
BIG PROJECT:
PROJECT DARKSTAR
Karl Haberl, Seth Proctor, Tim Blackman,
Jon Kaplan, Jennifer Kotzen

Sun Microsystems Laboratories

2

Project Darkstar - Outline
• Some Background
> The online games market, industry challenges,

Darkstar goals, why Sun Labs?
• The Technology
> Architecture, recent work, technical challenges

• Project Wonderland
> A view of Darkstar from the developer's point of view

• Community
> Current activities and plans for the future

3

Project Darkstar: Background

4

Online Games Market
• Divided into 3 groups:
> Casual/Social – cards, chess, dice, community sites
> Mass Market – driving, classic, arcade, simple
> Hardcore – MMOG, FPS, RTS

• Online mobile still very small
• Online games are currently the fastest growing

segment of the games industry
• Online game subscriptions estimated to hit $11B by

2011* *(Source: DFC intelligence)
> not including microtransactions, shared advertising, ...

5

The Canonical MMOG: World of Warcraft
• Approximately 9 million subscribers
> Average subscription : $15/month
> Average retention : two years +
> $135 million per month/$1.62 Billion per year

run rate
> For one game (they have others)

• Unknown number of servers
• ~2,700 employees world wide
• Company is changing
> Was a game company
> Now a service company

World of Warcraft™ is a trademark and Blizzard Entertainment is a trademark or
registered trademark of Blizzard Entertainment in the U.S. and/or other countries.

6

Ganz - Webkinz
• Approximately 5+ million subscribers
> Subscription comes with toy purchase
> Subscription lasts one year
> Average 100k users at any time
> Currently only US and Canada; soon to

be world wide
> Aimed at the 8-12 demographic
• And their mothers...

• The company is changing
> Was a toy company
> Becoming a game/social site company

Webkinz® is a registered Trademark of Ganz®. Photographs and artwork © GANZ. GANZ,
WEBKINZ, the WEBKINZ logo and all character names are trademarks of GANZ.

7

Habbo Hotel
• Virtual hotel for teens
> 89M accounts
> 8.3M unique users (12/07)
> 100K concurrent users peak
> will break 1B page hits per month

• Most revenue from content sales
• Grew to 1M users in first year
> started w 5 servers and 2 admins

• “Scaling was challenging” -
Sulka Haro Habbo Hotel © 2007 - 2008 Sulake Corporation Oy. HABBO is a registered

trademark of Sulake Corporation Oy in the European Union, the USA, Japan, the
People's Republic of China and various other jurisdictions. All rights reserved.

8

Current Scaling Techniques
• Geographic Decomposition - “Shards”
> One server = some geographic area
• WoW: realm, Second Life: island, Nicktropolis/Webkinz: room

> Need to decide scale during production
> Get it wrong, game play impacted
> When server is full, must connect to a different shard
> No communication between shards; bad for guilds
> Empty shards = idle servers, poor utilization
> For social/casual, can be confusing for kids and adults

9

Sharded Architecture

10

State-of-play for on-line games
• Difficult and expensive to develop, deploy, and manage
> $30M + multi-year development for big-time MMOGs
> Scaling requirements can vary wildly from projections
> Very risky – hard to predict success of game in market
> Only the big guys can play, limits innovation

• Scale and reliability are needed
> Sharded architectures limit scalability and player interaction
> Game developers are not networking or concurrent

programming experts (nor do they want to be)
> One call to customer service = ~3 month subscription
> Chip architectures are changing – threads, not clocks!

11

Project Darkstar
• A software server designed to

change the develop-and-deploy
model for multiplayer online
games and virtual worlds

• Written entirely in the JavaTM
programming language

• Game agnostic and platform
agnostic

• Available as open source under
GPLv2 license
> Commercial licenses and

support can be provided
• Research project in Sun Labs

12

Project Darkstar Goals/Differentiators
• Enterprise class performance
• Simple programming model
• Shardless architecture
• Not a game engine
• Dynamic load balancing
• Server utilization
> Higher efficiencies
> Infrastructure flexibility and reuse

• Open and extensible
> 100% Java technology
> Open Source – GPL v2

13

The View from Sun Labs
• Interesting technology challenges and open

questions – high risk
• A new potential market for Sun
• A different kind of research project
> core technology, community and business models all

being developed simultaneously
• Constant challenge to manage expectations while

building community around an evolving, as-yet
unproven technology

14

Project Darkstar: Core Technology

15

Outline
• Introduction to the Project Darkstar technology
• Changes for “multi-node”
• Current and future research

16

Project Darkstar Goals (1)
• Massive scale, low-latency platform
• Highly durable and fault-tolerant
• Coherent
• Familiar, event-driven model
• Easy to develop against

17

Project Darkstar Goals (2)
• Server-side model
> Single system
> Single-threaded
> No concurrency complexity
• Contention becomes the key issue

