Problems:
> Buffer overruns
> Timeouts
> Poor throughput

* Designed for: * Bad ideas:
> Coordination & control > Bulk data transfer
> Small messages > Continuous streams of

> High throughput data

54

Using Other Transports for Bulk Data

[Artwork Voice]}
Movement
Art Data Voice
Data Data

f |
Web : ., Voice
L Server] -Vmce/ler\"cej Mi)l(er

N

N

N

55

Lesson 2: Data Store Access

56

The Cell Hierarchy

» World is divided into discreet volumes called “cells”
> Cells are nested into a tree structure
> Each cell is a Project Darkstar ManagedObject
> User MOs maintain a list of cells they can see

RoomCell

WorldRootCell

AvatarCells

PhoneCell

57

Original Move

(o

£ Room Room

\\ M

[Avatar 1} {Avatar 2} [Avatar 3 [Avatar 4}

User 1 LUserZ User 3 } [U%
63 @3I6D %E}

Original Move

(o

Q Room Room

Avatar 3} [Avatar 4}

Move

Original Move

Validate

60

Original Move

Validate

61

Project Darkstar Data Store

* Problems
> Timeout
> Conflict

> Designed for: * Bad ideas:

- Small objects > Access too many
* Frequent access objects in one

* Transactions transaction
* Lots of writes are OK > Store huge objects

62

Keep Transactions Small

(o

Q Room Room

Avatar 3} [Avatar 4}

Move

Keep Transactions Small

(o

Room Room

[Avatar 3} [Avatar 4}

r2 User 3 } [U%
OO ©3I6D %E}

Validate

Keep Transactions Small

(o

Room Room

[Avatar 3} [Avatar 4}

User 3 } [U%
)

Validate Validate Validate Validate

Keep Transactions Small

(o

Room Room

[Avatar 4}

User 4
)

Validate Validate Validate Validate

Keep Transactions Small

(o

Room Room

LAvata: 41

)
User 4 B

) jit]

Validate Validate Validate Validate

* wonderland.dev.java.net
> Download today!
> Community
> Forum

* Visit our demo
* blogs.sun.com/wonderland

Project Darkstar: The Community

69

Who or What is a Community?

* Fellowship of people

» Common attitudes, interests, goals

» Shared social values and responsibilities
* Practicing common ownership

70

Why Community?

* Model has proven effective for advancing tech

» Can a community achieve a broader goal of
technology adoption?
* Core tech development
* Documentation
* Add-on and complementary tech dev & integration
* Tech support
* Education and consulting services
* Hosting services
* Promotion
» Distribution

7

The Project Darkstar Community

» Common interest: Project Darkstar technology
» Common goal: community health and growth

* People: all those working with the technology
* Roles: users, developers, service providers, advocates, others
* Entities: individuals, companies, organizations
* Interests: personal, commercial, private, public

* Cultures: online games/entertainment, large scale
systems/business

* Engagement: users, contributors, leaders
* Geographies: global

72

Shared Social Values &
Responsibilities

* Free and open source core
* Inclusive
* Transparent

* Contribution
> The act
> The artifact
> The contributor

* Fun!

73

Enabling/Ensuring Shared
Ownership

* Free and open source licensing

* Enable engagement
> Members want to be involved: let them be involved

* Sun as a community member
> Individuals and company
> Leadership by merit, not entitlement

* Governance?
> Only iffiwhen needed

74

Questions?

75

Karl Haberl, Seth Proctor, Tim Blackman, Sun Labs

Jon Kaplan, Jennifer Kotzen Open House

[first.last@sun.com]

