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Project Darkstar - Outline
• Some Background
> The online games market, industry challenges, 

Darkstar goals, why Sun Labs?
• The Technology
> Architecture, recent work, technical challenges

• Project Wonderland
> A view of Darkstar from the developer's point of view

• Community
> Current activities and plans for the future
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Project Darkstar: Background
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Online Games Market
• Divided into 3 groups:
> Casual/Social – cards, chess, dice, community sites
> Mass Market – driving, classic, arcade, simple
> Hardcore – MMOG, FPS, RTS

• Online mobile still very small
• Online games are currently the fastest growing 

segment of the games industry
• Online game subscriptions estimated to hit $11B by 

2011*  *(Source: DFC intelligence)
> not including microtransactions, shared advertising, ...
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The Canonical MMOG: World of Warcraft
• Approximately 9 million subscribers
> Average subscription : $15/month
> Average retention : two years +
> $135 million per month/$1.62 Billion per year 

run rate
> For one game (they have others)

• Unknown number of servers
• ~2,700 employees world wide
• Company is changing
> Was a game company
> Now a service company

World of Warcraft™  is a trademark and Blizzard Entertainment is a trademark or 
registered trademark of Blizzard Entertainment in the U.S. and/or other countries.
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Ganz - Webkinz
• Approximately 5+ million subscribers
> Subscription comes with toy purchase
> Subscription lasts one year
> Average 100k users at any time
> Currently only US and Canada; soon to 

be world wide
> Aimed at the 8-12 demographic
• And their mothers...

• The company is changing
> Was a toy company
> Becoming a game/social site company

Webkinz® is a registered Trademark of Ganz®. Photographs and artwork © GANZ. GANZ, 
WEBKINZ, the WEBKINZ logo and all character names are trademarks of GANZ.
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Habbo Hotel
• Virtual hotel for teens
> 89M accounts
> 8.3M unique users (12/07)
> 100K concurrent users peak
> will break 1B page hits per month

• Most revenue from content sales
• Grew to 1M users in first year
> started w 5 servers and 2 admins

• “Scaling was challenging” - 
Sulka Haro Habbo Hotel © 2007 - 2008 Sulake Corporation Oy. HABBO is a registered 

trademark of Sulake Corporation Oy in the European Union, the USA, Japan, the 
People's Republic of China and various other jurisdictions. All rights reserved.
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Current Scaling Techniques
• Geographic Decomposition - “Shards”
> One server = some geographic area
• WoW: realm, Second Life: island, Nicktropolis/Webkinz: room

> Need to decide scale during production
> Get it wrong, game play impacted
> When server is full, must connect to a different shard
> No communication between shards; bad for guilds
> Empty shards = idle servers, poor utilization 
> For social/casual, can be confusing for kids and adults
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Sharded Architecture
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State-of-play for on-line games
• Difficult and expensive to develop, deploy, and manage
> $30M + multi-year development for big-time MMOGs
> Scaling requirements can vary wildly from projections
> Very risky – hard to predict success of game in market
> Only the big guys can play, limits innovation

• Scale and reliability are needed
> Sharded architectures limit scalability and player interaction
> Game developers are not networking or concurrent 

programming experts (nor do they want to be)
> One call to customer service = ~3 month subscription
> Chip architectures are changing – threads, not clocks!
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Project Darkstar
• A software server designed to 

change the develop-and-deploy 
model for multiplayer online 
games and virtual worlds

• Written entirely in the JavaTM  
programming language

• Game agnostic and platform 
agnostic

• Available as open source under 
GPLv2 license
> Commercial licenses and 

support can be provided
• Research project in Sun Labs
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Project Darkstar Goals/Differentiators
• Enterprise class performance
• Simple programming model
• Shardless architecture
• Not a game engine
• Dynamic load balancing
• Server utilization
> Higher efficiencies
> Infrastructure flexibility and reuse

• Open and extensible
> 100% Java technology
> Open Source – GPL v2
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The View from Sun Labs
• Interesting technology challenges and open 

questions – high risk
• A new potential market for Sun
• A different kind of research project
> core technology, community and business models all 

being developed simultaneously
• Constant challenge to manage expectations while 

building community around an evolving, as-yet 
unproven technology
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Project Darkstar: Core Technology



15

Outline
• Introduction to the Project Darkstar technology
• Changes for “multi-node”
• Current and future research
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Project Darkstar Goals (1)
• Massive scale, low-latency platform
• Highly durable and fault-tolerant
• Coherent
• Familiar, event-driven model
• Easy to develop against
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Project Darkstar Goals (2)
• Server-side model
> Single system
> Single-threaded
> No concurrency complexity
• Contention becomes the key issue