• Client-side model:
> Very simple protocol
> Platform-agnostic

• This talk focuses on the server-side

18

The Project Darkstar Stack
• A single server has 3 conceptual layers
> Application code
> Managers & Services
> Core components

• Applications are developed...
> In a transactional, event-driven model
> Using Managers to access the system

19

Services and Transactions
• Services provide most core facilities
> Data Service for shared data store
> Channel Service for group communication
> Task Service for scheduling durable events
> Session Service for client sessions

• Services “see” the transaction model
• Extension API for writing custom Services

20

Core Components
• Basic facilities to support Services
> Transaction coordination
> Transactional scheduling
> Non-transactional scheduling
> Authentication
> Profiling

21

Outline
• Introduction to the Project Darkstar technology
• Changes for “multi-node”
• Current and future research

22

Initial “Multi-Node” Goals
• A clustered solution
> The stack runs on multiple machines
> State is shared between these instances
> Nodes can be added or removed

• An early 1.0 developer release
> Applications work the same as in single-node
> Focused on behavior, not performance

23

Initial “Multi-Node” Non-Goals
• Strong horizontal scaling
• Resource-aware load-balancing
• No single points of failure

> More on these later in the talk

24

Concepts for Multi-Node (1)
• Shared data space
> Replicate the view of the data store to all servers
> Provide consistency across the cluster

• Node as an abstraction
> Single Project Darkstar server instance
> Application and core nodes

25

Concepts for Multi-Node (2)
• Node monitoring
> Availability of nodes
> Failure and recovery

• Identity mapping
> All work is done for some identity
> Each identity is assigned to a node

• Task migration

26

Updating the Data Service
• Embedded store exported to network
> Data Service instances are clients
> Objects kept at server
> Contention managed at server

• Darkstar transactions mapped to data store model
> Transaction time-out
> Connection leasing

27

The Watchdog Service
• Supporting Service for node management
• Node resolution
> Query for available nodes
> Resolve state of a given node
> Listen for node status changes

• Node recovery
> Notification on node failure/shutdown
> Verify recovery handling

28

The Node Mapping Service
• Supporting Service for identity mapping
> Find where identities are mapped
> Assign un-mapped identities
> Resolve the identities on a given node

• Listen for mapping updates
• Manage identity status

29

Updating the Session/Task Services
• Session Service redirects connections
> Handle moving sessions based on mappings
> Vote status active on the connected nodes

• Task Service migrates tasks
> Tasks are persisted in the data store
> Tasks are handed-off as identities move
> Tasks will only run once in the cluster

30

Core (Server) Node
• Standard Project Darkstar stack
> No application code running

• Limited Services
> Data, Watchdog, and NodeMapping
> Services are run in “server mode”
> Data is persisted at this point

31

Outline
• Introduction to the Project Darkstar technology
• Changes for “multi-node”
• Current and future research

32

What Was Successful in 1.0?
• Working prototype
• Use one or many nodes with same development

model
• Community is increasingly active
• Learn about how to build out this environment

33

Where Does That Leave Us?
• Building a system meant we set aside some

research
• Community wants quick fixes to hard scaling issues
• We have what we need to start investigating the

hard research problems

34

Future Research Topics –
Short-term and Long-term

• Throttling and push-back
• Improving concurrency
• Transactions and contention
• Scheduling
• ...

35

Throttling and Push-back
• Avoid system overload when there are too many

requests
• Provide push-back to clients and other components

36

Throttling in the Current Release
• Delay reading next session message until current

message task is done
• Throw MessageRejectedException

when:
> Sending session message if session write buffer

is full
> Sending channel message if local buffer is full
• May still overwhelm other nodes due to fanout

37

Throttling: Future Work
• User login
• Reading session messages when task queue is full
• Scheduling new tasks when task queue is full
• Sending channel messages when node send

queues are full
• Feedback for other communication between

components

38

Improving Concurrency
• Applications need to be designed to avoid

concurrency hot-spots
• System should provide high-concurrency data

structures
• System facilities should support high concurrency

39

Concurrent Collections

• Added in release 0.9.5
• Uses a TRIE structure to improve concurrency
• For applications and services

ScalableHashMap and ScalableHashSet

40

Concurrent Queue
• Provide read/write concurrency
• For applications, also client session and channel

services
• Provide write concurrency using “funny” semantics
> Extra concurrency possible if pending added

elements cannot be read
> For services only

41

Data Service Object Allocation
• Concurrent allocation in current release
• Problems with page-level locking
• Problems with object-level locking
• Use random allocation
• Support explicit object clustering

42

Observing Contention
• Contention is a key performance issue
• Core scheduler runs all tasks
> We know when transactions conflict
> We don't know much about the cause

• Currently adding:
> Tracking for what objects are being accessed
> What transactions are causing conflict

• Very useful for debugging/profiling

43

Reacting to Contention
• Drive re-try policy
• Exploring full contention coordinator
> Define our own policy for priority
> Dictate optimism/pessimism for locking
> Requires coordination between nodes