• Client-side model:
> Very simple protocol
> Platform-agnostic

• This talk focuses on the server-side
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The Project Darkstar Stack
• A single server has 3 conceptual layers
> Application code
> Managers & Services
> Core components

• Applications are developed...
> In a transactional, event-driven model
> Using Managers to access the system
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Services and Transactions
• Services provide most core facilities
> Data Service for shared data store
> Channel Service for group communication
> Task Service for scheduling durable events
> Session Service for client sessions

• Services “see” the transaction model
• Extension API for writing custom Services
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Core Components
• Basic facilities to support Services
> Transaction coordination
> Transactional scheduling
> Non-transactional scheduling
> Authentication
> Profiling
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Outline
• Introduction to the Project Darkstar technology
• Changes for “multi-node”
• Current and future research
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Initial “Multi-Node” Goals
• A clustered solution
> The stack runs on multiple machines
> State is shared between these instances
> Nodes can be added or removed

• An early 1.0 developer release
> Applications work the same as in single-node
> Focused on behavior, not performance
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Initial “Multi-Node” Non-Goals
• Strong horizontal scaling
• Resource-aware load-balancing
• No single points of failure

> More on these later in the talk
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Concepts for Multi-Node (1)
• Shared data space
> Replicate the view of the data store to all servers
> Provide consistency across the cluster

• Node as an abstraction
> Single Project Darkstar server instance
> Application and core nodes
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Concepts for Multi-Node (2)
• Node monitoring
> Availability of nodes
> Failure and recovery

• Identity mapping
> All work is done for some identity
> Each identity is assigned to a node

• Task migration
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Updating the Data Service
• Embedded store exported to network
> Data Service instances are clients
> Objects kept at server
> Contention managed at server

• Darkstar transactions mapped to data store model
> Transaction time-out
> Connection leasing
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The Watchdog Service
• Supporting Service for node management
• Node resolution
> Query for available nodes
> Resolve state of a given node
> Listen for node status changes

• Node recovery
> Notification on node failure/shutdown
> Verify recovery handling
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The Node Mapping Service
• Supporting Service for identity mapping
> Find where identities are mapped
> Assign un-mapped identities
> Resolve the identities on a given node

• Listen for mapping updates
• Manage identity status
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Updating the Session/Task Services
• Session Service redirects connections
> Handle moving sessions based on mappings
> Vote status active on the connected nodes

• Task Service migrates tasks
> Tasks are persisted in the data store
> Tasks are handed-off as identities move
> Tasks will only run once in the cluster
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Core (Server) Node
• Standard Project Darkstar stack
> No application code running

• Limited Services
> Data, Watchdog, and NodeMapping
> Services are run in “server mode”
> Data is persisted at this point
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Outline
• Introduction to the Project Darkstar technology
• Changes for “multi-node”
• Current and future research
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What Was Successful in 1.0?
• Working prototype
• Use one or many nodes with same development 

model
• Community is increasingly active
• Learn about how to build out this environment
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Where Does That Leave Us?
• Building a system meant we set aside some 

research
• Community wants quick fixes to hard scaling issues
• We have what we need to start investigating the 

hard research problems
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Future Research Topics –
Short-term and Long-term

• Throttling and push-back
• Improving concurrency
• Transactions and contention
• Scheduling
• ...
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Throttling and Push-back
• Avoid system overload when there are too many 

requests
• Provide push-back to clients and other components
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Throttling in the Current Release
• Delay reading next session message until current 

message task is done
• Throw MessageRejectedException 

when:
> Sending session message if session write buffer 

is full
> Sending channel message if local buffer is full
• May still overwhelm other nodes due to fanout
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Throttling: Future Work
• User login
• Reading session messages when task queue is full
• Scheduling new tasks when task queue is full
• Sending channel messages when node send 

queues are full
• Feedback for other communication between 

components
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Improving Concurrency
• Applications need to be designed to avoid 

concurrency hot-spots
• System should provide high-concurrency data 

structures
• System facilities should support high concurrency
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Concurrent Collections

• Added in release 0.9.5
• Uses a TRIE structure to improve concurrency
• For applications and services

ScalableHashMap and ScalableHashSet
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Concurrent Queue
• Provide read/write concurrency
• For applications, also client session and channel 

services
• Provide write concurrency using “funny” semantics
> Extra concurrency possible if pending added 

elements cannot be read
> For services only
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Data Service Object Allocation
• Concurrent allocation in current release
• Problems with page-level locking
• Problems with object-level locking
• Use random allocation
• Support explicit object clustering
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Observing Contention
• Contention is a key performance issue
• Core scheduler runs all tasks
> We know when transactions conflict
> We don't know much about the cause

• Currently adding:
> Tracking for what objects are being accessed
> What transactions are causing conflict

• Very useful for debugging/profiling
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Reacting to Contention
• Drive re-try policy
• Exploring full contention coordinator
> Define our own policy for priority
> Dictate optimism/pessimism for locking
> Requires coordination between nodes

• Provide feedback to the scheduler
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Transaction-Aware Scheduling
• Project Darkstar scheduling requirements
> Low-latency
> Low-jitter
> Whole task execution

• Scheduler is aware of transactions and results
> Handles re-trying aborted transactions

• Scheduler is aware of task operations
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Node-Local Scheduling
• Fair priority-scheduling...
> ...for some definition of “fair”

• Task-predictive scheduling
• Currently exploring:
> Better policies for re-try on transaction abort
> Using a contention coordinator to track patterns
> How transaction coordinator and scheduler can better 

collaborate
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Scheduling for Multi-Node
• Node-level scheduling may be affected by...
> Contention with other nodes
> Re-try for transactions across nodes
> ...easier when contention is localized

• Node-level scheduling should feed-back...
> What objects are needed?
> Who is interacting with whom?
> How well is the node keeping up with load?

• Exploring how to work with mapping and caching for 
more efficient cluster-wide scheduling



47

Other Research Topics
• Caching and partitioning in the data store
• Load balancing
• Zones/shards versus a shardless world
• Persistence and backing stores
• External transaction coordination
• Monitoring and management
• Still others that we can explore now that we have a 

working prototype...
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Wonderland: A Project Darkstar Application
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Project Wonderland
• Business grade virtual world toolkit
• Open source, Java-based, highly extensible
• Implemented as serious game on top of Project 

Darkstar
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Demo Video: MPK20
http://wonderland.dev.java.net
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Lesson 1: Communications
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Our Original Architecture

Wonderland Client

VoiceArtwork

Project Darkstar Server
Art Repository Voice Mixer

Movement
DataArt

Data
Voice
Data
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Our Original Architecture
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Project Darkstar Channels

• Designed for:
> Coordination & control
> Small messages
> High throughput

• Bad ideas:
> Bulk data transfer
> Continuous streams of 

data

• Problems:
> Buffer overruns
> Timeouts
> Poor throughput
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Using Other Transports for Bulk Data

Wonderland Client

VoiceArtwork

Project Darkstar ServerWeb
 Server

Voice
 Mixer

Movement
DataArt

Data
Voice
Data

Voice Service
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Lesson 2: Data Store Access
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The Cell Hierarchy
• World is divided into discreet volumes called “cells”
> Cells are nested into a tree structure
> Each cell is a Project Darkstar ManagedObject
> User MOs maintain a list of cells they can see

RoomCell AppCell

AvatarCells

PhoneCell

WorldRootCell
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Original Move
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Project Darkstar Data Store
• Problems
> Timeout
> Conflict

• Bad ideas:
> Access too many 

objects in one 
transaction

> Store huge objects

> Designed for:
• Small objects
• Frequent access
• Transactions
• Lots of writes are OK
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Keep Transactions Small
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Keep Transactions Small
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Keep Transactions Small
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Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

  
ValidateValidate Validate Validate



67

Keep Transactions Small
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Project Wonderland Resources
• wonderland.dev.java.net
> Download today!
> Community
> Forum

• Visit our demo
• blogs.sun.com/wonderland



69

Project Darkstar: The Community
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Who or What is a Community?
• Fellowship of people
• Common attitudes, interests, goals
• Shared social values and responsibilities
• Practicing common ownership
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Why Community?
• Model has proven effective for advancing tech 
• Can a community achieve a broader goal of 

technology adoption?
• Core tech development
• Documentation
• Add-on and complementary tech dev & integration
• Tech support
• Education and consulting services
• Hosting services
• Promotion
• Distribution
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The Project Darkstar Community
• Common interest: Project Darkstar technology
• Common goal: community health and growth
• People: all those working with the technology

• Roles: users, developers, service providers, advocates, others
• Entities: individuals, companies, organizations
• Interests: personal, commercial, private, public
• Cultures: online games/entertainment, large scale 

systems/business
• Engagement: users, contributors, leaders
• Geographies: global
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Shared Social Values & 
Responsibilities
• Free and open source core
• Inclusive
• Transparent
• Contribution
> The act
> The artifact
> The contributor

• Fun!
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Enabling/Ensuring Shared 
Ownership
• Free and open source licensing
• Enable engagement
> Members want to be involved; let them be involved

• Sun as a community member
> Individuals and company
> Leadership by merit, not entitlement

• Governance?
> Only if/when needed
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Questions?
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