• Provide feedback to the scheduler

44

Transaction-Aware Scheduling
• Project Darkstar scheduling requirements
> Low-latency
> Low-jitter
> Whole task execution

• Scheduler is aware of transactions and results
> Handles re-trying aborted transactions

• Scheduler is aware of task operations

45

Node-Local Scheduling
• Fair priority-scheduling...
> ...for some definition of “fair”

• Task-predictive scheduling
• Currently exploring:
> Better policies for re-try on transaction abort
> Using a contention coordinator to track patterns
> How transaction coordinator and scheduler can better

collaborate

46

Scheduling for Multi-Node
• Node-level scheduling may be affected by...
> Contention with other nodes
> Re-try for transactions across nodes
> ...easier when contention is localized

• Node-level scheduling should feed-back...
> What objects are needed?
> Who is interacting with whom?
> How well is the node keeping up with load?

• Exploring how to work with mapping and caching for
more efficient cluster-wide scheduling

47

Other Research Topics
• Caching and partitioning in the data store
• Load balancing
• Zones/shards versus a shardless world
• Persistence and backing stores
• External transaction coordination
• Monitoring and management
• Still others that we can explore now that we have a

working prototype...

48

Wonderland: A Project Darkstar Application

49

Project Wonderland
• Business grade virtual world toolkit
• Open source, Java-based, highly extensible
• Implemented as serious game on top of Project

Darkstar

50

Demo Video: MPK20
http://wonderland.dev.java.net

51

Lesson 1: Communications

52

Our Original Architecture

Wonderland Client

VoiceArtwork

Project Darkstar Server
Art Repository Voice Mixer

Movement
DataArt

Data
Voice
Data

53

Our Original Architecture

Wonderland Client

VoiceArtwork

Darkstar Server
Art Repository Voice Mixer

Movement
DataArt

Data
Voice
Data

54

Project Darkstar Channels

• Designed for:
> Coordination & control
> Small messages
> High throughput

• Bad ideas:
> Bulk data transfer
> Continuous streams of

data

• Problems:
> Buffer overruns
> Timeouts
> Poor throughput

55

Using Other Transports for Bulk Data

Wonderland Client

VoiceArtwork

Project Darkstar ServerWeb
 Server

Voice
 Mixer

Movement
DataArt

Data
Voice
Data

Voice Service

56

Lesson 2: Data Store Access

57

The Cell Hierarchy
• World is divided into discreet volumes called “cells”
> Cells are nested into a tree structure
> Each cell is a Project Darkstar ManagedObject
> User MOs maintain a list of cells they can see

RoomCell AppCell

AvatarCells

PhoneCell

WorldRootCell

58

Original Move

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

59

Original Move

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

Move

60

Original Move

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

Validate

61

Original Move

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

Validate

62

Project Darkstar Data Store
• Problems
> Timeout
> Conflict

• Bad ideas:
> Access too many

objects in one
transaction

> Store huge objects

> Designed for:
• Small objects
• Frequent access
• Transactions
• Lots of writes are OK

63

Keep Transactions Small

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

Move

64

Keep Transactions Small

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

Validate

65

Keep Transactions Small

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

ValidateValidate Validate Validate

66

Keep Transactions Small

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

ValidateValidate Validate Validate

67

Keep Transactions Small

Avatar 2

World

Room Room

Avatar 1

User 4

Avatar 3 Avatar 4

User 3User 2User 1

ValidateValidate Validate Validate

68

Project Wonderland Resources
• wonderland.dev.java.net
> Download today!
> Community
> Forum

• Visit our demo
• blogs.sun.com/wonderland

69

Project Darkstar: The Community

70

Who or What is a Community?
• Fellowship of people
• Common attitudes, interests, goals
• Shared social values and responsibilities
• Practicing common ownership

71

Why Community?
• Model has proven effective for advancing tech
• Can a community achieve a broader goal of

technology adoption?
• Core tech development
• Documentation
• Add-on and complementary tech dev & integration
• Tech support
• Education and consulting services
• Hosting services
• Promotion
• Distribution

72

The Project Darkstar Community
• Common interest: Project Darkstar technology
• Common goal: community health and growth
• People: all those working with the technology

• Roles: users, developers, service providers, advocates, others
• Entities: individuals, companies, organizations
• Interests: personal, commercial, private, public
• Cultures: online games/entertainment, large scale

systems/business
• Engagement: users, contributors, leaders
• Geographies: global

73

Shared Social Values &
Responsibilities
• Free and open source core
• Inclusive
• Transparent
• Contribution
> The act
> The artifact
> The contributor

• Fun!

74

Enabling/Ensuring Shared
Ownership
• Free and open source licensing
• Enable engagement
> Members want to be involved; let them be involved

• Sun as a community member
> Individuals and company
> Leadership by merit, not entitlement

• Governance?
> Only if/when needed

75

Questions?

Karl Haberl, Seth Proctor, Tim Blackman,
Jon Kaplan, Jennifer Kotzen

[first.last@sun.com]

